Modern Classical Homotopy Theory
Dedicated to my mom and dad
Contents

Preface xvi

Part 1. The Language of Categories

Chapter 1. Categories and Functors 3

§1.1. Diagrams 3
§1.2. Categories 5
§1.3. Functors 7
§1.4. Natural Transformations 11
§1.5. Duality 14
§1.6. Products and Sums 15
§1.7. Initial and Terminal Objects 18
§1.8. Group and Cogroup Objects 21
§1.9. Homomorphisms 24
§1.10. Abelian Groups and Cogroups 25
§1.11. Adjoint Functors 26

Chapter 2. Limits and Colimits 29

§2.1. Diagrams and Their Shapes 29
§2.2. Limits and Colimits 31
§2.3. Naturality of Limits and Colimits 34
§2.4. Special Kinds of Limits and Colimits 35
§2.5. Formal Properties of Pushout and Pullback Squares 40
Part 2. Semi-Formal Homotopy Theory

Chapter 3. Categories of Spaces 45
 §3.1. Spheres and Disks 45
 §3.2. CW Complexes 46
 §3.3. Example: Projective Spaces 51
 §3.4. Topological Spaces 53
 §3.5. The Category of Pairs 58
 §3.6. Pointed Spaces 60
 §3.7. Relating the Categories of Pointed and Unpointed Spaces 63
 §3.8. Suspension and Loop 66
 §3.9. Additional Problems and Projects 68

Chapter 4. Homotopy 69
 §4.1. Homotopy of Maps 69
 §4.2. Constructing Homotopies 74
 §4.3. Homotopy Theory 80
 §4.4. Groups and Cogroups in the Homotopy Category 84
 §4.5. Homotopy Groups 87
 §4.6. Homotopy and Duality 89
 §4.7. Homotopy in Mapping Categories 91
 §4.8. Additional Problems 98

Chapter 5. Cofibrations and Fibrations 99
 §5.1. Cofibrations 100
 §5.2. Special Properties of Cofibrations of Spaces 104
 §5.3. Fibrations 107
 §5.4. Factoring through Cofibrations and Fibrations 110
 §5.5. More Homotopy Theory in Categories of Maps 115
 §5.6. The Fundamental Lifting Property 118
 §5.7. Pointed Cofibrations and Fibrations 122
 §5.8. Well-Pointed Spaces 124
 §5.9. Exact Sequences, Cofibers and Fibers 129
 §5.10. Mapping Spaces 133
 §5.11. Additional Topics, Problems and Projects 136

Chapter 6. Homotopy Limits and Colimits 143
 §6.1. Homotopy Equivalence in Diagram Categories 144
Contents

§6.2. Cofibrant Diagrams 146
§6.3. Homotopy Colimits of Diagrams 151
§6.4. Constructing Cofibrant Replacements 155
§6.5. Examples: Pushouts, 3×3s and Telescopes 160
§6.6. Homotopy Limits 167
§6.7. Functors Applied to Homotopy Limits and Colimits 173
§6.8. Homotopy Colimits of More General Diagrams 176
§6.9. Additional Topics, Problems and Projects 178

Chapter 7. Homotopy Pushout and Pullback Squares 181
§7.1. Homotopy Pushout Squares 181
§7.2. Recognition and Completion 185
§7.3. Homotopy Pullback Squares 188
§7.4. Manipulating Squares 190
§7.5. Characterizing Homotopy Pushout and Pullback Squares 195
§7.6. Additional Topics, Problems and Projects 196

Chapter 8. Tools and Techniques 199
§8.1. Long Cofiber and Fiber Sequences 199
§8.2. The Action of Paths in Fibrations 203
§8.3. Every Action Has an Equal and Opposite Coaction 205
§8.4. Mayer-Vietoris Sequences 209
§8.5. The Operation of Paths 211
§8.6. Fubini Theorems 212
§8.7. Iterated Fibers and Cofibers 214
§8.8. Group Actions 216

Chapter 9. Topics and Examples 221
§9.1. Homotopy Type of Joins and Products 221
§9.2. H-Spaces and co-H-Spaces 225
§9.3. Unitary Groups and Their Quotients 230
§9.4. Cone Decompositions 237
§9.5. Introduction to Phantom Maps 245
§9.6. G. W. Whitehead’s Homotopy Pullback Square 249
§9.7. Lusternik-Schnirelmann Category 250
§9.8. Additional Problems and Projects 258
Chapter 10. Model Categories 261

