Modern Classical Homotopy Theory

Jeffrey Strom

Graduate Studies in Mathematics

Volume 127

Modern Classical Homotopy Theory

Modern Classical Homotopy Theory

Jeffrey Strom

Graduate Studies in Mathematics
Volume 127

EDITORIAL COMMITTEE

David Cox (Chair)
Rafe Mazzeo
Martin Scharlemann
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 55Nxx, 55Pxx, 55Qxx, 55Sxx, 55Uxx.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-127

Library of Congress Cataloging-in-Publication Data
Strom, Jeffrey, 1969-
Modern classical homotopy theory / Jeffrey Strom. p. cm. - (Graduate studies in mathematics ; v. 127)
Includes bibliographical references and index.
ISBN 978-0-8218-5286-6 (alk. paper)
1. Homotopy theory. I. Title.
QA612.7.S77 2011
$514^{\prime} .24-\mathrm{dc} 23$

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2011 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
(®) The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
$10987654321 \quad 161514131211$

Dedicated to my mom and dad

Contents

Preface xvii
Part 1. The Language of Categories
Chapter 1. Categories and Functors 3
§1.1. Diagrams 3
§1.2. Categories 5
$\S 1.3$. Functors 7
§1.4. Natural Transformations 11
§1.5. Duality 14
§1.6. Products and Sums 15
§1.7. Initial and Terminal Objects 18
§1.8. Group and Cogroup Objects 21
§1.9. Homomorphisms 24
§1.10. Abelian Groups and Cogroups 25
§1.11. Adjoint Functors 26
Chapter 2. Limits and Colimits 29
§2.1. Diagrams and Their Shapes 29
§2.2. Limits and Colimits 31
§2.3. Naturality of Limits and Colimits 34
§2.4. Special Kinds of Limits and Colimits 35
§2.5. Formal Properties of Pushout and Pullback Squares 40
Part 2. Semi-Formal Homotopy Theory
Chapter 3. Categories of Spaces 45
§3.1. Spheres and Disks 45
§3.2. CW Complexes 46
§3.3. Example: Projective Spaces 51
§3.4. Topological Spaces 53
§3.5. The Category of Pairs 58
§3.6. Pointed Spaces 60
§3.7. Relating the Categories of Pointed and Unpointed Spaces 63
§3.8. Suspension and Loop 66
§3.9. Additional Problems and Projects 68
Chapter 4. Homotopy 69
§4.1. Homotopy of Maps 69
§4.2. Constructing Homotopies 74
§4.3. Homotopy Theory 80
§4.4. Groups and Cogroups in the Homotopy Category 84
§4.5. Homotopy Groups 87
§4.6. Homotopy and Duality 89
§4.7. Homotopy in Mapping Categories 91
§4.8. Additional Problems 98
Chapter 5. Cofibrations and Fibrations 99
§5.1. Cofibrations 100
§5.2. Special Properties of Cofibrations of Spaces 104
§5.3. Fibrations 107
§5.4. Factoring through Cofibrations and Fibrations 110
§5.5. More Homotopy Theory in Categories of Maps 115
§5.6. The Fundamental Lifting Property 118
§5.7. Pointed Cofibrations and Fibrations 122
§5.8. Well-Pointed Spaces 124
§5.9. Exact Sequences, Cofibers and Fibers 129
§5.10. Mapping Spaces 133
§5.11. Additional Topics, Problems and Projects 136
Chapter 6. Homotopy Limits and Colimits 143
§6.1. Homotopy Equivalence in Diagram Categories 144
§6.2. Cofibrant Diagrams 146
§6.3. Homotopy Colimits of Diagrams 151
§6.4. Constructing Cofibrant Replacements 155
§6.5. Examples: Pushouts, $3 \times 3 \mathrm{~s}$ and Telescopes 160
§6.6. Homotopy Limits 167
§6.7. Functors Applied to Homotopy Limits and Colimits 173
$\S 6.8$. Homotopy Colimits of More General Diagrams 176
§6.9. Additional Topics, Problems and Projects 178
Chapter 7. Homotopy Pushout and Pullback Squares 181
§7.1. Homotopy Pushout Squares 181
§7.2. Recognition and Completion 185
§7.3. Homotopy Pullback Squares 188
§7.4. Manipulating Squares 190
§7.5. Characterizing Homotopy Pushout and Pullback Squares 195
§7.6. Additional Topics, Problems and Projects 196
Chapter 8. Tools and Techniques 199
§8.1. Long Cofiber and Fiber Sequences 199
§8.2. The Action of Paths in Fibrations 203
§8.3. Every Action Has an Equal and Opposite Coaction 205
§8.4. Mayer-Vietoris Sequences 209
§8.5. The Operation of Paths 211
§8.6. Fubini Theorems 212
§8.7. Iterated Fibers and Cofibers 214
§8.8. Group Actions 216
Chapter 9. Topics and Examples 221
§9.1. Homotopy Type of Joins and Products 221
§9.2. H-Spaces and co-H-Spaces 225
$\S 9.3$. Unitary Groups and Their Quotients 230
§9.4. Cone Decompositions 237
§9.5. Introduction to Phantom Maps 245
§9.6. G. W. Whitehead's Homotopy Pullback Square 249
§9.7. Lusternik-Schnirelmann Category 250
§9.8. Additional Problems and Projects 258
Chapter 10. Model Categories 261
§10.1. Model Categories 262
§10.2. Left and Right Homotopy 266
§10.3. The Homotopy Category of a Model Category 268
§10.4. Derived Functors and Quillen Equivalence 268
§10.5. Homotopy Limits and Colimits 270
Part 3. Four Topological Inputs
Chapter 11. The Concept of Dimension in Homotopy Theory 275
§11.1. Induction Principles for CW Complexes 276
§11.2. n-Equivalences and Connectivity of Spaces 277
§11.3. Reformulations of n-Equivalences 280
§11.4. The J. H. C. Whitehead Theorem 286
§11.5. Additional Problems 286
Chapter 12. Subdivision of Disks 289
§12.1. The Seifert-Van Kampen Theorem 289
§12.2. Simplices and Subdivision 295
§12.3. The Connectivity of $X_{n} \hookrightarrow X$ 298
§12.4. Cellular Approximation of Maps 299
§12.5. Homotopy Colimits and n-Equivalences 300
§12.6. Additional Problems and Projects 303
Chapter 13. The Local Nature of Fibrations 305
§13.1. Maps Homotopy Equivalent to Fibrations 306
§13.2. Local Fibrations Are Fibrations 308
§13.3. Gluing Weak Fibrations 310
§13.4. The First Cube Theorem 313
Chapter 14. Pullbacks of Cofibrations 317
§14.1. Pullbacks of Cofibrations 317
§14.2. Pullbacks of Well-Pointed Spaces 319
§14.3. The Second Cube Theorem 320
Chapter 15. Related Topics 323
§15.1. Locally Trivial Bundles 323
§15.2. Covering Spaces 326
§15.3. Bundles Built from Group Actions 330
§15.4. Some Theory of Fiber Bundles 333
§15.5. Serre Fibrations and Model Structures 336
§15.6. The Simplicial Approach to Homotopy Theory 341
§15.7. Quasifibrations 346
§15.8. Additional Problems and Projects 348
Part 4. Targets as Domains, Domains as Targets
Chapter 16. Constructions of Spaces and Maps 353
§16.1. Skeleta of Spaces 354
§16.2. Connectivity and CW Structure 357
§16.3. Basic Obstruction Theory 359
§16.4. Postnikov Sections 361
§16.5. Classifying Spaces and Universal Bundles 363
§16.6. Additional Problems and Projects 371
Chapter 17. Understanding Suspension 373
§17.1. Moore Paths and Loops 373
§17.2. The Free Monoid on a Topological Space 376
§17.3. Identifying the Suspension Map 379
$\S 17.4$. The Freudenthal Suspension Theorem 382
§17.5. Homotopy Groups of Spheres and Wedges of Spheres 383
§17.6. Eilenberg-Mac Lane Spaces 384
$\S 17.7$. Suspension in Dimension 1 387
§17.8. Additional Topics and Problems 389
Chapter 18. Comparing Pushouts and Pullbacks 393
§18.1. Pullbacks and Pushouts 393
§18.2. Comparing the Fiber of f to Its Cofiber 396
§18.3. The Blakers-Massey Theorem 398
§18.4. The Delooping of Maps 402
$\S 18.5$. The n-Dimensional Blakers-Massey Theorem 405
§18.6. Additional Topics, Problems and Projects 409
Chapter 19. Some Computations in Homotopy Theory 413
§19.1. The Degree of a Map $S^{n} \rightarrow S^{n}$ 414
§19.2. Some Applications of Degree 417
§19.3. Maps Between Wedges of Spheres 421
§19.4. Moore Spaces 424
§19.5. Homotopy Groups of a Smash Product 427
§19.6. Smash Products of Eilenberg-Mac Lane Spaces 429
§19.7. An Additional Topic and Some Problems 432
Chapter 20. Further Topics 435
$\S 20.1$. The Homotopy Category Is Not Complete 435
§20.2. Cone Decompositions with Respect to Moore Spaces 436
$\S 20.3$. First p-Torsion Is a Stable Invariant 438
§20.4. Hopf Invariants and Lusternik-Schnirelmann Category 445
§20.5. Infinite Symmetric Products 448
§20.6. Additional Topics, Problems and Projects 452
Part 5. Cohomology and Homology
Chapter 21. Cohomology 459
§21.1. Cohomology 459
§21.2. Basic Computations 467
§21.3. The External Cohomology Product 473
§21.4. Cohomology Rings 475
§21.5. Computing Algebra Structures 479
§21.6. Variation of Coefficients 485
§21.7. A Simple Künneth Theorem 487
§21.8. The Brown Representability Theorem 489
$\S 21.9$. The Singular Extension of Cohomology 494
§21.10. An Additional Topic and Some Problems and Projects 495
Chapter 22. Homology 499
§22.1. Homology Theories 499
§22.2. Examples of Homology Theories 505
§22.3. Exterior Products and the Künneth Theorem for Homology 508
§22.4. Coalgebra Structure for Homology 509
§22.5. Relating Homology to Cohomology 510
§22.6. H-Spaces and Hopf Algebras 512
Chapter 23. Cohomology Operations 515
§23.1. Cohomology Operations 516
§23.2. Stable Cohomology Operations 518
§23.3. Using the Diagonal Map to Construct Cohomology Operations 521
§23.4. The Steenrod Reduced Powers 525
§23.5. The Ádem Relations 528
§23.6. The Algebra of the Steenrod Algebra 533
§23.7. Wrap-Up 538
Chapter 24. Chain Complexes 541
$\S 24.1$. The Cellular Complex 542
$\S 24.2$. Applying Algebraic Universal Coefficients Theorems 547
§24.3. The General Künneth Theorem 548
§24.4. Algebra Structures on $C^{*}(X)$ and $C_{*}(X)$ 550
§24.5. The Singular Chain Complex 551
Chapter 25. Topics, Problems and Projects 553
§25.1. Algebra Structures on \mathbb{R}^{n} and \mathbb{C}^{n} 553
§25.2. Relative Cup Products 554
§25.3. Hopf Invariants and Hopf Maps 556
$\S 25.4$. Some Homotopy Groups of Spheres 563
§25.5. The Borsuk-Ulam Theorem 565
$\S 25.6$. Moore Spaces and Homology Decompositions 567
§25.7. Finite Generation of $\pi_{*}(X)$ and $H_{*}(X)$ 570
$\S 25.8$. Surfaces 572
§25.9. Euler Characteristic 573
§25.10. The Künneth Theorem via Symmetric Products 576
$\S 25.11$. The Homology Algebra of $\Omega \Sigma X$ 576
§25.12. The Adjoint λ_{X} of $\operatorname{id}_{\Omega X}$ 577
$\S 25.13$. Some Algebraic Topology of Fibrations 579
§25.14. A Glimpse of Spectra 580
$\S 25.15$. A Variety of Topics 581
§25.16. Additional Problems and Projects 585
Part 6. Cohomology, Homology and Fibrations
Chapter 26. The Wang Sequence 591
§26.1. Trivialization of Fibrations 591
$\S 26.2$. Orientable Fibrations 592
$\S 26.3$. The Wang Cofiber Sequence 593
§26.4. Some Algebraic Topology of Unitary Groups 597
§26.5. The Serre Filtration 600
§26.6. Additional Topics, Problems and Projects 603
Chapter 27. Cohomology of Filtered Spaces 605
§27.1. Filtered Spaces and Filtered Groups 606
§27.2. Cohomology and Cone Filtrations 612
§27.3. Approximations for General Filtered Spaces 615
§27.4. Products in $E_{1}^{*, *}(X)$ 618
§27.5. Pointed and Unpointed Filtered Spaces 620
§27.6. The Homology of Filtered Spaces 620
§27.7. Additional Projects 621
Chapter 28. The Serre Filtration of a Fibration 623
§28.1. Identification of E_{2} for the Serre Filtration 623
§28.2. Proof of Theorem 28.1 625
§28.3. External and Internal Products 631
§28.4. Homology and the Serre Filtration 633
§28.5. Additional Problems 633
Chapter 29. Application: Incompressibility 635
§29.1. Homology of Eilenberg-Mac Lane Spaces 636
§29.2. Reduction to Theorem 29.1 636
§29.3. Proof of Theorem 29.2 638
§29.4. Consequences of Theorem 29.1 641
§29.5. Additional Problems and Projects 642
Chapter 30. The Spectral Sequence of a Filtered Space 645
§30.1. Approximating $\operatorname{Gr}^{s} \widetilde{H}^{n}(X)$ by $E_{r}^{s, n}(X)$ 646
§30.2. Some Algebra of Spectral Sequences 651
§30.3. The Spectral Sequences of Filtered Spaces 654
Chapter 31. The Leray-Serre Spectral Sequence 659
§31.1. The Leray-Serre Spectral Sequence 659
§31.2. Edge Phenomena 663
§31.3. Simple Computations 671
§31.4. Simplifying the Leray-Serre Spectral Sequence 673
§31.5. Additional Problems and Projects 679
Chapter 32. Application: Bott Periodicity 681
$\S 32.1$. The Cohomology Algebra of $B U(n)$ 682
§32.2. The Torus and the Symmetric Group 682
§32.3. The Homology Algebra of $B U$ 685
§32.4. The Homology Algebra of $\Omega S U(n)$ 689
$\S 32.5$. Generating Complexes for $\Omega S U$ and $B U$ 690
$\S 32.6$. The Bott Periodicity Theorem 692
§32.7. K-Theory 695
§32.8. Additional Problems and Projects 698
Chapter 33. Using the Leray-Serre Spectral Sequence 699
§33.1. The Zeeman Comparison Theorem 699
§33.2. A Rational Borel-Type Theorem 702
$\S 33.3$. Mod 2 Cohomology of $K(G, n)$ 703
$\S 33.4 . \operatorname{Mod} p$ Cohomology of $K(G, n)$ 706
§33.5. Steenrod Operations Generate \mathcal{A}_{p} 710
§33.6. Homotopy Groups of Spheres 711
$\S 33.7$. Spaces Not Satisfying the Ganea Condition 713
§33.8. Spectral Sequences and Serre Classes 714
§33.9. Additional Problems and Projects 716
Part 7. Vistas
Chapter 34. Localization and Completion 721
§34.1. Localization and Idempotent Functors 722
§34.2. Proof of Theorem 34.5 726
§34.3. Homotopy Theory of \mathcal{P}-Local Spaces 729
§34.4. Localization with Respect to Homology 734
§34.5. Rational Homotopy Theory 737
§34.6. Further Topics 742
Chapter 35. Exponents for Homotopy Groups 745
§35.1. Construction of α 747
$\S 35.2$. Spectral Sequence Computations 751
§35.3. The Map γ 754
§35.4. Proof of Theorem 35.3 754
§35.5. Nearly Trivial Maps 756
Chapter 36. Classes of Spaces 759
§36.1. A Galois Correspondence in Homotopy Theory 760
§36.2. Strong Resolving Classes 761
§36.3. Closed Classes and Fibrations 764
§36.4. The Calculus of Closed Classes 767
Chapter 37. Miller's Theorem 773
§37.1. Reduction to Odd Spheres 774
§37.2. Modules over the Steenrod Algebra 777
§37.3. Massey-Peterson Towers 780
§37.4. Extensions and Consequences of Miller's Theorem 785
Appendix A. Some Algebra 789
§A.1. Modules, Algebras and Tensor Products 789
§A.2. Exact Sequences 794
§A.3. Graded Algebra 795
§A.4. Chain Complexes and Algebraic Homology 798
§A.5. Some Homological Algebra 799
§A.6. Hopf Algebras 803
§A.7. Symmetric Polynomials 806
§A.8. Sums, Products and Maps of Finite Type 807
§A.9. Ordinal Numbers 808
Bibliography 811
Index of Notation 821
Index 823

