AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Modern Classical Homotopy Theory
About this Title
Jeffrey Strom, Western Michigan University, Kalamazoo, MI
Publication: Graduate Studies in Mathematics
Publication Year:
2011; Volume 127
ISBNs: 978-0-8218-5286-6 (print); 978-1-4704-1188-6 (online)
DOI: https://doi.org/10.1090/gsm/127
MathSciNet review: MR2839990
MSC: Primary 55-01; Secondary 55-02, 55Pxx, 55Qxx, 55Uxx
Table of Contents
Download chapters as PDF
Front/Back Matter
Part 1. The language of categories
- Chapter 1. Categories and functors
- Chapter 2. Limits and colimits
Part 2. Semi-formal homotopy theory
- Chapter 3. Categories of spaces
- Chapter 4. Homotopy
- Chapter 5. Cofibrations and fibrations
- Chapter 6. Homotopy limits and colimits
- Chapter 7. Homotopy pushout and pullback squares
- Chapter 8. Tools and techniques
- Chapter 9. Topics and examples
- Chapter 10. Model categories
Part 3. Four topological inputs
- Chapter 11. The concept of dimension in homotopy theory
- Chapter 12. Subdivision of disks
- Chapter 13. The local nature of fibrations
- Chapter 14. Pullbacks of cofibrations
- Chapter 15. Related topics
Part 4. Targets as domains, domains as targets
- Chapter 16. Constructions of spaces and maps
- Chapter 17. Understanding suspension
- Chapter 18. Comparing pushouts and pullbacks
- Chapter 19. Some computations in homotopy theory
- Chapter 20. Further topics
Part 5. Cohomology and homology
- Chapter 21. Cohomology
- Chapter 22. Homology
- Chapter 23. Cohomology operations
- Chapter 24. Chain complexes
- Chapter 25. Topics, problems and projects
Part 6. Cohomology, homology and fibrations
- Chapter 26. The Wang sequence
- Chapter 27. Cohomology of filtered spaces
- Chapter 28. The Serre filtration of a fibration
- Chapter 29. Application: Incompressibility
- Chapter 30. The spectral sequence of a filtered space
- Chapter 31. The Leray-Serre spectral sequence
- Chapter 32. Application: Bott periodicity
- Chapter 33. Using the Leray-Serre spectral sequence
Part 7. Vistas
- Chapter 34. Localization and completion
- Chapter 35. Exponents for homotopy groups
- Chapter 36. Classes of spaces
- Chapter 37. Miller’s theorem
- Appendix A. Some algebra