§10.1. Model Categories 262

§10.2. Left and Right Homotopy 266

§10.3. The Homotopy Category of a Model Category 268

§10.4. Derived Functors and Quillen Equivalence 268

§10.5. Homotopy Limits and Colimits 270

Part 3. Four Topological Inputs

Chapter 11. The Concept of Dimension in Homotopy Theory 275

§11.1. Induction Principles for CW Complexes 276

§11.2. \(n \)-Equivalences and Connectivity of Spaces 277

§11.3. Reformulations of \(n \)-Equivalences 280

§11.4. The J. H. C. Whitehead Theorem 286

§11.5. Additional Problems 286

Chapter 12. Subdivision of Disks 289

§12.1. The Seifert-Van Kampen Theorem 289

§12.2. Simplices and Subdivision 295

§12.3. The Connectivity of \(X_n \hookrightarrow X \) 298

§12.4. Cellular Approximation of Maps 299

§12.5. Homotopy Colimits and \(n \)-Equivalences 300

§12.6. Additional Problems and Projects 303

Chapter 13. The Local Nature of Fibrations 305

§13.1. Maps Homotopy Equivalent to Fibrations 306

§13.2. Local Fibrations Are Fibrations 308

§13.3. Gluing Weak Fibrations 310

§13.4. The First Cube Theorem 313

Chapter 14. Pullbacks of Cofibrations 317

§14.1. Pullbacks of Cofibrations 317

§14.2. Pullbacks of Well-Pointed Spaces 319

§14.3. The Second Cube Theorem 320

Chapter 15. Related Topics 323

§15.1. Locally Trivial Bundles 323

§15.2. Covering Spaces 326

§15.3. Bundles Built from Group Actions 330
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§15.4. Some Theory of Fiber Bundles</td>
<td>333</td>
</tr>
<tr>
<td>§15.5. Serre Fibrations and Model Structures</td>
<td>336</td>
</tr>
<tr>
<td>§15.6. The Simplicial Approach to Homotopy Theory</td>
<td>341</td>
</tr>
<tr>
<td>§15.7. Quasifibrations</td>
<td>346</td>
</tr>
<tr>
<td>§15.8. Additional Problems and Projects</td>
<td>348</td>
</tr>
<tr>
<td>Part 4. Targets as Domains, Domains as Targets</td>
<td></td>
</tr>
<tr>
<td>Chapter 16. Constructions of Spaces and Maps</td>
<td>353</td>
</tr>
<tr>
<td>§16.1. Skeleta of Spaces</td>
<td>354</td>
</tr>
<tr>
<td>§16.2. Connectivity and CW Structure</td>
<td>357</td>
</tr>
<tr>
<td>§16.3. Basic Obstruction Theory</td>
<td>359</td>
</tr>
<tr>
<td>§16.4. Postnikov Sections</td>
<td>361</td>
</tr>
<tr>
<td>§16.5. Classifying Spaces and Universal Bundles</td>
<td>363</td>
</tr>
<tr>
<td>§16.6. Additional Problems and Projects</td>
<td>371</td>
</tr>
<tr>
<td>Chapter 17. Understanding Suspension</td>
<td>373</td>
</tr>
<tr>
<td>§17.1. Moore Paths and Loops</td>
<td>373</td>
</tr>
<tr>
<td>§17.2. The Free Monoid on a Topological Space</td>
<td>376</td>
</tr>
<tr>
<td>§17.3. Identifying the Suspension Map</td>
<td>379</td>
</tr>
<tr>
<td>§17.4. The Freudenthal Suspension Theorem</td>
<td>382</td>
</tr>
<tr>
<td>§17.5. Homotopy Groups of Spheres and Wedges of Spheres</td>
<td>383</td>
</tr>
<tr>
<td>§17.6. Eilenberg-MacLane Spaces</td>
<td>384</td>
</tr>
<tr>
<td>§17.7. Suspension in Dimension 1</td>
<td>387</td>
</tr>
<tr>
<td>§17.8. Additional Topics and Problems</td>
<td>389</td>
</tr>
<tr>
<td>Chapter 18. Comparing Pushouts and Pullbacks</td>
<td>393</td>
</tr>
<tr>
<td>§18.1. Pullbacks and Pushouts</td>
<td>393</td>
</tr>
<tr>
<td>§18.2. Comparing the Fiber of f to Its Cofiber</td>
<td>396</td>
</tr>
<tr>
<td>§18.3. The Blakers-Massey Theorem</td>
<td>398</td>
</tr>
<tr>
<td>§18.4. The Delooping of Maps</td>
<td>402</td>
</tr>
<tr>
<td>§18.5. The n-Dimensional Blakers-Massey Theorem</td>
<td>405</td>
</tr>
<tr>
<td>§18.6. Additional Topics, Problems and Projects</td>
<td>409</td>
</tr>
<tr>
<td>Chapter 19. Some Computations in Homotopy Theory</td>
<td>413</td>
</tr>
<tr>
<td>§19.1. The Degree of a Map $S^n \to S^n$</td>
<td>414</td>
</tr>
<tr>
<td>§19.2. Some Applications of Degree</td>
<td>417</td>
</tr>
<tr>
<td>§19.3. Maps Between Wedges of Spheres</td>
<td>421</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>§19.4</td>
<td>Moore Spaces</td>
</tr>
<tr>
<td>§19.5</td>
<td>Homotopy Groups of a Smash Product</td>
</tr>
<tr>
<td>§19.6</td>
<td>Smash Products of Eilenberg-MacLane Spaces</td>
</tr>
<tr>
<td>§19.7</td>
<td>An Additional Topic and Some Problems</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>Further Topics</td>
</tr>
<tr>
<td>§20.1</td>
<td>The Homotopy Category Is Not Complete</td>
</tr>
<tr>
<td>§20.2</td>
<td>Cone Decompositions with Respect to Moore Spaces</td>
</tr>
<tr>
<td>§20.3</td>
<td>First p-Torsion Is a Stable Invariant</td>
</tr>
<tr>
<td>§20.4</td>
<td>Hopf Invariants and Lusternik-Schnirelmann Category</td>
</tr>
<tr>
<td>§20.5</td>
<td>Infinite Symmetric Products</td>
</tr>
<tr>
<td>§20.6</td>
<td>Additional Topics, Problems and Projects</td>
</tr>
<tr>
<td>Part 5.</td>
<td>Cohomology and Homology</td>
</tr>
<tr>
<td>Chapter 21</td>
<td>Cohomology</td>
</tr>
<tr>
<td>§21.1</td>
<td>Cohomology</td>
</tr>
<tr>
<td>§21.2</td>
<td>Basic Computations</td>
</tr>
<tr>
<td>§21.3</td>
<td>The External Cohomology Product</td>
</tr>
<tr>
<td>§21.4</td>
<td>Cohomology Rings</td>
</tr>
<tr>
<td>§21.5</td>
<td>Computing Algebra Structures</td>
</tr>
<tr>
<td>§21.6</td>
<td>Variation of Coefficients</td>
</tr>
<tr>
<td>§21.7</td>
<td>A Simple Künneth Theorem</td>
</tr>
<tr>
<td>§21.8</td>
<td>The Brown Representability Theorem</td>
</tr>
<tr>
<td>§21.9</td>
<td>The Singular Extension of Cohomology</td>
</tr>
<tr>
<td>§21.10</td>
<td>An Additional Topic and Some Problems and Projects</td>
</tr>
<tr>
<td>Chapter 22</td>
<td>Homology</td>
</tr>
<tr>
<td>§22.1</td>
<td>Homology Theories</td>
</tr>
<tr>
<td>§22.2</td>
<td>Examples of Homology Theories</td>
</tr>
<tr>
<td>§22.3</td>
<td>Exterior Products and the Künneth Theorem for Homology</td>
</tr>
<tr>
<td>§22.4</td>
<td>Coalgebra Structure for Homology</td>
</tr>
<tr>
<td>§22.5</td>
<td>Relating Homology to Cohomology</td>
</tr>
<tr>
<td>§22.6</td>
<td>H-Spaces and Hopf Algebras</td>
</tr>
<tr>
<td>Chapter 23</td>
<td>Cohomology Operations</td>
</tr>
<tr>
<td>§23.1</td>
<td>Cohomology Operations</td>
</tr>
<tr>
<td>§23.2</td>
<td>Stable Cohomology Operations</td>
</tr>
</tbody>
</table>
§23.3. Using the Diagonal Map to Construct Cohomology Operations 521
§23.4. The Steenrod Reduced Powers 525
§23.5. The Adem Relations 528
§23.6. The Algebra of the Steenrod Algebra 533
§23.7. Wrap-Up 538

Chapter 24. Chain Complexes 541
§24.1. The Cellular Complex 542
§24.2. Applying Algebraic Universal Coefficients Theorems 547
§24.3. The General Künneth Theorem 548
§24.4. Algebra Structures on $C^*(X)$ and $C_*(X)$ 550
§24.5. The Singular Chain Complex 551

Chapter 25. Topics, Problems and Projects 553
§25.1. Algebra Structures on \mathbb{R}^n and \mathbb{C}^n 553
§25.2. Relative Cup Products 554
§25.3. Hopf Invariants and Hopf Maps 556
§25.4. Some Homotopy Groups of Spheres 563
§25.5. The Borsuk-Ulam Theorem 565
§25.6. Moore Spaces and Homology Decompositions 567
§25.7. Finite Generation of $\pi_*(X)$ and $H_*(X)$ 570
§25.8. Surfaces 572
§25.9. Euler Characteristic 573
§25.10. The Künneth Theorem via Symmetric Products 576
§25.11. The Homology Algebra of $\Omega \Sigma X$ 576
§25.12. The Adjoint λ_X of $\text{id}_{\Omega X}$ 577
§25.13. Some Algebraic Topology of Fibrations 579
§25.15. A Variety of Topics 581
§25.16. Additional Problems and Projects 585

Part 6. Cohomology, Homology and Fibrations

Chapter 26. The Wang Sequence 591
§26.1. Trivialization of Fibrations 591
§26.2. Orientable Fibrations 592
§26.3. The Wang Cofiber Sequence 593
§26.4. Some Algebraic Topology of Unitary Groups	597
§26.5. The Serre Filtration	600
§26.6. Additional Topics, Problems and Projects	603

Chapter 27. Cohomology of Filtered Spaces | 605 |
§27.1. Filtered Spaces and Filtered Groups	606
§27.2. Cohomology and Cone Filtrations	612
§27.3. Approximations for General Filtered Spaces	615
§27.4. Products in $E_1^{*,*}(X)$	618
§27.5. Pointed and Unpointed Filtered Spaces	620
§27.6. The Homology of Filtered Spaces	620
§27.7. Additional Projects	621

Chapter 28. The Serre Filtration of a Fibration | 623 |
§28.1. Identification of E_2 for the Serre Filtration	623
§28.2. Proof of Theorem 28.1	625
§28.3. External and Internal Products	631
§28.4. Homology and the Serre Filtration	633
§28.5. Additional Problems	633

Chapter 29. Application: Incompressibility | 635 |
§29.1. Homology of Eilenberg-MacLane Spaces	636
§29.2. Reduction to Theorem 29.1	636
§29.3. Proof of Theorem 29.2	638
§29.4. Consequences of Theorem 29.1	641
§29.5. Additional Problems and Projects	642

Chapter 30. The Spectral Sequence of a Filtered Space | 645 |
§30.1. Approximating $Gr^s \bar{H}^n(X)$ by $E^{*,*}_r(X)$	646
§30.2. Some Algebra of Spectral Sequences	651
§30.3. The Spectral Sequences of Filtered Spaces	654

Chapter 31. The Leray-Serre Spectral Sequence | 659 |
§31.1. The Leray-Serre Spectral Sequence	659
§31.2. Edge Phenomena	663
§31.3. Simple Computations	671
§31.4. Simplifying the Leray-Serre Spectral Sequence	673
§31.5. Additional Problems and Projects	679
Contents

Chapter 36. Classes of Spaces 759

§36.1. A Galois Correspondence in Homotopy Theory 760
§36.2. Strong Resolving Classes 761
§36.3. Closed Classes and Fibrations 764
§36.4. The Calculus of Closed Classes 767

Chapter 37. Miller’s Theorem 773

§37.1. Reduction to Odd Spheres 774
§37.2. Modules over the Steenrod Algebra 777
§37.3. Massey-Peterson Towers 780
§37.4. Extensions and Consequences of Miller’s Theorem 785

Appendix A. Some Algebra 789

§A.1. Modules, Algebras and Tensor Products 789
§A.2. Exact Sequences 794
§A.3. Graded Algebra 795
§A.4. Chain Complexes and Algebraic Homology 798
§A.5. Some Homological Algebra 799
§A.6. Hopf Algebras 803
§A.7. Symmetric Polynomials 806
§A.8. Sums, Products and Maps of Finite Type 807
§A.9. Ordinal Numbers 808

Bibliography 811

Index of Notation 821

Index 823
Preface

The subject of topology can be described as the study of the category Top of all topological spaces and the continuous maps between them. But many topological problems, and their solutions, do not change if the maps involved are replaced with ‘continuous deformations’ of themselves. The equivalence relation—called homotopy—generated by continuous deformations of maps respects composition, so that there is a ‘quotient’ $\text{homotopy category } \mathbb{h}\text{Top}$ and a functor $\text{Top} \to \mathbb{h}\text{Top}$. Homotopy theory is the study of this functor. Thus homotopy theory is not entirely confined to the category $\mathbb{h}\text{Top}$: it is frequently necessary, or at least useful, to use constructions available only in Top in order to prove statements that are entirely internal to $\mathbb{h}\text{Top}$; and the homotopy category $\mathbb{h}\text{Top}$ can shed light even on questions in Top that are not homotopy invariant.