Preface

The subject of topology can be described as the study of the category Top of all topological spaces and the continuous maps between them. But many topological problems, and their solutions, do not change if the maps involved are replaced with 'continuous deformations' of themselves. The equivalence relation-called homotopy-generated by continuous deformations of maps respects composition, so that there is a 'quotient' homotopy category HTop and a functor Top \rightarrow hTop. Homotopy theory is the study of this functor. Thus homotopy theory is not entirely confined to the category HTop: it is frequently necessary, or at least useful, to use constructions available only in Top in order to prove statements that are entirely internal to HTop; and the homotopy category hTop can shed light even on questions in Top that are not homotopy invariant.

History. The core of the subject I'm calling 'classical homotopy theory' is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This includes the notions of fibration and cofibration, CW complexes, long fiber and cofiber sequences, loop space, suspension, and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory.

One of the main complications in homotopy theory is that many, if not most, diagrams in the category hTop do not have limits or colimits. Thus many theorems were proved using occasionally ingenious and generally ad $h o c$ constructions performed in the category Top. Eventually many of these constructions were codified in the dual concepts of homotopy colimit and
homotopy limit, and a powerful calculus for working with them was developed. The language of homotopy limits and colimits and the techniques for manipulating them made it possible to easily state and conceptually prove many results that had previously seemed quite difficult and inscrutable.

Once the basic theory has been laid down, the most interesting and useful theorems are those that break the categorical barrier between domain and target. The basic example of such a theorem is the Blakers-Massey theorem, which compares homotopy pushout squares to homotopy pullback squares. Other excellent examples of duality-breaking theorems are the Hilton-Milnor theorem on the loop space of a wedge and Ganea's theorem (which is dual to the most important special case of the Blakers-Massey theorem). All of these results were first proved with a great deal of technical finesse but can now be established easily using homotopy pushouts and pullbacks.

The Aim of This Book. The aim of this book is to develop classical homotopy theory and some important developments that flow from it using the more modern techniques of homotopy limits and colimits. Thus homotopy pushouts and homotopy pullbacks play a central role.

The book has been written with the theory of model categories firmly in mind. As is probably already evident, we make consistent and unapologetic use of the language of categories, functors, limits and colimits. But we are genuinely interested in the homotopy theory of spaces so, with the exception of a brief account of the abstract theory of model categories, we work with spaces throughout and happily make use of results that are special for spaces. Indeed, the third part of the book is devoted to the development of four basic properties that set the category of spaces apart from generic model categories.

I have generally used topological or homotopy-theoretical arguments rather than algebraic ones. This almost always leads to simpler statements and simpler arguments. Thus my book attempts to upset the balance (observed in many algebraic topology texts) between algebra and topology, in favor of topology. Algebra is just one of many tools by which we understand topology. This is not an anti-algebra crusade. Rather, I set out hoping to find homotopy-theoretical arguments wherever possible, with the expectation that at certain points, the simplicity or clarity afforded by the standard algebraic approach would outweigh the philosophical cleanliness of avoiding it. But I ended up being surprised: at no point did I find that 'extra' algebra made any contribution to clarity or simplicity.

Omissions. This is a very long book, and many topics that were in my earliest plans have had to be (regretfully) left out. I had planned three chapters on stable homotopy, extraordinary cohomology and nilpotence and
another on Goodwillie calculus. But in the book that emerged it seemed thematically appropriate to draw the line at stable homotopy theory, so space and thematic consistency drove these chapters to the cutting room floor.

Problems and Exercises. Many authors of textbooks assert that the only way to learn the subject is to do the exercises. I have taken this to heart, and so there are no outright proofs in the book. Instead, theorems are followed by multi-part problems that guide the readers to find the proofs for themselves. To the expert, these problems will read as terse proofs, perhaps suitable for exposition in a journal article. Reading this text, then, is a preparation for the experience of reading research articles. There are also a great many other problems incorporated into the main flow of the text, problems that develop interesting tangential results, explore applications, or carry out explicit calculations.

In addition, there are numerous exercises. These are intended to help the student develop some habits of mind that are extremely useful when reading mathematics. After definitions, the reader is asked to find examples and nonexamples, to explore how the new concept fits in with previous ideas, etc. Other exercises ask the reader to compare theorems with previous results, to test whether hypotheses are needed, or can be weakened, and so on.

Audience. This book was written with the idea that it would be used by students in their first year or two of graduate school. It is assumed that the reader is familiar with basic algebraic concepts such as groups and rings. It is also assumed that the student has had an introductory course in topology. It would be nice if that course included some mention of the fundamental group, but that is not necessary.

Teaching from This Book. This book covers more topics, in greater depth, than can be covered in detail in a typical two-semester homotopy theory or algebraic topology sequence. That being said, a good goal for a two-semester course would be to cover the high points of Parts $1-4$ in the first semester and Parts $5-6$ in the second semester, followed by some or all of Part 7 if time permits.

Here's some more detail.
The first semester would start with a brief (one day) introduction to the language of category theory before heading on to Part 2 to develop the basic theory of cofibrations, fibrations, and homotopy limits and colimits. Part 1 is an overview of the basics of category theory and shouldn't be covered in its own right at all; refer back to it as needed to bring in more advanced category-theoretical topics. Chapters 3 and 4 , in which the category of
spaces is established and the concept of homotopy is developed should be covered fairly thoroughly. Chapter 5 is on cofibrations and fibrations. The basic properties should be explored, and the mapping cylinder and its dual should be studied carefully; it's probably best to gloss over the distinction between the pointed and unpointed cases. State the Fundamental Lifting Property and the basic factorization theorems without belaboring their proofs. The fact that fiber and cofiber sequences lead to exact sequences of homotopy sets should be explored in detail. Chapter 6 is on homotopy colimits and limits. Cover homotopy pushouts in detail, appealing to duality for homotopy pullbacks, and give a brief discussion of the issues for more general diagrams. Chapter 7 is on homotopy pullback and pushout squares and should be covered in some detail. Chapters 8 and 9 offer a huge collection of topics. For the moment, only Section 8.1 (Long cofiber and fiber sequences) and perhaps Section 9.2 (on H-Spaces and co-H-spaces) are really mandatory. Other sections can be covered as needed or assigned to students as homework. Chapter 10 is a brief account of abstract model categories. It is included for 'cultural completeness' and, since it does not enter into the main flow of the text, it can be skipped in its entirety. Part 3 covers the four major special features of the homotopy theory of spaces. Chapters 11 through 14 should be covered in detail. Chapter 15 is a combination of topics and cultural knowledge. Sections 15.1 and 15.2 are crucial, but the rest can be glossed over if need be. Part 4 is where the four basic topological inputs are developed into effective tools for studying homotopy-theoretical problems. Chapters 16 through 19 should all be covered in detail. Chapter 20 contains topics which can be assigned to students as homework.

The second semester should pick up with Part 5 where we develop cohomology (and homology). Chapters 21 through 24 should be covered pretty thoroughly. Chapter 25 is a vast collection of topics, which can be covered at the instructor's discretion or assigned as homework. Part 6 is about the cohomology of fiber sequences, leading ultimately to the Leray-Serre spectral sequence, which is notoriously forbidding when first encountered. The exposition here is broken into small pieces with a consistent emphasis on the topological content. Many of the basic ideas and a nice application are covered in Chapters 26 through 29 ; this would be a fine place to stop if time runs out. Otherwise, Chapters 30 and 31 get to the full power of the Leray-Serre spectral sequence. This power is used in Chapter 32 to prove the Bott Periodicity Theorem. Chapter 33 is another topics chapter, which includes the cohomology of Eilenberg-Mac Lane spaces and some computations involving the homotopy groups of spheres. Finally, Part 7 covers some very fun and interesting topics: localization and completion, a discussion of the exponents of homotopy groups of spheres including a proof of Selick's theorem on the exponent of $\pi_{*}\left(S^{3}\right)$; the theory of closed classes and a dual
concept known as strong resolving classes; and a proof of Miller's theorem on the space of maps from $B \mathbb{Z} / p$ to a simply-connected finite complex.

Acknowledgements. A book such as this, I have come to realize, is essentially an attempt to set down the author's point of view on his subject. My point of view has been shaped by many people, beginning with Ed Fadell, Sufian Husseini and Steve Hutt, who were my first teachers in the subject. Early in my career, my horizons were greatly expanded by conversation and collaboration with Bob Bruner and Chuck McGibbon, and even more so during my long, pleasant and fruitful collaboration with Martin Arkowitz.

At various points during the writing of this book I have turned to others for clarification or advice on certain points that escaped me. Thanks are due to Peter May, whose kind responses to my emailed questions greatly improved a chapter that is, unfortunately, no longer included in the book. The community at the website MathOverflow offered useful advice on many questions.

My thanks are also due to the students who were guinea pigs for early versions of this text. Specifically, the enthusiasm of David Arnold, Jim Clarkson, Julie Houck, Rob Nendorf, Nick Scoville, and Jason Trowbridge was inspirational. I must also thank John Martino and Jay Wood for teaching the algebraic topology sequence at Western Michigan University using early drafts of this text.

Finally, I must gratefully acknowledge the support of my family during the long writing process. Dolores was exceedingly - albeit decreasinglypatient with my nearly endless string of pronouncements that I was 'almost done', and my sanity was preserved by my son Brandon, who unknowingly and innocently forced me every day to stop working and have fun.