History. The core of the subject I’m calling ‘classical homotopy theory’ is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This includes the notions of fibration and cofibration, CW complexes, long fiber and cofiber sequences, loop space, suspension, and so on. Brown’s representability theorems show that homology and cohomology are also contained in classical homotopy theory.

One of the main complications in homotopy theory is that many, if not most, diagrams in the category $\mathbb{h}\text{Top}$ do not have limits or colimits. Thus many theorems were proved using occasionally ingenious and generally ad hoc constructions performed in the category Top. Eventually many of these constructions were codified in the dual concepts of homotopy colimit and
homotopy limit, and a powerful calculus for working with them was developed. The language of homotopy limits and colimits and the techniques for manipulating them made it possible to easily state and conceptually prove many results that had previously seemed quite difficult and inscrutable.

Once the basic theory has been laid down, the most interesting and useful theorems are those that break the categorical barrier between domain and target. The basic example of such a theorem is the Blakers-Massey theorem, which compares homotopy pushout squares to homotopy pullback squares. Other excellent examples of duality-breaking theorems are the Hilton-Milnor theorem on the loop space of a wedge and Ganea’s theorem (which is dual to the most important special case of the Blakers-Massey theorem). All of these results were first proved with a great deal of technical finesse but can now be established easily using homotopy pushouts and pullbacks.

The Aim of This Book. The aim of this book is to develop classical homotopy theory and some important developments that flow from it using the more modern techniques of homotopy limits and colimits. Thus homotopy pushouts and homotopy pullbacks play a central role.

The book has been written with the theory of model categories firmly in mind. As is probably already evident, we make consistent and unapologetic use of the language of categories, functors, limits and colimits. But we are genuinely interested in the homotopy theory of spaces so, with the exception of a brief account of the abstract theory of model categories, we work with spaces throughout and happily make use of results that are special for spaces. Indeed, the third part of the book is devoted to the development of four basic properties that set the category of spaces apart from generic model categories.

I have generally used topological or homotopy-theoretical arguments rather than algebraic ones. This almost always leads to simpler statements and simpler arguments. Thus my book attempts to upset the balance (observed in many algebraic topology texts) between algebra and topology, in favor of topology. Algebra is just one of many tools by which we understand topology. This is not an anti-algebra crusade. Rather, I set out hoping to find homotopy-theoretical arguments wherever possible, with the expectation that at certain points, the simplicity or clarity afforded by the standard algebraic approach would outweigh the philosophical cleanliness of avoiding it. But I ended up being surprised: at no point did I find that ‘extra’ algebra made any contribution to clarity or simplicity.

Omissions. This is a very long book, and many topics that were in my earliest plans have had to be (regretfully) left out. I had planned three chapters on stable homotopy, extraordinary cohomology and nilpotence and
another on Goodwillie calculus. But in the book that emerged it seemed thematically appropriate to draw the line at stable homotopy theory, so space and thematic consistency drove these chapters to the cutting room floor.

Problems and Exercises. Many authors of textbooks assert that the only way to learn the subject is to do the exercises. I have taken this to heart, and so *there are no outright proofs in the book*. Instead, theorems are followed by multi-part problems that guide the readers to find the proofs for themselves. To the expert, these problems will read as terse proofs, perhaps suitable for exposition in a journal article. Reading this text, then, is a preparation for the experience of reading research articles. There are also a great many other problems incorporated into the main flow of the text, problems that develop interesting tangential results, explore applications, or carry out explicit calculations.

In addition, there are numerous exercises. These are intended to help the student develop some habits of mind that are extremely useful when reading mathematics. After definitions, the reader is asked to find examples and nonexamples, to explore how the new concept fits in with previous ideas, etc. Other exercises ask the reader to compare theorems with previous results, to test whether hypotheses are needed, or can be weakened, and so on.

Audience. This book was written with the idea that it would be used by students in their first year or two of graduate school. It is assumed that the reader is familiar with basic algebraic concepts such as groups and rings. It is also assumed that the student has had an introductory course in topology. It would be nice if that course included some mention of the fundamental group, but that is not necessary.

Teaching from This Book. This book covers more topics, in greater depth, than can be covered in detail in a typical two-semester homotopy theory or algebraic topology sequence. That being said, a good goal for a two-semester course would be to cover the high points of Parts 1 – 4 in the first semester and Parts 5 – 6 in the second semester, followed by some or all of Part 7 if time permits.

Here’s some more detail.

The first semester would start with a brief (one day) introduction to the language of category theory before heading on to Part 2 to develop the basic theory of cofibrations, fibrations, and homotopy limits and colimits. Part 1 is an overview of the basics of category theory and shouldn’t be covered in its own right at all; refer back to it as needed to bring in more advanced category-theoretical topics. Chapters 3 and 4, in which the category of
spaces is established and the concept of homotopy is developed should be covered fairly thoroughly. Chapter 5 is on cofibrations and fibrations. The basic properties should be explored, and the mapping cylinder and its dual should be studied carefully; it’s probably best to gloss over the distinction between the pointed and unpointed cases. State the Fundamental Lifting Property and the basic factorization theorems without belaboring their proofs. The fact that fiber and cofiber sequences lead to exact sequences of homotopy sets should be explored in detail. Chapter 6 is on homotopy colimits and limits. Cover homotopy pushouts in detail, appealing to duality for homotopy pullbacks, and give a brief discussion of the issues for more general diagrams. Chapter 7 is on homotopy pullback and pushout squares and should be covered in some detail. Chapters 8 and 9 offer a huge collection of topics. For the moment, only Section 8.1 (Long cofiber and fiber sequences) and perhaps Section 9.2 (on H-Spaces and co-H-spaces) are really mandatory. Other sections can be covered as needed or assigned to students as homework. Chapter 10 is a brief account of abstract model categories. It is included for ‘cultural completeness’ and, since it does not enter into the main flow of the text, it can be skipped in its entirety. Part 3 covers the four major special features of the homotopy theory of spaces. Chapters 11 through 14 should be covered in detail. Chapter 15 is a combination of topics and cultural knowledge. Sections 15.1 and 15.2 are crucial, but the rest can be glossed over if need be. Part 4 is where the four basic topological inputs are developed into effective tools for studying homotopy-theoretical problems. Chapters 16 through 19 should all be covered in detail. Chapter 20 contains topics which can be assigned to students as homework.

The second semester should pick up with Part 5 where we develop cohomology (and homology). Chapters 21 through 24 should be covered pretty thoroughly. Chapter 25 is a vast collection of topics, which can be covered at the instructor’s discretion or assigned as homework. Part 6 is about the cohomology of fiber sequences, leading ultimately to the Leray-Serre spectral sequence, which is notoriously forbidding when first encountered. The exposition here is broken into small pieces with a consistent emphasis on the topological content. Many of the basic ideas and a nice application are covered in Chapters 26 through 29; this would be a fine place to stop if time runs out. Otherwise, Chapters 30 and 31 get to the full power of the Leray-Serre spectral sequence. This power is used in Chapter 32 to prove the Bott Periodicity Theorem. Chapter 33 is another topics chapter, which includes the cohomology of Eilenberg-MacLane spaces and some computations involving the homotopy groups of spheres. Finally, Part 7 covers some very fun and interesting topics: localization and completion, a discussion of the exponents of homotopy groups of spheres including a proof of Selick’s theorem on the exponent of $\pi_*(S^3)$; the theory of closed classes and a dual
concept known as strong resolving classes; and a proof of Miller’s theorem
on the space of maps from $B\mathbb{Z}/p$ to a simply-connected finite complex.

Acknowledgements. A book such as this, I have come to realize, is essentially an attempt to set down the author’s point of view on his subject. My point of view has been shaped by many people, beginning with Ed Fadell, Sufian Husseini and Steve Hutt, who were my first teachers in the subject. Early in my career, my horizons were greatly expanded by conversation and collaboration with Bob Bruner and Chuck McGibbon, and even more so during my long, pleasant and fruitful collaboration with Martin Arkowitz.

At various points during the writing of this book I have turned to others for clarification or advice on certain points that escaped me. Thanks are due to Peter May, whose kind responses to my emailed questions greatly improved a chapter that is, unfortunately, no longer included in the book. The community at the website MathOverflow offered useful advice on many questions.