Bibliography

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. MR0141119 (25 \#4530)
[2] _ The sphere, considered as an H-space $\bmod p$, Quart. J. Math. Oxford. Ser. (2) 12 (1961), 52-60. MR0123323 (23 \#A651)
[3] , A variant of E. H. Brown's representability theorem, Topology 10 (1971), 185-198. MR0283788 (44 \#1018)
[4] J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. Oxford Ser. (2) 17 (1966), 31-38. MR0198460 (33 \#6618)
[5] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1995. Reprint of the 1974 original. MR1324104 (96a:55002)
[6] \qquad , Localisation and completion, Department of Mathematics, University of Chicago, Chicago, Ill., 1975. With an addendum on the use of Brown-Peterson homology in stable homotopy; Lecture notes by Z. Fiedorowicz on a course given at the University of Chicago in Spring, 1973. MR0420607 (54 \#8621)
[7] John Frank Adams, Infinite loop spaces, Annals of Mathematics Studies, vol. 90, Princeton University Press, Princeton, N.J., 1978. MR505692 (80d:55001)
[8] J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330. MR0077929 (17,1119b)
[9] José Ádem, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 720-726. MR0050278 (14,306e)
[10] , Relations on iterated reduced powers, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 636-638. MR0056293 (15,53c)
[11] , The relations on Steenrod powers of cohomology classes. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 191-238. MR0085502 (19,50c)
[12] Marcelo Aguilar, Samuel Gitler, and Carlos Prieto, Algebraic topology from a homotopical viewpoint, Universitext, Springer-Verlag, New York, 2002. Translated from the Spanish by Stephen Bruce Sontz. MR1908260 (2003c:55001)
[13] David J. Anick, A counterexample to a conjecture of Serre, Ann. of Math. (2) 115 (1982), no. 1, 1-33, DOI 10.2307/1971338. MR644015 (86i:55011a)
[14] Martin Arkowitz and Marek Golasiński, Co-H-structures on Moore spaces of type ($G, 2$), Canad. J. Math. 46 (1994), no. 4, 673-686, DOI 10.4153/CJM-1994-037-0. MR1289053 (95e:55012)
[15] Martin Arkowitz, Donald Stanley, and Jeffrey Strom, The \mathcal{A}-category and \mathcal{A}-cone length of a map, Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001), Contemp. Math., vol. 316, Amer. Math. Soc., Providence, RI, 2002, pp. 15-33. MR1962150 (2003m:55002)
[16] , The cone length and category of maps: pushouts, products and fibrations, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 4, 517-545. MR2115724 (2006c:55005)
[17] Martin Arkowitz and Jeffrey Strom, Homotopy classes that are trivial mod \mathcal{F}, Algebr. Geom. Topol. 1 (2001), 381-409 (electronic), DOI 10.2140/agt.2001.1.381. MR1835263 (2002c:55019)
[18] , Nearly trivial homotopy classes between finite complexes, Topology Appl. 125 (2002), no. 2, 203-213, DOI 10.1016/S0166-8641(01)00273-5. MR1933572 (2003g:55018)
[19] M. F. Atiyah, K-theory, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. Notes by D. W. Anderson. MR1043170 (90m:18011)
[20] M. G. Barratt and John Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962), 293-297. MR0137110 (25 \#566)
[21] M. G. Barratt and J. H. C. Whitehead, The first nonvanishing group of an ($n+1$)-ad, Proc. London Math. Soc. (3) 6 (1956), 417-439. MR0085509 (19,52c)
[22] Mark J. Behrens, A new proof of the Bott periodicity theorem, Topology Appl. 119 (2002), no. 2, 167-183, DOI 10.1016/S0166-8641(01)00060-8. MR1886093 (2002m:55019)
[23] Mark Behrens, Addendum to: "A new proof of the Bott periodicity theorem" [Topology Appl. 119 (2002), no. 2, 167-183; MR1886093], Topology Appl. 143 (2004), no. 1-3, 281-290, DOI 10.1016/j.topol.2004.05.008. MR2081018 (2005c:55027)
[24] I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960), 437-451. MR0126276 (23 \#A3572)
[25] A. L. Blakers and W. S. Massey, The homotopy groups of a triad. I, Ann. of Math. (2) 53 (1951), 161-205. MR0038654 (12,435e)
[26] , The homotopy groups of a triad. II, Ann. of Math. (2) 55 (1952), 192-201. MR0044836 (13,485f)
[27] Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207 (French). MR0051508 ($14,490 \mathrm{e})$
[28] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409-448 (French). MR0058213 (15,338b)
[29] Raoul Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337. MR0110104 (22 \#987)
[30] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin, 1972. MR0365573 (51 \#1825)
[31] A. K. Bousfield, Types of acyclicity, J. Pure Appl. Algebra 4 (1974), 293-298. MR0367978 (51 \#4220)
[32] , The localization of spaces with respect to homology, Topology 14 (1975), 133-150. MR0380779 (52 \#1676)
[33] , On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), no. 2, 361-394, DOI 10.2307/2374579. MR882428 (88j:55017)
[34] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, SpringerVerlag, New York, 1997. Corrected third printing of the 1993 original. MR1700700 (2000b:55001)
[35] William Browder, Homology rings of groups, Amer. J. Math. 90 (1968), 318-333. MR0222899 (36 \#5949)
[36] Edgar H. Brown Jr., Cohomology theories, Ann. of Math. (2) 75 (1962), 467-484. MR0138104 (25 \#1551)
[37] Gunnar Carlsson, G. B. Segal's Burnside ring conjecture for (Z/2) ${ }^{k}$, Topology 22 (1983), no. 1, 83-103, DOI 10.1016/0040-9383(83)90046-0. MR682060 (84a:55007)
[38] Carles Casacuberta, Dirk Scevenels, and Jeffrey H. Smith, Implications of large-cardinal principles in homotopical localization, Adv. Math. 197 (2005), no. 1, 120-139, DOI 10.1016/j.aim.2004.10.001. MR2166179 (2006i:55013)
[39] Wojciech Chachólski, On the functors $C W_{A}$ and P_{A}, Duke Math. J. 84 (1996), no. 3, 599631, DOI 10.1215/S0012-7094-96-08419-7. MR1408539 (97i:55023)
[40] , A generalization of the triad theorem of Blakers-Massey, Topology 36 (1997), no. 6, 1381-1400, DOI 10.1016/S0040-9383(96)00045-6. MR1452856 (98e:55014)
[41] _ , Desuspending and delooping cellular inequalities, Invent. Math. 129 (1997), no. 1, 37-62, DOI 10.1007/S002220050157. MR1464865 (98i:55013)
[42] F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979), no. 1, 121-168, DOI 10.2307/1971269. MR519355 (80e:55024)
[43] , The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no. 3, 549-565, DOI 10.2307/1971238. MR554384 (81c:55021)
[44] Michael Cole, Many homotopy categories are homotopy categories, Topology Appl. 153 (2006), no. 7, 1084-1099, DOI 10.1016/j.topol.2005.02.006. MR2203021 (2006k:55015)
[45] _ , Mixing model structures, Topology Appl. 153 (2006), no. 7, 1016-1032, DOI 10.1016/j.topol.2005.02.004. MR2203016 (2006j:55008)
[46] Octavian Cornea, Cone-length and Lusternik-Schnirelmann category, Topology 33 (1994), no. 1, 95-111, DOI 10.1016/0040-9383(94)90037-X. MR1259517 (95d:55008)
[47] , There is just one rational cone-length, Trans. Amer. Math. Soc. 344 (1994), no. 2, 835-848, DOI 10.2307/2154510. MR1260200 (95b:55009)
[48] _ Strong LS category equals cone-length, Topology 34 (1995), no. 2, 377-381, DOI 10.1016/0040-9383(94)00024-F. MR1318882 (95k:55021)
[49] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR1990857 (2004e:55001)
[50] Jean Dieudonné, A history of algebraic and differential topology. 1900-1960, Birkhäuser Boston Inc., Boston, MA, 1989. MR995842 (90g:01029)
[51] Jean-Paul Doeraene, L.S.-category in a model category, J. Pure Appl. Algebra 84 (1993), no. 3, 215-261, DOI 10.1016/0022-4049(93)90001-A. MR1201256 (94b:55017)
[52] Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255. MR0155330 (27 \#5264)
[53]_, Die Homotopieerweiterungseigenschaft ($=\mathrm{HEP}$) ist eine lokale Eigenschaft, Invent. Math. 6 (1968), 185-189 (German). MR0246292 (39 \#7596)
[54] Albrecht Dold and Richard Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles., Illinois J. Math. 3 (1959), 285-305. MR0101521 (21 \#331)
[55] Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) $\mathbf{6 7}$ (1958), 239-281 (German). MR0097062 (20 \#3542)
[56] C. H. Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952), 555-577. MR0048020 (13,965h)
[57] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126, DOI 10.1016/B978-044481779-2/50003-1. MR1361887 (96h:55014)
[58] Samuel Eilenberg and Ivan Niven, The "fundamental theorem of algebra" for quaternions, Bull. Amer. Math. Soc. 50 (1944), 246-248. MR0009588 (5,169e)
[59] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR0050886 (14,398b)
[60] Graham Ellis and Richard Steiner, Higher-dimensional crossed modules and the homotopy groups of ($n+1$)-ads, J. Pure Appl. Algebra 46 (1987), no. 2-3, 117-136, DOI 10.1016/0022-4049(87)90089-2. MR897011 (88j:55010)
[61] Edward Fadell, On fiber spaces, Trans. Amer. Math. Soc. 90 (1959), 1-14. MR0101520 (21 \#330)
[62] Peter Fantham, Ioan James, and Michael Mather, On the reduced product construction, Canad. Math. Bull. 39 (1996), no. 4, 385-389.MR1426683 (97m:55010)
[63] Emmanuel Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996. MR1392221 (98f:55010)
[64] Yves Félix, Steve Halperin, and Jean-Michel Lemaire, The rational LS category of products and of Poincaré duality complexes, Topology 37 (1998), no. 4, 749-756, DOI 10.1016/S0040-9383(97)00061-X. MR1607732 (99a:55003)
[65] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR1802847 (2002d:55014)
[66] T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322. MR0179791 (31 \#4033)
[67] , Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427. MR0229240 (37 \#4814)
[68] Tudor Ganea, Some problems on numerical homotopy invariants, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle Wash., 1971), Springer, Berlin, 1971, pp. 2330. Lecture Notes in Math., Vol. 249. MR0339147 (49 \#3910)
[69] Thomas G. Goodwillie, Calculus. II. Analytic functors, K-Theory 5 (1991/92), no. 4, 295332, DOI 10.1007/BF00535644. MR1162445 (93i:55015)
[70] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR1711612 (2001d:55012)
[71] Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. MR0275424 (43 \#1181)
[72] Brayton Gray, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology 8 (1969), 219-232. MR0245008 (39 \#6321)
[73] , A note on the Hilton-Milnor theorem, Topology 10 (1971), 199-201. MR0281202 (43 \#6921)
[74] , On the homotopy groups of mapping cones, Proc. London Math. Soc. (3) 26 (1973), 497-520. MR0334198 (48 \#12517)
[75] ,Homotopy theory, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. An introduction to algebraic topology; Pure and Applied Mathematics, Vol. 64. MR0402714 (53 \#6528)
[76] Brayton Gray and C. A. McGibbon, Universal phantom maps, Topology 32 (1993), no. 2, 371-394, DOI 10.1016/0040-9383(93)90027-S. MR1217076 (94a:55008)
[77] Brayton Gray and Stephen Theriault, An elementary construction of Anick's fibration, Geom. Topol. 14 (2010), no. 1, 243-275, DOI 10.2140/gt.2010.14.243. MR2578305 (2011a:55013)
[78] Marvin J. Greenberg and John R. Harper, Algebraic topology, Mathematics Lecture Note Series, vol. 58, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1981. A first course. MR643101 (83b:55001)
[79] Phillip A. Griffiths and John W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, vol. 16, Birkhäuser Boston, Mass., 1981. MR641551 (82m:55014)
[80] J. R. Harper and H. R. Miller, Looping Massey-Peterson towers, Advances in homotopy theory (Cortona, 1988), London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 69-86. MR1055869 (91c:55032)
[81] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.MR1867354 (2002k:55001)
[82] Kathryn P. Hess, A proof of Ganea's conjecture for rational spaces, Topology 30 (1991), no. 2, 205-214, DOI 10.1016/0040-9383(91)90006-P. MR1098914 (92d:55012)
[83] Kathryn Hess, Rational homotopy theory: a brief introduction, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 175-202. MR2355774 (2008g:55019)
[84] Graham Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61-64. MR0038348 (12,390c)
[85] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. $\mathbf{3 0}$ (1955), 154-172. MR0068218 (16,847d)
[86] Peter Hilton, Guido Mislin, and Joe Roitberg, Localization of nilpotent groups and spaces, North-Holland Publishing Co., Amsterdam, 1975. North-Holland Mathematics Studies, No. 15; Notas de Matemática, No. 55. [Notes on Mathematics, No. 55]. MR0478146 (57 \#17635)
[87] P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR0115161 (22 \#5963)
[88] Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR1944041 (2003j:18018)
[89] John G. Hocking and Gail S. Young, Topology, 2nd ed., Dover Publications Inc., New York, 1988. MR1016814 (90h:54001)
[90] M. J. Hopkins, Formulations of cocategory and the iterated suspension, Algebraic homotopy and local algebra (Luminy, 1982), Astérisque, vol. 113, Soc. Math. France, Paris, 1984, pp. 212-226. MR749060
[91] Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR1650134 (99h:55031)
[92] Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York, 1959. MR0106454 (21 \#5186)
[93] Witold Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 956-961. MR0073987 (17,519e)
[94] S. Y. Husseini, Constructions of the reduced product type, Topology 2 (1963), 213-237. MR0182008 (31 \#6233a)
[95] Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, SpringerVerlag, New York, 1994. MR1249482 (94k:55001)
[96] S. Y. Husseini, Constructions of the reduced product type. II, Topology 3 (1965), 59-79. MR0182009 (31 \#6233b)
[97] , The topology of classical groups and related topics, Gordon and Breach Science Publishers, New York, 1969. MR0267601 (42 \#2503)
[98] Norio Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc. 30 (1998), no. 6, 623-634, DOI 10.1112/S0024609398004548. MR1642747 (99j:55003)
[99] _, A_{∞}-method in Lusternik-Schnirelmann category, Topology 41 (2002), no. 4, 695723, DOI 10.1016/S0040-9383(00)00045-8. MR1905835 (2003h:55004)
[100] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197.MR0073181 (17,396b)
[101] _, On the suspension triad, Ann. of Math. (2) 63 (1956), 191-247. MR0077922 (17,1117b)
[102] _, The suspension triad of a sphere, Ann. of Math. (2) 63 (1956), 407-429. MR0079263 $(18,58 f)$
[103] , On the suspension sequence, Ann. of Math. (2) 65 (1957), 74-107. MR0083124 $(18,662 \mathrm{e})$
[104] , Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383. MR0091467 (19,974a)
[105] _ On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331-348, DOI 10.1016/0040-9383(78)90002-2. MR516214 (80i:55001)
[106] Barry Jessup, Rational approximations to L-S category and a conjecture of Ganea, Trans. Amer. Math. Soc. 317 (1990), no. 2, 655-660, DOI 10.2307/2001481. MR956033 (90e:55023)
[107] Tatsuji Kudo, A transgression theorem, Mem. Fac. Sci. Kyûsyû Univ. Ser. A. 9 (1956), 79-81. MR0079259 $(18,58 \mathrm{~b})$
[108] Dusa MacDuff, Configuration spaces, K-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975), Springer, Berlin, 1977, pp. 88-95. Lecture Notes in Math.,\# Vol. 575. MR0467734 (57 \#7587)
[109] Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR1344215 (96d:18001)
[110] , Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR1712872 (2001j:18001)
[111] W. S. Massey, Exact couples in algebraic topology. I, II, Ann. of Math. (2) 56 (1952), 363-396. MR0052770 (14,672a)
[112] , Exact couples in algebraic topology. III, IV, V, Ann. of Math. (2) 57 (1953), 248286. MR0055686 (14,1111b)
[113] , Products in exact couples, Ann. of Math. (2) 59 (1954), 558-569. MR0060829 (15,735a)
[114] W. S. Massey and F. P. Peterson, The mod 2 cohomology structure of certain fibre spaces, Memoirs of the American Mathematical Society, No. 74, American Mathematical Society, Providence, R.I., 1967. MR0226637 (37 \#2226)
[115] Michael Mather, Hurewicz theorems for pairs and squares, Math. Scand. 32 (1973), 269-272 (1974). MR0356040 (50 \#8512)
[116] _, A generalisation of Ganea's theorem on the mapping cone of the inclusion of a fibre, J. London Math. Soc. (2) 11 (1975), no. 1, 121-122. MR0388378 (52 \#9215)
[117] , Pull-backs in homotopy theory, Canad. J. Math. 28 (1976), no. 2, 225-263. MR0402694 (53 \#6510)
[118] Hans Varghese Mathews, Cellular twisted products, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.), The University of Wisconsin - Madison. MR2689941
[119] J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original. MR1206474 (93m:55025)
[120] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR1702278 (2000h:55002)
[121] M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273-298. MR0251719 (40 \#4946)
[122] C. A. McGibbon, Phantom maps, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 1209-1257, DOI 10.1016/B978-044481779-2/50026-2. MR1361910 (96i:55021)
[123] C. A. McGibbon and J. A. Neisendorfer, On the homotopy groups of a finite-dimensional space, Comment. Math. Helv. 59 (1984), no. 2, 253-257, DOI 10.1007/BF02566349. MR749108 (86b:55015)
[124] C. A. McGibbon and Richard Steiner, Some questions about the first derived functor of the inverse limit, J. Pure Appl. Algebra 103 (1995), no. 3, 325-340, DOI 10.1016/0022-4049(94)00107-T. MR1357793 (98c:20098)
[125] John McCleary, A user's guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR1793722 (2002c:55027)
[126] Haynes Miller, Massey-Peterson towers and maps from classifying spaces, Algebraic topology, Aarhus, 1982 (Aarhus, 1982), Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 401-417, DOI 10.1007/BFb0075581. MR764593 (86b:55011)
[127] _, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39-87, DOI 10.2307/2007071. MR750716 (85i:55012)
[128] John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272-284. MR0077122 (17,994b)
[129] , Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436. MR0077932 (17,1120a)
[130] , The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357-362. MR0084138 (18,815d)
[131] , The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171. MR0099653 (20 \#6092)
[132] , On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280. MR0100267 (20 \#6700)
[133] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. MR0174052 (30 \#4259)
[134] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J., 1974. Annals of Mathematics Studies, No. 76. MR0440554 (55 \#13428)
[135] Mamoru Mimura and Hirosi Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs, vol. 91, American Mathematical Society, Providence, RI, 1991. Translated from the 1978 Japanese edition by the authors. MR1122592 (92h:55001)
[136] Hiroshi Miyazaki, The paracompactness of $C W$-complexes, Tôhoku Math. J. (2) 4 (1952), 309-313. MR0054246 (14,894c)
[137] Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper \& Row Publishers, New York, 1968. MR0226634 (37 \#2223)
[138] James R. Munkres, Topology: a first course, Prentice-Hall Inc., Englewood Cliffs, N.J., 1975. MR0464128 (57 \#4063)
[139] Joseph A. Neisendorfer, Localization and connected covers of finite complexes, The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 385-390. MR1321002 (96a:55019)
[140] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An introduction to the theory of numbers, 5th ed., John Wiley \& Sons Inc., New York, 1991. MR1083765 (91i:11001)
[141] M. M. Postnikov, On a theorem of Cartan, Uspehi Mat. Nauk 21 (1966), no. 4 (130), 35-46 (Russian). MR0220275 (36 \#3341)
[142] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, SpringerVerlag, Berlin, 1967. MR0223432 (36 \#6480)
[143] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press Inc., Orlando, FL, 1986. MR860042 (87j:55003)
[144] Joseph J. Rotman, An introduction to algebraic topology, Graduate Texts in Mathematics, vol. 119, Springer-Verlag, New York, 1988. MR957919 (90e:55001)
[145] Lionel Schwartz, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994. MR1282727 (95d:55017)
[146] Stefan Schwede, The stable homotopy category is rigid, Ann. of Math. (2) $\mathbf{1 6 6}$ (2007), no. 3, 837-863, DOI 10.4007/annals.2007.166.837. MR2373374 (2009g:55009)
[147] , The stable homotopy category has a unique model at the prime 2, Adv. Math. 164 (2001), no. 1, 24-40, DOI 10.1006/aima.2001.2009. MR1870511 (2003a:55013)
[148] Stefan Schwede and Brooke Shipley, A uniqueness theorem for stable homotopy theory, Math. Z. 239 (2002), no. 4, 803-828, DOI 10.1007/s002090100347. MR1902062 (2003f:55027)
[149] Paul Selick, Odd primary torsion in $\pi_{k}\left(S^{3}\right)$, Topology 17 (1978), no. 4, 407-412, DOI 10.1016/0040-9383(78)90007-1. MR516219 (80c:55010)
[150] _ , Introduction to homotopy theory, Fields Institute Monographs, vol. 9, American Mathematical Society, Providence, RI, 1997. MR1450595 (98h:55001)
[151] Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425-505 (French). MR0045386 (13,574g)
[152] , Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294 (French). MR0059548 (15,548c)
[153] , Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-232 (French). MR0060234 (15,643c)
[154] Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York, 1981.MR666554 (83i:55001)
[155] Donald Stanley, Spaces and Lusternik-Schnirelmann category n and cone length $n+1$, Topology 39 (2000), no. 5, 985-1019, DOI 10.1016/S0040-9383(99)00047-6. MR1763960 (2001e:55004)
[156] , On the Lusternik-Schnirelmann category of maps, Canad. J. Math. 54 (2002), no. 3, 608-633, DOI 10.4153/CJM-2002-022-6. MR1900766 (2003c:55011)
[157] N. E. Steenrod, Cohomology invariants of mappings, Ann. of Math. (2) 50 (1949), 954-988. MR0031231 (11,122a)
[158] , Reduced powers of cohomology classes, Ann. of Math. (2) 56 (1952), 47-67. MR0048026 (13,966e)
[159] , Cohomology operations, Symposium internacional de topología algebraica, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 165-185. MR0098367 (20 \#4827)
[160] , Cohomology operations, Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR0145525 (26 \#3056)
[161] _ A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR0210075 (35 \#970)
[162] Arne Strøm, Note on cofibrations, Math. Scand. 19 (1966), 11-14. MR0211403 (35 \#2284)
$[163] \underset{\# 4846)}{ }$, Note on cofibrations. II, Math. Scand. 22 (1968), 130-142 (1969). MR0243525 (39
[164] , The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972), 435-441. MR0321082 (47 \#9615)
[165] Jeffrey Strom, Miller spaces and spherical resolvability of finite complexes, Fund. Math. 178 (2003), no. 2, 97-108, DOI 10.4064/fm178-2-1. MR2029919 (2005b:55026)
[166] Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR0494074 (58 \#13006a)
[167] , Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) $\mathbf{1 0 0}$ (1974), 1-79. MR0442930 (56 \#1305)
[168] Robert M. Switzer, Algebraic topology-homotopy and homology, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Reprint of the 1975 original [Springer, New York; MR0385836 (52 \#6695)]. MR1886843
[169] Hirosi Toda, Complex of the standard paths and n-ad homotopy groups, J. Inst. Polytech. Osaka City Univ. Ser. A. 6 (1955), 101-120. MR0075589 (17,773b)
[170] , On the double suspension E^{2}, J. Inst. Polytech. Osaka City Univ. Ser. A. 7 (1956), 103-145. MR0092968 (19,1188g)
[171] _ A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 32 (1959), 103-119. MR0108790 (21 \#7502)
[172] _, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR0143217 (26 \#777)
[173] Tammo tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society, Zürich, 2008. MR2456045 (2009f:55001)
[174] Rainer M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. (Basel) 22 (1971), 545-555.MR0300277 (45 \#9323)
[175] Charles E. Watts, On the Euler characteristic of polyhedra, Proc. Amer. Math. Soc. 13 (1962), 304-306. MR0137109 (25 \#565)
[176] Jeffrey R. Weeks, The shape of space, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 249, Marcel Dekker Inc., New York, 2002. MR1875835 (2002h:57001)
[177] Stephen Weingram, On the incompressibility of certain maps, Ann. of Math. (2) 93 (1971), 476-485. MR0301735 (46 \#890)
[178] George W. Whitehead, The $(n+2)^{\text {nd }}$ homotopy group of the n-sphere, Ann. of Math. (2) 52 (1950), 245-247. MR0037507 (12,273a)
[179] _, A generalization of the Hopf invariant, Ann. of Math. (2) 51 (1950), 192-237. MR0041435 (12,847b)
[180] , On the Freudenthal theorems, Ann. of Math. (2) $\mathbf{5 7}$ (1953), 209-228. MR0055683 (14,1110d)
[181] , On mappings into group-like spaces, Comment. Math. Helv. 28 (1954), 320-328. MR0065927 (16,505c)
[182] , On the homology suspension, Ann. of Math. (2) 62 (1955), 254-268. MR0073989 $(17,520 b)$
[183] J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213-245. MR0030759 $(11,48 \mathrm{~b})$
[184] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York, 1978. MR516508 (80b:55001)
[185] E. C. Zeeman, A proof of the comparison theorem for spectral sequences, Proc. Cambridge Philos. Soc. 53 (1957), 57-62. MR0084769 (18,918f)
[186] , A note on a theorem of Armand Borel, Proc. Cambridge Philos. Soc. 54 (1958), 396-398. MR0105099 (21 \#3844)