My thanks are also due to the students who were guinea pigs for early versions of this text. Specifically, the enthusiasm of David Arnold, Jim Clarkson, Julie Houck, Rob Nendorf, Nick Scoville, and Jason Trowbridge was inspirational. I must also thank John Martino and Jay Wood for teaching the algebraic topology sequence at Western Michigan University using early drafts of this text.

Finally, I must gratefully acknowledge the support of my family during the long writing process. Dolores was exceedingly—albeit decreasingly—patient with my nearly endless string of pronouncements that I was ‘almost done’, and my sanity was preserved by my son Brandon, who unknowingly and innocently forced me every day to stop working and *have fun.*
Bibliography

[32] , The localization of spaces with respect to homology, Topology 14 (1975), 133–150. MR0380779 (52 #1676)

[102] [102] On the suspension sequence, Ann. of Math. (2) 65 (1957), 74–107. MR0083124 (18,662e)

[110] [110] Exact couples in algebraic topology. I, II, Ann. of Math. (2) 56 (1952), 363–396. MR0052770 (14,672a)

[112] [112] Products in exact couples, Ann. of Math. (2) 59 (1954), 558–569. MR0060829 (15,735a)

[149] Paul Selick, Odd primary torsion in $\pi_k(S^3)$, Topology 17 (1978), no. 4, 407–412, DOI 10.1016/0040-9383(78)90007-1. MR516219 (80c:55010)

[152] ______, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294 (French). MR0059548 (15,548c)

[158] ______, Reduced powers of cohomology classes, Ann. of Math. (2) 56 (1952), 47–67. MR0048026 (13,966c)

[159] ______, Cohomology operations, Symposium internacional de topologia algebraica, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 165–185. MR0098367 (20 #4827)

[164] ______, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972), 435–441. MR0321082 (47 #9615)

[180] , On the Freudenthal theorems, Ann. of Math. (2) 57 (1953), 209–228. MR0055683 (14,1110d)

Index of Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X * Y$</td>
<td>221</td>
</tr>
<tr>
<td>$X \times Y$</td>
<td>64</td>
</tr>
<tr>
<td>X_+</td>
<td>64</td>
</tr>
<tr>
<td>X_-</td>
<td>64</td>
</tr>
<tr>
<td>$X_{(s)/(t)}$</td>
<td>611</td>
</tr>
<tr>
<td>$[X,Y]$</td>
<td>70</td>
</tr>
<tr>
<td>$\alpha * [\beta]$</td>
<td>109</td>
</tr>
<tr>
<td>$\alpha * \beta$</td>
<td>374</td>
</tr>
<tr>
<td>\oplus</td>
<td>59</td>
</tr>
<tr>
<td>∇</td>
<td>17</td>
</tr>
<tr>
<td>$\langle X,Y \rangle$</td>
<td>70</td>
</tr>
<tr>
<td>φ</td>
<td>73</td>
</tr>
<tr>
<td>$u \cdot v$</td>
<td>474</td>
</tr>
<tr>
<td>$A(f)$</td>
<td>421</td>
</tr>
</tbody>
</table>

$B^n(C^*)$, 544

BI, 177

\hat{C}, 18
C_f, 130
$C^n(X;G)$, 542
C^0, 10
$\text{cat}(X)$, 251
$\text{Cell}_n(X)$, 542
Chain, 543
$\chi(X)$, 573
$\tilde{\chi}(X)$, 573
$\text{cl}_{\text{A}}(X)$, 239
colim, 56
$\text{conn}_{\text{P}}(X)$, 439
$\text{conn}(X)$, 279
CW^*, 462
CX, 67
Cyl, 90

D^n, 45
\overline{X}_n, 259
Δ^n, 295
Δ_Q, 32
$\text{deg}(f)$, 414
Δ, 16

E_f, 112
η, 556
$\text{Ext}_R^n(\cdot,\cdot)$, 802

F_+, 462
$[f]$, 70
\overline{f}, 74
$\langle f \rangle$, 70
f^*, 10
f_+, 11

$G(V)$, 230
$\text{Gr}_k(\mathbb{F}^{n+k})$, 231

h, 502
$\mathcal{H}(\alpha)$, 446
\mathcal{H}^α, 256
H^n, 467
$\overline{H^n}$, 460
H_n, 506
\overline{h}_n, 500
h_n, 467
\overline{h}_n, 500
h^*, 10
$H_n^\sigma(\alpha)$, 446
$H^*_\sigma(\alpha)$, 446
$n\mathcal{T}$, 80

in, 18
Index of Notation

$J^n(X)$, 377
$J(X)$, 377

$K(G, n)$, 385

$L_A(f)$, 238
$L_A(f)$, 238
$\Lambda(X)$, 259
\lim, 56
\lim^1, 247

M_f, 111, 125
$M_{n \times n}(F)$, 230
$\text{map}_a(X, Y)$, 61
$\text{map}_b(X, Y)$, 55

$\text{nil}(J)$, 555

Ω_M, 374
Ω_p, 109
ΩX, 67

P^d, 527
P_M, 374
$\text{Ph}(X, Y)$, 245
π_0, 71
π_n, 87
pr, 15, 18

S^n, 45
s_n, 502
ΣX, 66
$\text{sd}(K)$, 298
Sets_*, 19
Σ_0, 46
$SP^{\infty}(X)$, 449
$SP^n(X)$, 449
$S\Omega^d$, 527

T, 53, 54
T_*, 53, 54, 60
T_0, 53, 54
$T_{(2)}$, 58
$T^k(X)$, 251
$T_{*, V}$, 233
ΘX, 246

$V_k(F^{n+k})$, 232

\mathcal{W}_*, 171

\mathbb{X}, 73

$Z^n(C^*)$, 544
Index

∞-connected, 279
∞-equivalence, 278

3 × 3 diagram, 166, 173
homotopy colimit, 166
homotopy limit, 173

A-cone decomposition, 238
A-module, 796
A-morphism, 94
abelianization, 388
abstract simplicial complex, 296, 342
action
natuality, 206
acyclic, 700, 799
acyclic cofibration, 121, 263
acyclic fibration, 121, 263
Adams operations, 697
Ádem relations, 520, 533
adjoint, 26, 54
loop space, 207
suspension, 207
adjoint functors
and cofibrant diagrams, 151
cofibrations, 122
fibrations, 122
adjunction
counit, 28
unit, 28
admissible, 537, 538, 592, 705
for h^*, 592
admissible map, 204
admissible path
for p, 204
admissible trivialization, 592
algebra