Index of Notation

$X * Y, 221$	$D^{n}, 45$
$X \rtimes Y, 64$	$\bar{\Delta}_{n}, 259$
$X_{+}, 64$	$\Delta^{n}, 295$
$X_{-}, 64$	$\Delta_{Q}, 32$
$X_{(s) /(t)}, 611$	$\operatorname{deg}(f), 414$
[X, Y], 70	$\Delta, 16$
$\alpha *_{[s]} \beta, 109$	
$\alpha \star \beta, 374$	$E_{f}, 112$
田,59	$\eta, 556$
$\nabla, 17$	$\operatorname{Ext}_{R}^{n}(?, ?), 802$
$\langle X, Y\rangle, 70$	
$\bar{\alpha}, 73$	$\mathcal{F}_{*}, 462$
$u \bullet v, 474$	[f], 70
	f, 74
$A(f), 421$	$\langle f\rangle, 70$
	$f^{*}, 10$
$B^{n}\left(\mathcal{C}^{*}\right), 54$	$f_{*}, 11$
BI, 177	$G(V), 230$
	$\mathrm{Gr}_{k}\left(\mathbb{F}^{n+k}\right), 231$
$\dddot{\mathrm{C}}, 18$	
$C_{f}, 130$	H, 502
$C^{n}(X ; G), 542$	$\mathcal{H}(\alpha), 446$
$\mathcal{C}^{\text {op }}, 10$	$\mathscr{H}(\alpha), 256$
$\operatorname{cat}(X), 251$	${\underset{\sim}{H}}^{\text {H }}$, 467
$\operatorname{Cell}_{n}(X), 542$	${\underset{\sim}{H}}^{H}, 460$
Chain, 543	$\underset{\sim}{\sim_{n}}, 506$
$\chi(X), 573$	$\widetilde{\sim}_{\sim}{ }^{n}, 461$
$\widetilde{\chi}(X), 573$	$\widetilde{h}_{n}, 500$
$\mathrm{cl}_{\mathcal{A}}(X), 239$	$h^{n}, 467$
colim, 56	$h_{n}, 500$
$\operatorname{conn}_{\mathcal{P}}(X), 439$	$H^{n}\left(\mathcal{C}^{*}\right), 544$
conn(X), 279	$H_{\sigma}(\alpha), 446$
$\mathbf{C W}_{*}, 462$	${ }_{\mathrm{H}} \mathcal{T}, 80$
CX, 67	
Cyl, 90	in, 18

```
Jn}(X),37
J(X),377
K(G,n),385
L
\mathcal{L}}\mp@subsup{\mathcal{A}}{(}{(f),238
\Lambda(X),259
lim, 56
lim}\mp@subsup{}{}{1},24
M
Mn\timesn}(\mathbb{F}),23
map
map
nil(I),555
\Omega}\mp@subsup{\Omega}{M}{},37
\Omega},10
\OmegaX,67
Pd,527
P
Ph(X,Y),245
\pi
\pi
pr, 15, 18
Sn,45
s
\SigmaX,66
sd(K), 298
Sets
\Sigma , 46
SP\infty}(X),44
SPn}(X),44
Sq}\mp@subsup{}{}{d},52
T},53,5
\mathcal{T}
\mathcal{T}},53,5
\mathcal{T}}\mp@subsup{}{(2)}{},5
Tk}(X),25
Tz,V,233
\Theta 
Vk}(\mp@subsup{\mathbb{F}}{}{n+k}),23
\mathcal{W}}\mp@subsup{\mathcal{*}}{}{\prime},17
x, 73
Zn}(\mp@subsup{\mathcal{C}}{}{*}),54
```