graded, 796
algebraic closure, 4
algebraic Künneth map, 803
algebraic loop, 287
amalgamated free product, 291
antipodal map, 415, 472
antipode, 52
associated graded, 610
associative, 227, 475
augmentation, 780, 797
augmentation ideal, 780, 797
augmented algebra, 797
barycenter, 297
barycentric subsimplex, 297
base, 108
based maps, 60
basepoint, 19, 60
change, 211
of I, 67, 70
bidegree, 559, 587, 612, 653
bigraded, 612
bilinear, 790
Blakers-Massey theorem, 398
n-dimensional, 406
cellular, 769
geometric version, 401
mod Q, 445
Bockstein, 520, 567
map, 517
operation, 517
Borel construction, 220, 335
Borsuk-Ulam theorem, 566
Bott map, 692
Bott-Samelson theorem, 577
boundaries, 544, 798
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>boundary</td>
<td>295</td>
<td>boundary map</td>
<td>241, 543, 798</td>
</tr>
<tr>
<td>bounded below</td>
<td>795</td>
<td>bounded map</td>
<td>243</td>
</tr>
<tr>
<td>Bousfield equivalent</td>
<td>725</td>
<td>Brown Representability Theorem</td>
<td>490</td>
</tr>
<tr>
<td>bundle isomorphism</td>
<td>335</td>
<td>bundle map</td>
<td>324, 334</td>
</tr>
<tr>
<td>bundle of groups</td>
<td>625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartan formula</td>
<td>525, 533</td>
<td>category</td>
<td>5</td>
</tr>
<tr>
<td>category of maps</td>
<td>91</td>
<td>cell</td>
<td>47</td>
</tr>
<tr>
<td>closed, open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellular action</td>
<td>217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular Approximation Theorem</td>
<td>299</td>
<td>1-dimensional, 74, 78</td>
<td></td>
</tr>
<tr>
<td>cellular chain complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellular cochain complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellular inequality</td>
<td>759, 764</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellular map</td>
<td>48, 78, 299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellular replacement</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>existence, uniqueness</td>
<td>355, 354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chain algebra</td>
<td>550, 653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chain complex</td>
<td>543, 798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chain map</td>
<td>544, 798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>change of fiber</td>
<td>335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>characteristic map</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>characterization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acyclic cofibrations</td>
<td>121, 129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acyclic fibrations</td>
<td>121, 129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofibrations</td>
<td>121, 129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibrations, 121, 129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>class, classified</td>
<td>5, 370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>classifying space</td>
<td>177, 370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under homotopy limits</td>
<td>409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>under smash, 762</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under weak homotopy</td>
<td>409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equivalence, 762</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>closed class, 759, 764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>closed cofibration</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>closed under suspension</td>
<td>238, 762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>closed under wedges</td>
<td>238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clutching, 603</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>map, 603</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>co-H-space, 228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>retract, 228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suspension, 359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coaugmentation, 722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coalgebra, 803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>homomorphism, 804</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coboundary map, 543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cocartesian, 196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cocommutative, 25, 804</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cocomplete, 262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cocycles, 544</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficient group, 462, 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficient transformations, 516</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficients, 427, 461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coend, 346</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coequalizer, 38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofiber, 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>homotopy invariance</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>homotopy pushout, 184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of a composite, 216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of contractible subspace, 132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of projection map, 223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of trivial map, 194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard, 130, 131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unpointed, 131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofiber sequence, 131, 460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exactness, 131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>long sequence, 201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayer-Vietoris, 210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofibrant, 101, 147, 148, 264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofibrant diagram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>characterization, 158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofibrant replacement, 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prepushout diagrams, 148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofibration, 99, 100, 262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acyclic, 121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjoint pair, 129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>closed, 104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>composition, 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>converting to, 112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exact sequence, 201, 202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exactness, 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapping space, 105, 134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pointed, 122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>product, 106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pushout, 103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>retract, 121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trivial, 121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofibrations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inclusion maps, 101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pushouts, 103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subdiagram, 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cofinality, 809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cogroup object, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cocommutative, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen-Moore-Neisendorfer lemma, 215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coherent homotopies, 92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
cohomology, 460
\mathbb{Z}/p, 520
algebraic, 544
coefficients, 460
exact sequence of fibration, 583
James construction, 480
of a product, 488
of Moore space, 470
projective space, 470
reduced, 467
teleoscope, 465
unitary group, 597
unreduced, 467
with local coefficients, 625
cohomology algebra
projective space, 480
cohomology class, 460
cohomology group, 544
cohomology operation, 516
Moore space, 567
cohomology theory, 459, 461
extraordinary, 462
multiplicative, 586
ordinary, 462
colimit, 15, 34
3×3 diagram, 41
$I \times J$ diagram, 42
commute with adjoint, 35
naturality, 34
pushout, 37
collapse, 654
commutative, 4, 25, 227, 475, 792
on the nose, 82
graded, 419, 796
homotopy, 81
strictly, 82
commutative differential graded algebra, 739
commutativity
graded, 418
commutator, 388
commutator subgroup, 388
compact, 97
compact subspace
of CW complex, 50
compact-open topology, 54
compactly generated, 55
compactness
and CW complexes, 49
comparison
cofiber to suspension of fiber, 397
cofiber to base, 395
homotopy pullback to homotopy
pushout, 394
homotopy pushout to homotopy
pullback, 398
comparison map, 51, 394, 397, 398, 463
compatible, 136, 137
complement, 231
complete, 262
completion, 735
component, 795
compressible, 635
commultiplication, 804
concatenate, 374
concatenation, 74
infinite, 277
of homotopies, 73
of paths, 72
rigid, 374
concentrated, 462, 795
cone, 67
reduced, 67
cone decomposition, 237
cellular, 470
cone filtration, 608, 613
cone length
A-cone length, 238
Lusternik-Schnirelmann category, 251
of a map, 238
of a space, 239
connected, 797
connected cover, 362
connected sum, 572
connective, 737
connectivity, 279
cohomology, 464
homology, 502
mod \mathbb{Q}, 443
mod \mathbb{C}, 716
of a space, 279
of half-smash product, 358
of join, 358
of product, 358
of smash product, 358
of smash product of maps, 359
of suspension, 358, 383
constant diagram, 159
constant homotopy, 74
continuity
of map from a CW complex, 49
contractible, 82
smash product, 581
contraficients, 427
contravariant functor, 9
converges, 654
converting to
fibration, 111, 113
convex, 75
convex combination, 75
coordinate map, 421, 807
coproduct, 17, 38
covariant functor, 8
covering, 326
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>covering homotopy extension property, 120</td>
</tr>
<tr>
<td>criticize this argument, 48</td>
</tr>
<tr>
<td>cube diagram, 405</td>
</tr>
<tr>
<td>Cube Theorem</td>
</tr>
<tr>
<td>First, 314</td>
</tr>
<tr>
<td>Second, 321</td>
</tr>
<tr>
<td>cup length, 555</td>
</tr>
<tr>
<td>cup product, 47</td>
</tr>
<tr>
<td>currying, 55</td>
</tr>
<tr>
<td>CW n-ad, 97</td>
</tr>
<tr>
<td>CW complex, 47</td>
</tr>
<tr>
<td>compact, 49</td>
</tr>
<tr>
<td>finite, 49</td>
</tr>
<tr>
<td>finite-dimensional, 47</td>
</tr>
<tr>
<td>induction, 276</td>
</tr>
<tr>
<td>infinite-dimensional, 47</td>
</tr>
<tr>
<td>of finite type, 637</td>
</tr>
<tr>
<td>pointed, 61</td>
</tr>
<tr>
<td>CW decompositions, 48</td>
</tr>
<tr>
<td>CW induction, 276</td>
</tr>
<tr>
<td>CW pair, 60</td>
</tr>
<tr>
<td>CW product, 51</td>
</tr>
<tr>
<td>CW replacement, 353</td>
</tr>
<tr>
<td>uniqueness, 354</td>
</tr>
<tr>
<td>CW structures, 48</td>
</tr>
<tr>
<td>cycles, 544, 798</td>
</tr>
<tr>
<td>cylinder, 67, 92, 95</td>
</tr>
<tr>
<td>external, 95</td>
</tr>
<tr>
<td>internal, 95</td>
</tr>
<tr>
<td>reduced, 67</td>
</tr>
<tr>
<td>standard, 90</td>
</tr>
<tr>
<td>cylinder object, 90, 266</td>
</tr>
<tr>
<td>de Polignac’s formula, 640, 755</td>
</tr>
<tr>
<td>deck transformation, 329</td>
</tr>
<tr>
<td>decomposables, 577, 797</td>
</tr>
<tr>
<td>deformation retract, 76</td>
</tr>
<tr>
<td>degeneracy maps, 345</td>
</tr>
<tr>
<td>degenerate, 345</td>
</tr>
<tr>
<td>degree, 414, 452, 497, 516, 518, 537, 653, 795</td>
</tr>
<tr>
<td>of twist map, 418</td>
</tr>
<tr>
<td>derivation, 595</td>
</tr>
<tr>
<td>derived, 652</td>
</tr>
<tr>
<td>deviation, 747</td>
</tr>
<tr>
<td>diagonal action, 219</td>
</tr>
<tr>
<td>diagonal functor, 32</td>
</tr>
<tr>
<td>diagonal indexing, 612</td>
</tr>
<tr>
<td>diagonal map, 16, 476</td>
</tr>
<tr>
<td>reduced, 476</td>
</tr>
<tr>
<td>diagram, 3, 30</td>
</tr>
<tr>
<td>diagram category, 30</td>
</tr>
<tr>
<td>diagram homotopy equivalence, 145</td>
</tr>
<tr>
<td>differential, 543, 798</td>
</tr>
<tr>
<td>dimension, 47, 296, 653, 795</td>
</tr>
<tr>
<td>of a cohomology class, 460</td>
</tr>
<tr>
<td>dimension zero, 47</td>
</tr>
<tr>
<td>direct category, 176</td>
</tr>
<tr>
<td>direct limit, 39</td>
</tr>
<tr>
<td>direct sum</td>
</tr>
<tr>
<td>of graded modules, 796</td>
</tr>
<tr>
<td>discrete category, 33</td>
</tr>
<tr>
<td>disk, 45</td>
</tr>
<tr>
<td>disk bundle, 677</td>
</tr>
<tr>
<td>distinguished, 348</td>
</tr>
<tr>
<td>divided polynomial algebra, 794</td>
</tr>
<tr>
<td>graded, 796</td>
</tr>
<tr>
<td>divisible groups, 802</td>
</tr>
<tr>
<td>domain, 4, 34</td>
</tr>
<tr>
<td>domain type, 15</td>
</tr>
<tr>
<td>double factorization, 113</td>
</tr>
<tr>
<td>double mapping cylinder, 161</td>
</tr>
<tr>
<td>dual, 37</td>
</tr>
<tr>
<td>duality, 15, 17, 107, 188, 202, 209, 223, 228, 248, 402</td>
</tr>
<tr>
<td>and homotopy, 89</td>
</tr>
<tr>
<td>E-equivalence, 722</td>
</tr>
<tr>
<td>E-local, 722</td>
</tr>
<tr>
<td>Eckmann-Hilton argument, 229</td>
</tr>
<tr>
<td>Eckmann-Hilton duality, 265</td>
</tr>
<tr>
<td>edge homomorphism, 665</td>
</tr>
<tr>
<td>bottom, 665</td>
</tr>
<tr>
<td>EHP sequence, 742, 743</td>
</tr>
<tr>
<td>Eilenberg-MacLane space, 384, 459, 506, 516</td>
</tr>
<tr>
<td>existence, 386</td>
</tr>
<tr>
<td>maps between, 385</td>
</tr>
<tr>
<td>of type (G, n), 384</td>
</tr>
<tr>
<td>symmetric product, 451</td>
</tr>
<tr>
<td>uniqueness, 386</td>
</tr>
<tr>
<td>Eilenberg-MacLane space</td>
</tr>
<tr>
<td>generalized, 451</td>
</tr>
<tr>
<td>Eilenberg-Steenrod axioms, 460, 461</td>
</tr>
<tr>
<td>elementary symmetric function, 535</td>
</tr>
<tr>
<td>elementary symmetric polynomial, 806</td>
</tr>
<tr>
<td>endpoint, 374</td>
</tr>
<tr>
<td>enough projectives, 799</td>
</tr>
<tr>
<td>equalizer, 37</td>
</tr>
<tr>
<td>equivalence, 6</td>
</tr>
<tr>
<td>equivalence of categories, 14</td>
</tr>
<tr>
<td>equivalent maps, 27</td>
</tr>
<tr>
<td>equivariant, 216</td>
</tr>
<tr>
<td>essential, 82</td>
</tr>
<tr>
<td>Euler characteristic, 573</td>
</tr>
<tr>
<td>reduced, 573</td>
</tr>
<tr>
<td>Euler class, 675</td>
</tr>
<tr>
<td>evaluation map, 54, 374</td>
</tr>
<tr>
<td>evenly covered, 326</td>
</tr>
<tr>
<td>exact, 130</td>
</tr>
<tr>
<td>exact couple, 616, 617, 650</td>
</tr>
<tr>
<td>derived, 652</td>
</tr>
<tr>
<td>exact functor, 795</td>
</tr>
<tr>
<td>exact sequence, 794</td>
</tr>
</tbody>
</table>
Index