Index

∞-connected, 279
∞-equivalence, 278
3×3 diagram, 166, 173
homotopy colimit, 166
homotopy limit, 173
\mathcal{A}-cone decomposition, 238
A-module, 796
A-morphism, 94
abelianization, 388
abstract simplicial complex, 296, 342
action
naturality, 206
acyclic, 700, 799
acyclic cofibration, 121, 263
acyclic fibration, 121, 263
Adams operations, 697
Ádem relations, 520, 533
adjoint, 26, 54
loop space, 207
suspension, 207
adjoint functors
and cofibrant diagrams, 151
cofibrations, 122
fibrations, 122
adjunction
counit, 28
unit, 28
admissible, 537, 538, 592, 705
for $h^{*}, 592$
admissible map, 204
admissible path
for $p, 204$
admissible trivialization, 592
algebra
graded, 796
algebraic closure, 4
algebraic Künneth map, 803
algebraic loop, 287
amalgamated free product, 291
antipodal map, 415, 472
antipode, 52
associated graded, 610
associative, 227, 475
augmentation, 780, 797
augmentation ideal, 780, 797
augmented algebra, 797
barycenter, 297
barycentric subsimplex, 297
base, 108
based maps, 60
basepoint, 19, 60
change, 211
of $I, 67,70$
bidegree, 559, 587, 612, 653
bigraded, 612
bilinear, 790
Blakers-Massey theorem, 398
n-dimensional, 406
cellular, 769
geometric version, 401
$\bmod \mathcal{Q}, 445$
Bockstein, 520, 567
map, 517
operation, 517
Borel construction, 220, 335
Borsuk-Ulam theorem, 566
Bott map, 692
Bott-Samelson theorem, 577
boundaries, 544, 798
boundary, 295
boundary map, 241, 543, 798
product, 243
bounded below, 795
Bousfield equivalent, 725
Brown Representability Theorem, 490
bundle isomorphism, 335
bundle map, 324, 334
bundle of groups, 625
Cartan formula, 525, 533
category, 5
discrete, 33
Lusternik-Schnirelmann, 250, 555
pointed, 18
category of maps, 91
cell
closed, 47
open, 47
cellular action, 217
Cellular Approximation Theorem, 299
1-dimensional, 74, 78
cellular chain complex
product space, 549
cellular cochain complex, 543
cellular inequality, 759, 764
cellular map, 48, 78, 299
cellular replacement, 340
existence, 355
uniqueness, 354
chain algebra, 550, 653
chain complex, 543, 798
chain map, 544, 798
change of fiber, 335
characteristic map, 47
characterization
acyclic cofibrations, 121, 129
acyclic fibrations, 121, 129
cofibrations, 121, 129
fibrations, 121, 129
Clark, 18
class, 5
classified, 370
classifying space, 177,370
closed
under homotopy limits, 409
under smash, 762
under weak homotopy equivalence, 409
under wedge, 762
closed class, 759, 764
closed cofibration, 104
closed under suspension, 238, 762
closed under wedges, 238
clutching, 603
map, 603
co-H-space, 228
retract, 228
suspension, 359
coagumentation, 722
coalgebra, 803
homomorphism, 804
coboundary map, 543
cocartesian, 196
cochain complex, 543, 798
cocommutative, 25, 804
cocomplete, 262
cocycles, 544
coefficient group, 462, 500
coefficient transformations, 516
coefficients, 427, 461
coend, 346
coequalizer, 38
cofiber, 130
homotopy invariance, 163
homotopy pushout, 184
of a composite, 216
of contractible subspace, 132
of projection map, 223
of trivial map, 194
standard, 130, 131
unpointed, 131
cofiber sequence, 131, 460
exactness, 131
long sequence, 201
Mayer-Vietoris, 210
cofibrant, 101, 147, 148, 264
cofibrant diagram
characterization, 158
cofibrant replacement, 150
prepushout diagrams, 148
cofibration, 99, 100, 262
acyclic, 121
adjoint pair, 129
closed, 104
composition, 100
converting to, 112
exact sequence, 201, 202
exactness, 130
mapping space, 105, 134
pointed, 122
product, 106
pushout, 103
retract, 121
trivial, 121
cofibrations
inclusion maps, 101
pushouts, 103
cofinal
subdiagram, 40
cofinality, 809
cogroup object, 23
cocommutative, 25
Cohen-Moore-Neisendorfer lemma, 215
coherent homotopies, 92
cohomology, 460
$B \mathbb{Z} / p, 520$
algebraic, 544
coefficients, 460
exact sequence of fibration, 583
James construction, 480
of a product, 488
of Moore space, 470
projective space, 470
reduced, 467
telescope, 465
unitary group, 597
unreduced, 467
with local coefficients, 625
cohomology algebra
projective space, 480
cohomology class, 460
cohomology group, 544
cohomology operation, 516
Moore space, 567
cohomology theory, 459, 461
extraordinary, 462
multiplictative, 586
ordinary, 462
colimit, 15, 34
3×3 diagram, 41
$\mathcal{I} \times \mathcal{J}$ diagram, 42
commute with adjoint, 35
naturality, 34
pushout, 37
collapse, 654
commutative, $4,25,227,475,792$
on the nose, 82
graded, 419, 796
homotopy, 81
strictly, 82
commutative differential graded algebra, 739
commutativity
graded, 418
commutator, 388
commutator subgroup, 388
compact, 97
compact subspace
of CW complex, 50
compact-open topology, 54
compactly generated, 55
compactness
and CW complexes, 49
comparison
cofiber to suspension of fiber, 397
cofiber to base, 395
homotopy pullback to homotopy pushout, 394
homotopy pushout to homotopy pullback, 398
comparison map, 51, 394, 397, 398, 463
compatible, 136, 137
complement, 231
complete, 262
completion, 735
component, 795
compressible, 635
comultiplication, 804
concatenate, 374
concatenation, 74
infinite, 277
of homotopies, 73
of paths, 72
rigid, 374
concentrated, 462, 795
cone, 67
reduced, 67
cone decomposition, 237
cellular, 470
cone filtration, 608, 613
cone length
\mathcal{A}-cone length, 238
Lusternik-Schnirelmann category, 251
of a map, 238
of a space, 239
connected, 797
connected cover, 362
connected sum, 572
connective, 737
connectivity, 279
cohomology, 464
homology, 502
$\bmod \mathcal{Q}, 443$
$\bmod \mathcal{C}, 716$
of a space, 279
of half-smash product, 358
of join, 358
of product, 358
of smash product, 358
of smash product of maps, 359
of suspension, 358,383
constant diagram, 159
constant homotopy, 74
continuity
of map from a CW complex, 49
contractible, 82
smash product, 581
contraficients, 427
contravariant functor, 9
converges, 654
converting to
fibration, 111, 113
convex, 75
convex combination, 75
coordinate map, 421, 807
coproduct, 17, 38
covariant functor, 8
covering, 326
covering homotopy extension property, 120
criticize this argument, 48
cube diagram, 405
Cube Theorem
First, 314
Second, 321
cup length, 555
cup product, 476
currying, 55
CW n-ad, 97
CW complex, 47
compact, 49
finite, 49
finite-dimensional, 47
induction, 276
infinite-dimensional, 47
of finite type, 637
pointed, 61
CW decompositions, 48
CW induction, 276
CW pair, 60
CW product, 51
CW replacement, 353
uniqueness, 354
CW structures, 48
cycles, 544, 798
cylinder, $67,92,95$
external, 95
internal, 95
reduced, 67
standard, 90
cylinder object, 90,266
de Polignac's formula, 640, 755
deck transformation, 329
decomposables, 577, 797
deformation retract, 76
degeneracy maps, 345
degenerate, 345
degree, 414, 452, 497, 516, 518, 537, 653, 795
of twist map, 418
derivation, 595
derived, 652
deviation, 747
diagonal action, 219
diagonal functor, 32
diagonal indexing, 612
diagonal map, 16, 476
reduced, 476
diagram, 3, 30
diagram category, 30
diagram homotopy equivalence, 145
differential, 543, 798
dimension, 47, 296, 653, 795
of a cohomology class, 460
dimension zero, 47
direct category, 176
direct limit, 39
direct sum
of graded modules, 796
discrete category, 33
disk, 45
disk bundle, 677
distinguished, 348
divided polynomial algebra, 794
graded, 796
divisible groups, 802
domain, 4, 34
domain type, 15
double factorization, 113
double mapping cylinder, 161
dual, 37
duality, 15, 17, 107, 188, 202, 209, 223, 228, 248, 402
and homotopy, 89
E-equivalence, 722
E-local, 722
Eckmann-Hilton argument, 229
Eckmann-Hilton duality, 265
edge homomorphism, 665
bottom, 665
EHP sequence, 742, 743
Eilenberg-Mac Lane space, 384, 459, 506, 516
existence, 386
maps between, 385
of type $(G, n), 384$
symmetric product, 451
uniqueness, 386
Eilenberg-Mac Lane space
generalized, 451
Eilenberg-Steenrod axioms, 460, 461
elementary symmetric function, 535
elementary symmetric polynomial, 806
endpoint, 374
enough projectives, 799
equalizer, 37
equivalence, 6
equivalence of categories, 14
equivalent maps, 27
equivariant, 216
essential, 82
Euler characteristic, 573
reduced, 573
Euler class, 675
evaluation map, 54, 374
evenly covered, 326
exact, 130
exact couple, 616, 617, 650
derived, 652
exact functor, 795
exact sequence, 794
split, 517
exactness
unreduced homology, 500
excess, 537, 538, 705
Excision Axiom, 461
exhaustive, 612
exponent, 636, 745
exponential law, 54, 55, 57, 65, 81, 84, 791
for pairs, 59
pointed, 62
Ext-p-complete, 735
extend
to cone, 82
extension, 100
functor, 156
extension problem, 14
exterior algebra, 793, 797
graded, 796
exterior product
homology, 508
with respect to a pairing, 632
external cohomology product
for cartesian products, 475
external product, 427, 473
cohomology, 474
\mathbb{F}-algebra, 553
f-equivalence, 724
f-local, 724
face, 342
face map, 342
factors through, 4
fat wedge, 251
fiber, 108, 131, 337
homotopy, 131
of a composite, 216
of trivial map, 194
suspension, 453
fiber bundle, 334
fiber sequence, 132
exactness, 132
homotopy pullback, 189
long sequence, 202
Mayer-Vietoris, 210
fiber-cofiber construction, 395
fibrant, 110, 168, 264
pointed diagram, 171
fibrant replacement, 168, 171
fibration, 99, 108, 262, 325
adjoint pair, 129
converting to, 113
evaluation, 109
mapping space, 133,135
orientable, 203
path space, 109
pointed, 123
product, 110
pullback, 110
retract, 121
sequence, 132
trivial, 110
unpointed, 123
filtered R-algebra, 609
filtered map, 608
filtered space, 607
filtration, 605, 607, 613
ascending, 607, 609
descending, 609
finite, 612
of an element, 613
filtration degree, 612
filtration quotients, 605, 610
finite, 30
finite type, 807
finite-type
map, 422
map of wedges, 469
wedge, 762
Five Lemma, 795
fixed point, 417
fixed points
space of, 217
folding map, 17
forgetful functor, 10
free, 218
free abelian group, 27
free graded commutative algebra, 797
free loop space, 141, 259
free module, 790
free product, 290
free resolution, 386, 425
Freudenthal Suspension Theorem, 383
dual, 403
in dimension 1, 388
functor, 8
contravariant, 9
covariant, 8
extension, 156
forgetful, 10
homotopy, 80
lifting, 156
preserve homotopy colimit, 174
preserve homotopy limit, 174
represented, 11
fundamental class, 490
fundamental group, 9
fundamental groupoid, 205
Fundamental Lifting Property
pointed, 128
unpointed, 118
Fundamental Theorem of Algebra, 419, 554
G-CW complex, 217
G-CW replacement, 219
G-maps, 216
G-space, 216
Ganea condition, 257, 713, 741
Ganea construction, 254, 395, 444, 665, 666
Ganea's conjecture, 257
GEM, 451
general position, 295
generalized CW complex, 244
generating complex, 599, 690
generating function, 575
generator, 294

$$
H_{n}\left(S^{n} ; \mathbb{Z}\right), 502
$$

generic, 734
geometric realization, 297, 342
graded, 795
R-algebra, 796
R-module, 795
algebra, 796
divided polynomial algebra, 796
exterior algebra, 796
module, 796
polynomial algebra, 796
tensor algebra, 796
graded R-algebra, 475
graded abelian group, 460
graded commutative, 419, 796
algebra, 796
algebra, free, 797
graded commutativity, 428
graded module
suspension, 795
graded Serre class, 716
graded twist map, 796
Gram-Schmidt, 332
graph, 133, 216
Grassmannian, 231
group
as a category, 6
group object, 21
commutative, 25
Gysin sequence, 675, 682
h_{*}-equivalence, 734
h_{*}-local, 734
H-map, 226
fiber, 227
H-space, 226
characterization, 226
product, 227
projective space, 553
retract, 226
strict unit, 226
Hahn-Mazurkowicz, 75
half-smash product, 64
with suspension, 140
halo, 319
Hawaiian earring, 371

HELP, 282
Hilton-Milnor theorem, 390
holonomy, 205
homogeneous, 460
homogeneous coordinates, 52
homology, 384, 544
algebraic, 544, 798
cellular structure, 504
connectivity, 502
Moore space, 567
spheres, 502
unitary group, 598
homology decompositions, 569
homology group, 544
homology module, 798
homology suspension, 577, 578
homology theory, 500
homomorphism, 24, 226, 454
of modules, 789
homotopic, $70,72,74,267$
homotopy, 70, 72, 92, 95, 145, 267
cell-by-cell construction, 56
constant, 74
free, 70,72
Moore, 376
of diagram morphisms, 145
of homotopies, 74
of paths, 72
pointed, 70
reverse, 74
straight-line, 75
under $A, 95$
unpointed, 70
homotopy category, 261, 268
pointed, 80
unpointed, 80
homotopy classes, 70
homotopy cocartesian cube, 405
homotopy cocartesian square, 405
homotopy colimit, 151, 176, 271
pointed vs. unpointed, 214
Quillen-Serre, 341
standard, 155
homotopy commutative, 81
homotopy equivalence, 92,96
of diagrams, 144, 145
pointwise, 93, 144
homotopy equivalent, 81, 267
maps, 93
Homotopy Extension Lifting Property, 282
homotopy extension property, 100
homotopy fiber, 131
homotopy fixed point, 218
homotopy functor, 71
homotopy groups, 87
exact sequence of cofibration, 409
finite, 570
finitely generated, 570
of a pair, 401
of a triad, 402
smash product, 427
spheres, 383,384
wedges of spheres, 383
homotopy idempotent functors, 724
homotopy invariant, 267
homotopy lifting
relative, 119
homotopy lifting property, 107, 108, 203
pointed, 123
relative, 120
weak, 308
homotopy limit, 169
Quillen-Serre, 341
homotopy orbit, 218
homotopy orbit space, 220
homotopy pullback
commutes with mapping spaces, 195
completion, 190
composition of squares, 191
fiber sequence, 189
homotopy equivalence, 190
loop space, 189
Quillen-Serre, 341
recognition, 190
trivial map, 194
homotopy pullback square, 189
characterization, 195
composition, 191
product, 193
Quillen-Serre, 341
homotopy pushout, 161, 435
cofiber, 184
commutes with products, 194
composition of squares, 191
homotopy equivalence, 185
iterated, 192
Quillen-Serre, 341
suspension, 184
trivial map, 194
homotopy pushout square, 184
characterization, 195
completion, 187
composition, 191
Quillen-Serre, 341
Serre, 405
wedge, 193
homotopy theory, 80
homotopy type, 81,82
of a graph, 133
homotopy under, 92
Hopf algebra, 512, 513, 805
Steenrod algebra, 584
Hopf construction, 558
Hopf fibration
real, 330
Hopf invariant, 256, 446, 557, 561, 713
and reduced diagonal, 560
and linking number, 556
Berstein-Hilton, 446
James Hopf, 562
Lusternik-Schnirelmann category, 445
Hopf map, 326, 556
Hopf set, 446, 561
Hopf's theorem, 587
Hurewicz model structure, 264
Hurewicz map, 502, 569, 635
Hurewicz theorem, 503, 507
hypoabelian group, 388
idempotent, 196
idempotent functor, 722
inclusion map, 4
incompressible, 635
indecomposables, 797
induced, 35
induced map, 56
infinite loop space, 493, 507, 580
infinite symmetric product, 448
infinite unitary group, 686
initial object, 18
initial point, 374
injective, 801
injective resolution, 801
interval
basepoint, 67, 70
inverse limit, 39
isomorphism, 488
iterated cofiber, 215
iterated fiber, 215, 406
J. H. C. Whitehead theorem, 286

James construction, 377, 379, 445
cohomology, 480
models loops on $\Sigma X, 379$
multiplication, 378
universal properties, 378
weak equivalence, 378
James Hopf invariant, 562
James splitting, 389, 562
join, 221
pointed, 221
unpointed, 221
k-cartesian, 406
k-frame, 232
Künneth theorem
symmetric product, 576
topological, 549
Klein bottle, 423, 593
Kudo Transgression Theorem, 707
Künneth map, 474, 513
algebraic, 803
homology, 508
Künneth theorem, 487, 488
algebraic, 803
homology, 509
Lebesgue Number Lemma, 77
left adjoint, 26
left derived functor, 269
left homotopic, 266
left homotopy, 90
left lifting property, 121
Leibniz rule, 653
length, 237
Leray-Hirsch theorem, 674
Leray-Serre spectral sequence, 74
relative, 662
lifting
functor, 156
lifting function, 109
dual, 103
uniqueness, 140
lifting problem, 14
$\lim ^{1}$
cohomology, 466
limit, $15,31,32$
3×3 diagram, 42
commute with adjoint, 35
naturality, 34
pullback, 36
limit ordinal, 809
linear, $75,295,343$
local section, 330
localization, 268
localized at, 723
localized away, 723
locally finite, 370
locally trivial bundle, 324
long \mathcal{A}-cone decomposition, 239
long cofiber sequence, 200
long fiber sequence, 202
loop map
homotopy pullback, 249
loop operation, 578
loop space, $67,84,577,738$
free, 141
group object in $\mathcal{T}_{*}, 87$
homotopy pullback, 189
Lusternik-Schnirelmann category, 251, 252, 555, 713
cone length, 251
Ganea criterion, 254
homotopy invariance, 251
homotopy pushout, 253
Hopf invariant, 445
Lusternik-Schnirelmann cover, 250, 555
mapping cone, 256
of a map, 252
of CW complexes, 253
product, 256
manifold, 497
map
finite type, 807
pointed, 60
map under, 94
mapping cone, 130
unpointed, 130
mapping cylinder, 111
in $\operatorname{map}\left(\mathcal{T}_{\circ}\right), 115$
pointed, 125
mapping space, 54
and colimits, 57
and limits, 57
cofibration, 105, 134
fibration, 133, 135
pointed, 61
well-pointed, 126
mapping torus, 179
Mather cube, 305, 395, 594, 627
matrix, 20, 421
Mayer-Vietoris
cofiber sequence, 210
exact sequence, 465,501
fiber sequence, 210
measured path, 374
Milnor sign convention, 413, 418
minimal, 739, 741
minimal model, 740
Mislin genus, 734
Mittag-Leffler, 775
model category, 89, 99, 261, 262
module, 789
graded, 796
moment, 537
monoid object, 21, 227
monster, 423, 499, 578
Moore homotopy, 376
Moore loops, 374
Moore path, 374
based, 374
Moore space, 425
cohomology of, 470
cohomology operation, 567
homology, 567
maps between, 568
Moore suspension, 379
morphism, 5
in pointed category, 20
matrix representation, 807
trivial, 19
multiplication, 226
multiplicative, 476, 608
multiplicative cohomology theory, 586
multiplicity, 415
n-ad, 97
n-connected, 279
map, 279
n-cube diagram, 196
n-equivalence, 277
at $\mathcal{P}, 443$
$\bmod \mathcal{Q}, 443$
pointwise, 301
n-skeleton, 354
natural, 12
isomorphism, 12
natural grading, 612
natural transformation, 11
of cohomology theories, 462
of represented functors, 12
NDR pair, 104
negative, 506
neighborhood deformation retract, 104
strong, 104
Neisendorfer localization, 786
nerve, 176
Newton polynomial, 697, 807
nilpotency, 555
nonzero, 417
norm, 553
normed algebra, 553
north pole, 46
northern hemisphere, 46
nose
on the, 82
nullhomotopic, 82
nullhomotopy, 82
numerable, 309
numerable bundles, 324
objects, 5
obstruction, 360, 642
obstruction theory, 360, 385
odd map, 565
on the nose, 82
open cells, 47
opposite category, 10, 265
opposite-simple category, 169
orbit space, 217
ordinary cohomology theory, 462
ordinary homology theory, 500
existence, 507
orientable, 592
fibration, 203
orthogonal group, 231, 603
over $B, 94$
p-adic integers, 735
p-completion, 735
\mathcal{P}-connectivity, 438, 439
\mathcal{P}-group, 438
\mathcal{P}-injective, 443
\mathcal{P}-local, 730
\mathcal{P}-localization, 724
\mathcal{P}-surjective, 443
pair, 58, 401, 461
'product', 59
mapping space, 59
pairing, 427
homology with cohomology, 510
parametrized concatenation, 109
partition of unity, 309
path, 70
reverse, 73
path homotopy, 72
path object, 89, 266
standard, 90
path space, 83,89
perfect, 388
phantom map, 245, 582
existence, 582
nonexistence, 582
$\pi_{n}\left(S^{n}\right), 383$
PID, 487, 801
piecewise linear, 75, 297
Poincaré series, 574
pointed category, 18
pointed homotopy, 72
pointed map, 60
composition, 20
pointed model category, 263, 264
pointed set, 19, 71
pointed space, 60
pointwise cofibration, 167
pointwise equivalence in $\mathrm{H} \mathcal{T}, 93$
pointwise equivalent, 146
pointwise fibration, 147, 270
pointwise homotopy equivalence, $93,94,96$ in ${ }_{\mathrm{H}} \mathcal{T}, 146$
pointwise weak equivalence, 270
polyhedron, 296
polynomial algebra, 793
graded, 796
Pontrjagin algebra, 512
Postnikov approximation, 361
Postnikov section
cellular structure, 361
existence, 361
uniqueness, 361
prepullback, 36
prepushout, 37
presentation, 294
prespectra, 580
primitive, 510, 804
principal bundle
associated, 335
principal cofibration, 237
principal ideal domain, 487, 801
product, 15, 17, 18
as functor, 16
flat, 223
infinite, 807
infinite weak product, 376
of CW complexes, 50
of group objects, 26
of groups, 17
of many objects, 18
of mapping cones, 224
of maps, 16
of sets, 17
pointed spaces, 62
product rule, 653
projections, 15
projective, 790, 799
projective resolution, 800
projective space, 51
cohomology, 470
cohomology algebra, 480
CW decomposition, 53
CW structure, 53
diagonal map, 482
fiber bundle, 325
infinite-dimensional, 52
truncated, 586
pullback, 36
composition of, 41
fibration, 110
product, 65
square, 36
punctured, 196
punctured n-cube, 405
pure quaternion, 420
pushout, 37
composition of, 40
of equivalence, 40
square, 37
wedge, 65
quadratic part, 740
quasi-isomorphism, 799
quasifibration, 347
quasiregular, 743
quaternions, 419
Quillen adjunction, 270
Quillen equivalence, 268, 270
quotient map, 49
R-algebra, 792
graded, 796
R-module
graded, 795
rational homotopy theory, 797
rationalization, 733
rationally elliptic, 741
rationally hyperbolic, 741
reduced p powers, 527
reduced diagonal, 260, 476
reduced product type, 454
regular prime, 743
regular value, 415, 497
relation, 294
relative CW complex, 60
relative Sullivan algebra, 739
reparametrization, 73
represented cohomology, 460
represented functor, 11
represents, 614
resolving class, 409
respects homotopy, 71
retract, 7
of a map, 7
reverse, 74
reverse path, 73
Riemannian metric, 677
right adjoint, 26
right homotopic, 266
right homotopy, 90
right lifting property, 121
rigid concatenation, 374
rigidification, 178
root, 156
RPT complex, 454
RPT model, 455
Schubert symbol, 237
Second Cube Theorem, 398
section, 203
$\Omega f, 207$
Serre class, 714
Serre cofibrations, 336
Serre exact sequence, 583
Serre fibration, 336, 337
sequence, 337
Serre filtration, 600, 601, 623
Serre model structure, 264
shape, 29,30
shape diagram, 29
shear map, 229,287
shift map, 39, 246, 465, 501
short exact sequence, 794
shuffle product, 688
simple category, 155
simple system, 704, 708
p-simple, 708
simplex, 295, 296
boundary, 295
standard, 295
simplex category, 348
simplicial complex, 296, 342
abstract, finite, 296
structure, 296
simplicial map, 343
simplicial object, 346
simplicial set, 345
simplicial structure, 342
simply-connected, 88, 279, 739
singular chain complex, 551
singular extension, 494, 501
singular simplex, 342
singular simplical set, 346
skeleta, 47
n-equivalence, 358
naturality, 354
skeleton, 47, 572
small diagrams, 30
small object argument, 165
smash product, 61
Eilenberg-Mac Lane spaces, 429
bilinear, 427
contractible, 581
homotopy groups, 427
of CW complexes, 62
smash product pairing, 427
southern hemisphere, 46
space, 54
pointed, 60, 62
spaces over, 94
spaces under, 94
spanning tree, 133
special orthogonal group, 231
special unitary group, 231,598
spectra, 580
spectral sequence, 645,647
convergence, 657
first quadrant, 660
free monogenic, 703
homomorphism, 651
of algebras, 653
spectrum, 580
sphere, 45
abelian cogroup in $\mathcal{T}_{*}, 86$
as pushout, 46
cellular decompositions, 49
homotopy groups, 383
infinite-dimensional, 52
sphere bundle, 677
spherical fibrations, 675
spherically resolvable, 761
split, 223, 795
split exact sequence, 517, 795
stabilizes, 505
stable cohomology operation, 518
additive, 519
stable homotopy groups, 389
homology theory, 505
stable homotopy sets
exact sequence, 410
stable operation
recognition, 518
stable phenomena, 389
stable range, 389
stably equivalent, 696
standard filtration, 608, 609
of a smash product, 609
standard form, 292
Steenrod algebra, 519, 777
basis, 537
Hopf algebra, 584
Steenrod operations, 527
main properties, 533
Steenrod reduced powers, 525
Steenrod square, 527
indecomposable, 536
stereographic projection, 46
Stiefel manifold, 232, 599
strictly commutative, 82
Strøm model structure, 264
strong deformation retract, 76, 104
strong homotopy pullback square, 189, 307
strong homotopy pushout square, 186
recognition, 186
strong resolving classes, 759, 760
strongly closed classes, 759,760
strongly cocartesian, 196
strongly homotopy cocartesian, 406
structure, 296, 385
simplicial complex, 296
structure group, 334
subcomplex, 47, 297
subquotient, 606
subsimplex, 296, 342
successor ordinal, 809
Sullivan algebra, 739
Sullivan conjecture, 785
sum, 17, 18, 38
infinite, 807
support, 309
surface, 572
suspension, 46, 66, 84, 461, 487, 738, 796
as natural transformation, 379
cogroup object in $\mathcal{T}_{*}, 86$
connectivity, 383
fiber, 453
functor, 66
graded module, 795
homotopy pushout, 184
of a sphere, 67
reduced, 66
unreduced, 46
suspension map, 379
symmetric polynomial, 535, 683, 806
symmetric product, 576
Eilenberg-Mac Lane space, 451
homology, 576