split, 517
exactness
unreduced homology, 500
excess, 537, 538, 705
Excision Axiom, 461
exhaustive, 612
exponent, 636, 745
exponential law, 54, 55, 57, 65, 81, 84, 791
 for pairs, 59
 pointed, 62
Ext-p-complete, 735
extend
to cone, 82
extension, 100
 functor, 156
extension problem, 14
exterior algebra, 793, 797
 graded, 796
exterior product
 homology, 508
 with respect to a pairing, 632
external cohomology product
 for cartesian products, 475
external product, 427, 473
 cohomology, 474
F-algebra, 553
f-equivalence, 724
f-local, 724
face, 342
face map, 342
factors through, 4
fat wedge, 251
fiber, 108, 131, 337
 homotopy, 131
 of a composite, 216
 of trivial map, 194
 suspension, 453
fiber bundle, 334
fiber sequence, 132
 exactness, 132
 homotopy pullback, 189
 long sequence, 202
Mayer-Vietoris, 210
fiber-cofiber construction, 395
fibrant, 110, 168, 264
 pointed diagram, 171
fibrant replacement, 168, 171
fibration, 99, 108, 262, 325
 adjoint pair, 129
 converting to, 113
 evaluation, 109
 mapping space, 133, 135
 orientable, 203
 path space, 109
 pointed, 123
 product, 110
 pullback, 110
 retract, 121
 sequence, 132
 trivial, 110
 unpointed, 123
filtered R-algebra, 609
filtered map, 608
filtered space, 607
filtration, 605, 607, 613
 ascending, 607, 609
 descending, 609
 finite, 612
 of an element, 613
filtration degree, 612
filtration quotients, 605, 610
 finite, 30
finite type, 807
finite-type
 map, 422
 map of wedges, 469
 wedge, 762
Five Lemma, 795
fixed point, 417
fixed points
 space of, 217
folding map, 17
forgetful functor, 10
free, 218
free abelian group, 27
free graded commutative algebra, 797
free loop space, 141, 259
free module, 790
free product, 290
free resolution, 386, 425
Freudenthal Suspension Theorem, 383
dual, 403
 in dimension 1, 388
functor, 8
 contravariant, 9
 covariant, 8
 extension, 156
 forgetful, 10
 homotopy, 80
 lifting, 156
 preserve homotopy colimit, 174
 preserve homotopy limit, 174
 represented, 11
fundamental class, 490
fundamental group, 9
fundamental groupoid, 205
Fundamental Lifting Property
 pointed, 128
 unpointed, 118
Fundamental Theorem of Algebra, 419, 554
G-CW complex, 217
G-CW replacement, 219
Index

G-maps, 216
G-space, 216
Ganea condition, 257, 713, 741
Ganea construction, 254, 395, 444, 665, 666
Ganea's conjecture, 257
GEM, 451
general position, 295
generalized CW complex, 244
generating complex, 599, 690
generating function, 575
generator, 294
$H_n(S^n; \mathbb{Z})$, 502
generic, 734
geometric realization, 297, 342
graded, 795
R-algebra, 796
R-module, 795
algebra, 796
divided polynomial algebra, 796
exterior algebra, 796
module, 796
polynomial algebra, 796
tensor algebra, 796
graded R-algebra, 475
graded abelian group, 460
graded commutative, 419, 796
algebra, 796
algebra, free, 797
graded commutativity, 428
graded module
suspension, 795
graded Serre class, 716
graded twist map, 796
Gram-Schmidt, 332
t-graph, 133, 216
Grassmannian, 231
group
as a category, 6
group object, 21
commutative, 25
Gysin sequence, 675, 682
h_\ast-equivalence, 734
h_\ast-local, 734
H-map, 226
fiber, 227
H-space, 226
characterization, 226
product, 227
projective space, 553
retract, 226
strict unit, 226
Hahn-Mazurkowicz, 75
half-smash product, 64
with suspension, 140
halo, 319
Hawaiian earring, 371
HELP, 282
Hilton-Milnor theorem, 390
holonomy, 205
homogeneous, 460
homogeneous coordinates, 52
homology, 384, 544
algebraic, 544, 798
cellular structure, 504
connectivity, 502
Moore space, 567
spheres, 502
unitary group, 598
homology decompositions, 569
homology group, 544
homology module, 798
homology suspension, 577, 578
homology theory, 500
homomorphism, 24, 226, 454
of modules, 789
homotopic, 70, 72, 74, 267
homotopy, 70, 72, 92, 95, 145, 267
cell-by-cell construction, 56
constant, 74
free, 70, 72
Moore, 376
of diagram morphisms, 145
of homotopies, 74
of paths, 72
pointed, 70
reverse, 74
straight-line, 75
under A, 95
unpointed, 70
homotopy category, 261, 268
pointed, 80
unpointed, 80
homotopy classes, 70
homotopy cocartesian cube, 405
homotopy cocartesian square, 405
homotopy colimit, 151, 176, 271
pointed vs. unpointed, 214
Quillen-Serre, 341
standard, 155
homotopy commutative, 81
homotopy equivalence, 92, 96
of diagrams, 144, 145
pointwise, 93, 144
homotopy equivalent, 81, 267
maps, 93
Homotopy Extension Lifting Property, 282
homotopy extension property, 100
homotopy fiber, 131
homotopy fixed point, 218
homotopy functor, 71
homotopy groups, 87
exact sequence of cofibration, 409
finite, 570
algebraic, 803
homology, 508
K¨unneth theorem, 487, 488
algebraic, 803
homology, 509
Lebesgue Number Lemma, 77
left adjoint, 26
left derived functor, 269
left homotopic, 266
left homotopy, 90
left lifting property, 121
Leibniz rule, 653
length, 237
Leray-Hirsch theorem, 674
Leray-Serre spectral sequence, 74
relative, 662
lifting
functor, 156
lifting function, 109
dual, 103
uniqueness, 140
lifting problem, 14
lim^1
cohomology, 466
limit, 15, 31, 32
3 × 3 diagram, 42
commute with adjoint, 35
naturality, 34
pullback, 36
limit ordinal, 809
linear, 75, 295, 343
local section, 330
localization, 268
localized at, 723
localized away, 723
locally finite, 370
locally trivial bundle, 324
long A-cone decomposition, 239
long cofiber sequence, 200
long fiber sequence, 202
loop map
homotopy pullback, 249
loop operation, 578
loop space, 67, 84, 577, 738
free, 141
group object in \(T_\ast \), 87
homotopy pullback, 189
Lusternik-Schnirelmann category, 251, 252, 555, 713
cone length, 251
Ganea criterion, 254
homotopy invariance, 251
homotopy pushout, 253
Hopf invariant, 445
Lusternik-Schnirelmann cover, 250, 555
mapping cone, 256
of a map, 252
of CW complexes, 253
product, 256
manifold, 497
map
finite type, 807
pointed, 60
map under, 94
mapping cone, 130
unpointed, 130
mapping cylinder, 111
in map\((T_\ast) \), 115
pointed, 125
mapping space, 54
and colimits, 57
and limits, 57
cofibration, 105, 134
fibration, 133, 135
pointed, 61
well-pointed, 126
mapping torus, 179
Mather cube, 305, 395, 594, 627
matrix, 20, 421
Mayer-Vietoris
cofiber sequence, 210
exact sequence, 465, 501
fiber sequence, 210
measured path, 374
Milnor sign convention, 413, 418
minimal, 739, 741
minimal model, 740
Mislin genus, 734
Mittag-Leffler, 775
model category, 89, 99, 261, 262
module, 789
graded, 796
moment, 537
monoid object, 21, 227
monster, 423, 499, 578
Moore homotopy, 376
Moore loops, 374
Moore path, 374
based, 374
Moore space, 425
cohomology of, 470
cohomology operation, 567
homology, 567
maps between, 568
Moore suspension, 379
morphism, 5
in pointed category, 20
matrix representation, 807
trivial, 19
multiplication, 226
multiplicative, 476, 608
multiplicative cohomology theory, 586
multiplicity, 415
n-ad, 97
n-connected, 279
map, 279
n-cube diagram, 196
n-equivalence, 277
at \(\mathcal{P} \), 443
mod \(\mathcal{Q} \), 443
pointwise, 301
n-skeleton, 354
natural, 12
isomorphism, 12
natural grading, 612
natural transformation, 11
of cohomology theories, 462
of represented functors, 12
NDR pair, 104
negative, 506
neighborhood deformation retract, 104
strong, 104
Neisendorfer localization, 786
nerve, 176
Newton polynomial, 697, 807
nilpotency, 555
nonzero, 417
norm, 553
normed algebra, 553
north pole, 46
northern hemisphere, 46
nose
on the, 82
nullhomotopic, 82
nullhomotopy, 82
numerable, 309
numerable bundles, 324

objects, 5
obstruction, 360, 642
obstruction theory, 360, 385
odd map, 565
on the nose, 82
open cells, 47
opposite category, 10, 265
opposite-simple category, 169
orbit space, 217
ordinary cohomology theory, 462
ordinary homology theory, 500
existence, 507
orientable, 592
fibration, 203
orthogonal group, 231, 603
over \(B \), 94

\(p \)-adic integers, 735
\(p \)-completion, 735
\(\mathcal{P} \)-connectivity, 438, 439

\(\mathcal{P} \)-group, 438
\(\mathcal{P} \)-injective, 443
\(\mathcal{P} \)-local, 730
\(\mathcal{P} \)-localization, 724
\(\mathcal{P} \)-surjective, 443
pair, 58, 401, 461
‘product’, 59
mapping space, 59
pairing, 427
homology with cohomology, 510
parametrized concatenation, 109
partition of unity, 109
path, 70
reverse, 73
path homotopy, 72
path object, 89, 266
standard, 90
path space, 83, 89
perfect, 388
phantom map, 245, 582
existence, 582
nonexistence, 582
\(\pi_n(S^n) \), 383
PID, 487, 801
piecewise linear, 75, 297
Poincaré series, 574
pointed category, 18
pointed homotopy, 72
pointed map, 60
composition, 20
pointed model category, 263, 264
pointed set, 19, 71
pointed space, 60
pointwise cofibration, 167
pointwise equivalence in \(\mathcal{H}_T \), 93
pointwise equivalent, 146
pointwise fibration, 147, 270
pointwise homotopy equivalence, 93, 94, 96
in \(\mathcal{H}_T \), 146
pointwise weak equivalence, 270
polyhedron, 296
polynomial algebra, 793
graded, 796
Pontrjagin algebra, 512
Postnikov approximation, 361
Postnikov section
 cellular structure, 361
 existence, 361
 uniqueness, 361
prepullback, 36
prepushout, 37
presentation, 294
prespectra, 580
primitive, 510, 804
principal bundle
 associated, 335
principal cofibration, 237
principal ideal domain, 487, 801
product, 15, 17, 18
 as functor, 16
 flat, 223
 infinite, 807
 infinite weak product, 376
 of CW complexes, 50
 of group objects, 26
 of groups, 17
 of many objects, 18
 of mapping cones, 224
 of maps, 16
 of sets, 17
 pointed spaces, 62
product rule, 653
projections, 15
projective, 790, 799
projective resolution, 800
projective space, 51
 cohomology, 470
 cohomology algebra, 480
 CW decomposition, 53
 CW structure, 53
 diagonal map, 482
 fiber bundle, 325
 infinite-dimensional, 52
 truncated, 586
pullback, 36
 composition of, 41
 fibration, 110
 product, 65
 square, 36
punctured, 196
punctured n-cube, 405
pure quaternion, 420
pushout, 37
 composition of, 40
 of equivalence, 40
 square, 37
 wedge, 65
quadratic part, 740
quasi-isomorphism, 799
quasifibration, 347
quasiregular, 743
quaternions, 419
Quillen adjunction, 270
Quillen equivalence, 268, 270
quotient map, 49
R-algebra, 792
 graded, 796
R-module
 graded, 795
rational homotopy theory, 797
rationalization, 733
rationally elliptic, 741
rationally hyperbolic, 741
reduced p powers, 527
reduced diagonal, 260, 476
reduced product type, 454
regular prime, 743
regular value, 415, 497
relation, 294
relative CW complex, 60
relative Sullivan algebra, 739
reparametrization, 73
represented cohomology, 460
represented functor, 11
represents, 614
resolving class, 409
respects homotopy, 71
retract, 7
 of a map, 7
 reverse, 74
 reverse path, 73
Riemannian metric, 677
right adjoint, 26
right homotopic, 266
right homotopy, 90
right lifting property, 121
rigid concatenation, 374
rigidification, 178
root, 156
RPT complex, 454
RPT model, 455
Schubert symbol, 237
Second Cube Theorem, 398
section, 203
 Ωf, 207
Serre class, 714
Serre cofibrations, 336
Serre exact sequence, 583
Serre fibration, 336, 337
 sequence, 337
Serre filtration, 600, 601, 623
Serre model structure, 264
shape, 29, 30
shape diagram, 29
shear map, 229, 287
shift map, 39, 246, 465, 501
short exact sequence, 794
shuffle product, 688
simple category, 155
simple system, 704, 708
 p-simple, 708
simplex, 295, 296
 boundary, 295
 standard, 295
simplicial category, 348
simplicial complex, 296, 342
 abstract, finite, 296
structure, 296
simplicial map, 343
simplicial object, 346
simplicial set, 345
simplicial structure, 342
simply-connected, 88, 279, 739
singular chain complex, 551
singular extension, 494, 501
singular simplex, 342
singular simplicial set, 346
skeleta, 47
 n-equivalence, 358
 naturality, 354
skeleton, 47, 572
small diagrams, 30
small object argument, 165
smash product, 61
 Eilenberg-MacLane spaces, 429
 bilinear, 427
 contractible, 581
 homotopy groups, 427
 of CW complexes, 62
smash product pairing, 427
southern hemisphere, 46
space, 54
 pointed, 60, 62
spaces over, 94
spaces under, 94
spanning tree, 133
special orthogonal group, 231
special unitary group, 231, 598
spectra, 580
spectral sequence, 645, 647
 convergence, 657
 first quadrant, 660
 free monogenic, 703
 homomorphism, 651
 of algebras, 653
spectrum, 580
sphere, 45
 abelian cogroup in \mathcal{T}, 86
 as pushout, 46
 cellular decompositions, 49
 homotopy groups, 383
 infinite-dimensional, 52
sphere bundle, 677
spherical fibrations, 675
spherically resolvable, 761
split, 223, 795
split exact sequence, 517, 795
stabilizes, 505
stable cohomology operation, 518
 additive, 519
stable homotopy groups, 389
 homology theory, 505
stable homotopy sets
 exact sequence, 410
stable operation
 recognition, 518
stable phenomena, 389
stable range, 389
stably equivalent, 696
standard filtration, 608, 609
 of a smash product, 609
standard form, 292
Steenrod algebra, 519, 777
 basis, 537
 Hopf algebra, 584
Steenrod operations, 527
 main properties, 533
Steenrod reduced powers, 525
Steenrod square, 527
 indecomposable, 536
 stereographic projection, 46
Stiefel manifold, 232, 599
strictly commutative, 82
Strøm model structure, 264
strong deformation retract, 76, 104
strong homotopy pullback square, 189, 307
strong homotopy pushout square, 186
 recognition, 186
strong resolving classes, 759, 760
strongly closed classes, 759, 760
strongly cocartesian, 196
strongly homotopy cocartesian, 406
structure, 296, 385
 simplicial complex, 296
structure group, 334
subcomplex, 47, 297
subquotient, 606
subsimplex, 296, 342
successor ordinal, 809
Sullivan algebra, 739
Sullivan conjecture, 785
sum, 17, 18, 38
 infinite, 807
support, 309
surface, 572
suspension, 46, 66, 84, 461, 487, 738, 796
 as natural transformation, 379
 cogroup object in \mathcal{T}, 86
 connectivity, 383
 fiber, 453
 functor, 66
 graded module, 795
 homotopy pushout, 184
 of a sphere, 67
 reduced, 66
 unreduced, 46
suspension map, 379
symmetric polynomial, 535, 683, 806
symmetric product, 576
 Eilenberg-MacLane space, 451
 homology, 576
Küneth theorem, 576