Künneth theorem, 576
symmetric square, 259
symplectic group, 231, 603
system of local coefficients, 625
tab-and-glue, 311
target, 4, 34
target type, 15
telescope
cohomology, 465
telescope diagram, 39, 163
tensor algebra, 793
graded, 796
universal property, 793
tensor product, 427, 790
graded, 474
of chain complexes, 799
terminal object, 18
Thom class, 678
Thom Isomorphism Theorem, 678
Thom space, 676, 677
topological space, 54
pointed, 62
total degree, 612, 653
total dimension, 612
total left derived functor, 269
total space, 108
total square, 536
tower, 39, 173
track, 138
transgression, 667, 668
transgressive, 667
transgressive pair, 667
transition functions, 333
tree, 133
tree-like, 159
triad, 402
trivial, 82, 263
trivial bundle, 323
trivial cofibration, 121
trivial fibration, 121, 591
trivial homotopy, 74
trivial morphism, 19
trivialization, 591
truncated polynomial algebras, 793
truncated projective space, 586
twist map, 25, 418, 792
two-cones, 602
type, 743
unique, 53
unital, 475
unitary group, 231
universal bundle
existence, 366
universal coefficients decomposition, 634, 700

Universal Coefficients Theorem, 486, 660
universal cover, 328
universal example, 102, 124, 225, 523, 584, 790, 797
universal phantom map, 246
universal problem, 4
universal property, 15
unreduced homology
exactness, 500
unreduced homology theory, 500
unstable algebra, 534
unstable conditions, 533, 534
unstable module, 534
unstable relations, 525
vanishes, 360
vector field, 417
versal, 246
vertices, 295
very nice, 780
\mathcal{W}-local, 722
Wang cofiber sequence, 594
Wang exact sequence, 594
Wang sequence, 593
cohomology, 594, 595
homology, 595
weak category, 260, 561
weak equivalence, 262, 278
and cohomology, 464
Weak Equivalence Axiom, 461, 463
homology, 501
weak fibration, 306
strong homotopy pullback, 307
weak Hausdorff, 55
weak homotopy equivalence, 278
weak lifting function, 308
weak product, 421
infinite, 376
weakly contractible, 279
weakly equivalent, 263
wedge, 19, 61, 463
Wedge Axiom, 463
homology, 501
well-pointed, 124, 188
cofibration, 126
fibration, 126
mapping space, 126
Whitehead exact sequence, 583
Whitehead product
generalized, 225
H-space, 226
Whitney sum, 695
wreath product, 531
\mathcal{X}-cellular, 764
X-null, 785
\mathcal{Y}-resolvable, 761
Yoneda lemma, 13, 379
Zabrodsky lemma, 411, 765
Zabrodsky mixing, 733

Titles in This Series

127 Jeffrey Strom, Modern classical homotopy theory, 2011
126 Terence Tao, An introduction to measure theory, 2011
125 Dror Varolin, Riemann surfaces by way of complex analytic geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, 2011
123 Gregory Eskin, Lectures on linear partial differential equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic groups and differential Galois theory, 2011

121 Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, 2011

120 Qing Han, A basic course in partial differential equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical statistics: asymptotic minimax theory, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical systems and population persistence, 2010
117 Terence Tao, An epsilon of room, I: pages from year three of a mathematical blog. A textbook on real analysis, 2010
116 Joan Cerdà, Linear functional analysis, 2010
115 Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro, An introductory course on mathematical game theory, 2010
114 Joseph J. Rotman, Advanced modern algebra: Second edition, 2010
113 Thomas M. Liggett, Continuous time Markov processes: An introduction, 2010
112 Fredi Tröltzsch, Optimal control of partial differential equations: Theory, methods and applications, 2010
111 Simon Brendle, Ricci flow and the sphere theorem, 2010
110 Matthias Kreck, Differential algebraic topology: From stratifolds to exotic spheres, 2010
109 John C. Neu, Training manual on transport and fluids, 2010
108 Enrique Outerelo and Jesús M. Ruiz, Mapping degree theory, 2009
107 Jeffrey M. Lee, Manifolds and differential geometry, 2009
106 Robert J. Daverman and Gerard A. Venema, Embeddings in manifolds, 2009
105 Giovanni Leoni, A first course in Sobolev spaces, 2009
104 Paolo Aluffi, Algebra: Chapter 0, 2009
103 Branko Grünbaum, Configurations of points and lines, 2009
102 Mark A. Pinsky, Introduction to Fourier analysis and wavelets, 2009
101 Ward Cheney and Will Light, A course in approximation theory, 2009
100 I. Martin Isaacs, Algebra: A graduate course, 2009
99 Gerald Teschl, Mathematical methods in quantum mechanics: With applications to Schrödinger operators, 2009
98 Alexander I. Bobenko and Yuri B. Suris, Discrete differential geometry: Integrable structure, 2008
97 David C. Ullrich, Complex made simple, 2008
96 N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008
95 Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008
94 James E. Humphreys, Representations of semisimple Lie algebras in the BGG category O, 2008
93 Peter W. Michor, Topics in differential geometry, 2008
92 I. Martin Isaacs, Finite group theory, 2008
91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008
90 Larry J. Gerstein, Basic quadratic forms, 2008
89 Anthony Bonato, A course on the web graph, 2008
88 Nathanial P. Brown and Narutaka Ozawa, C*-algebras and finite-dimensional approximations, 2008

TITLES IN THIS SERIES

87 Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, 2007
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
82 Serge Alinhac and Patrick Gérard, Pseudo-differential operators and the Nash-Moser theorem (translated by Stephen S. Wilson), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton's Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
61 Thomas A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003
55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003
54 Alexander Barvinok, A course in convexity, 2002
53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory.

This text develops classical homotopy theory from a modern
 point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