symmetric square, 259
symplectic group, 231, 603
system of local coefficients, 625
tab-and-glue, 311
target, 4, 34
target type, 15
telecope
 cohomology, 465
telecope diagram, 39, 163
tensor algebra, 793
 graded, 796
 universal property, 793
tensor product, 427, 790
 graded, 474
 of chain complexes, 799
terminal object, 18
Thom class, 678
Thom Isomorphism Theorem, 678
Thom space, 676, 677
topological space, 54
 pointed, 62
total degree, 612, 653
total dimension, 612
total left derived functor, 269
total space, 108
total square, 536
tower, 39, 173
track, 138
transgression, 667, 668
transgressive, 667
transgressive pair, 667
transition functions, 333
tree, 133
tree-like, 159
triad, 402
trivial, 82, 263
trivial bundle, 323
trivial cofibration, 121
trivial fibration, 121, 591
trivial homotopy, 74
trivial morphism, 19
trivialization, 591
truncated polynomial algebras, 793
truncated projective space, 586
twist map, 25, 418, 792
two-cones, 602
type, 743
unique, 53
unital, 475
unitary group, 231
universal bundle
 existence, 366
universal coefficients decomposition, 634,
 700
Universal Coefficients Theorem, 486, 660
universal cover, 328
universal example, 102, 124, 225, 523, 584,
 790, 797
universal phantom map, 246
universal problem, 4
universal property, 15
unreduced homology
 exactness, 500
unreduced homology theory, 500
unstable algebra, 534
unstable conditions, 533, 534
unstable module, 534
unstable relations, 525
vanishes, 360
vector field, 417
versal, 246
vertices, 295
very nice, 780
\(W \)-local, 722
Wang cofiber sequence, 594
Wang exact sequence, 594
Wang sequence, 593
 cohomology, 594, 595
 homology, 595
weak category, 260, 561
weak equivalence, 262, 278
 and cohomology, 464
Weak Equivalence Axiom, 461, 463
homology, 501
weak fibration, 306
 strong homotopy pullback, 307
weak Hausdorff, 55
weak homotopy equivalence, 278
weak lifting function, 308
weak product, 421
 infinite, 376
weakly contractible, 279
weakly equivalent, 263
wedge, 19, 61, 463
Wedge Axiom, 463
 homology, 501
well-pointed, 124, 188
cofibration, 126
fibration, 126
mapping space, 126
Whitehead exact sequence, 583
Whitehead product
 generalized, 225
 H-space, 226
Whitney sum, 695
wreath product, 531
\(\mathcal{X} \)'-cellular, 764
\(X \)-null, 785
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{P})-resolvable</td>
<td>761</td>
</tr>
<tr>
<td>Yoneda lemma</td>
<td>13, 379</td>
</tr>
<tr>
<td>Zabrodsky lemma</td>
<td>411, 765</td>
</tr>
<tr>
<td>Zabrodsky mixing</td>
<td>733</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Modern classical homotopy theory</td>
<td>Jeffrey Strom</td>
</tr>
<tr>
<td>An introduction to measure theory</td>
<td>Terence Tao</td>
</tr>
<tr>
<td>Riemann surfaces by way of complex analytic geometry</td>
<td>Dror Varolin</td>
</tr>
<tr>
<td>Toric varieties</td>
<td>David A. Cox, John B. Little, and Henry K. Schenck</td>
</tr>
<tr>
<td>Lectures on linear partial differential equations</td>
<td>Gregory Eskin</td>
</tr>
<tr>
<td>Algebraic groups and differential Galois theory</td>
<td>Teresa Crespo and Zbigniew Hajto</td>
</tr>
<tr>
<td>A course in minimal surfaces</td>
<td>Tobias Holck Colding and William P. Minicozzi II</td>
</tr>
<tr>
<td>A basic course in partial differential equations</td>
<td>Qing Han</td>
</tr>
<tr>
<td>Mathematical statistics: asymptotic minimax theory</td>
<td>Alexander Korostelev and Olga Korosteleva</td>
</tr>
<tr>
<td>Dynamical systems and population persistence</td>
<td>Hal L. Smith and Horst R. Thieme</td>
</tr>
<tr>
<td>An epsilon of room, I: pages from year three of a mathematical blog.</td>
<td>Terence Tao</td>
</tr>
<tr>
<td>Linear functional analysis</td>
<td>Joan Cerdà</td>
</tr>
<tr>
<td>An introductory course on mathematical game theory</td>
<td>Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro</td>
</tr>
<tr>
<td>Continuous time Markov processes: An introduction</td>
<td>Thomas M. Liggett</td>
</tr>
<tr>
<td>Optimal control of partial differential equations: Theory, methods and applications</td>
<td>Fredi Tröltzsch</td>
</tr>
<tr>
<td>Ricci flow and the sphere theorem</td>
<td>Simon Brendle</td>
</tr>
<tr>
<td>Differential algebraic topology: From stratifolds to exotic spheres</td>
<td>Matthias Kreck</td>
</tr>
<tr>
<td>Training manual on transport and fluids</td>
<td>John C. Neu</td>
</tr>
<tr>
<td>Mapping degree theory</td>
<td>Enrique Outerelo and Jesús M. Ruiz</td>
</tr>
<tr>
<td>Manifolds and differential geometry</td>
<td>Jeffrey M. Lee</td>
</tr>
<tr>
<td>Continuous time Markov processes: An introduction</td>
<td>Robert J. Daverman and Gerard A. Venema</td>
</tr>
<tr>
<td>A first course in Sobolev spaces</td>
<td>Giovanni Leoni</td>
</tr>
<tr>
<td>Algebra: Chapter 0</td>
<td>Paolo Aluffi</td>
</tr>
<tr>
<td>Configurations of points and lines</td>
<td>Branko Grünbaum</td>
</tr>
<tr>
<td>Introduction to Fourier analysis and wavelets</td>
<td>Mark A. Pinsky</td>
</tr>
<tr>
<td>A course in approximation theory</td>
<td>Ward Cheney and Will Light</td>
</tr>
<tr>
<td>Algebra: A graduate course</td>
<td>I. Martin Isaacs</td>
</tr>
<tr>
<td>Mathematical methods in quantum mechanics: With applications to</td>
<td>Gerald Teschl</td>
</tr>
<tr>
<td>Schrödinger operators</td>
<td>Alexander I. Bobenko and Yuri B. Suris</td>
</tr>
<tr>
<td>Complex made simple</td>
<td>David C. Ullrich</td>
</tr>
<tr>
<td>Lectures on elliptic and parabolic equations in Sobolev spaces</td>
<td>N. V. Krylov</td>
</tr>
<tr>
<td>Quantum mechanics for mathematicians</td>
<td>Leon A. Takhtajan</td>
</tr>
<tr>
<td>Representations of semisimple Lie algebras in the BGG category O</td>
<td>James E. Humphreys</td>
</tr>
<tr>
<td>Topics in differential geometry</td>
<td>Peter W. Michor</td>
</tr>
<tr>
<td>Finite group theory</td>
<td>I. Martin Isaacs</td>
</tr>
<tr>
<td>Graduate algebra: Noncommutative view</td>
<td>Louis Halle Rowen</td>
</tr>
<tr>
<td>Basic quadratic forms</td>
<td>Larry J. Gerstein</td>
</tr>
<tr>
<td>A course on the web graph</td>
<td>Anthony Bonato</td>
</tr>
<tr>
<td>C*-algebras and finite-dimensional approximations</td>
<td>Nathaniel P. Brown and Narutaka Ozawa</td>
</tr>
</tbody>
</table>
TITLES IN THIS SERIES

86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown’s representability theorems show that homology and cohomology are also contained in classical homotopy theory.

This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller’s Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.