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Preface

Mathematicians are sometimes categorized as “theory builders” or “prob-
lem solvers”. The authors of this book belong firmly in the problem solver
class and find most pleasure in delving into the details of a particular dif-
ferential equation, usually one arising from science or engineering, with the
aim of understanding how the solutions behave and determining existence
and uniqueness of solutions with particular properties. On the other hand,
no such classification is hard and fast, and usually our goal is to determine
what properties of the equation are important in generating the desired be-
havior. For example, in what ranges of the parameters do we see this type
of solution or that, and sometimes, how broad a class of equations can we
discuss without losing the essential behavior. This is a step toward building
a theory, but we have not usually been inclined to pursue this goal very far.

We are, of course, delighted if others are able to put our results in a
broader context. This has been done for some examples in this text, and we
have tried to point the reader towards these new theories. However it is our
belief that usually, to derive our particular results, many of the details which
we study are still important and need attention specific to the problem at
hand. Exceptions, or borderline cases, are discussed, and we have tried to
assess fairly the strengths of various approaches.

These problems arise in a variety of areas in science and engineering.
Often the mathematical models in these fields consist of nonlinear partial
differential equations, and the analysis of these equations leads to a system
of nonlinear ordinary differential equations, for example by seeking a steady
state, or by a similarity substitution. In other cases the original model
is a system of ode’s (ordinary differential equations). Knowledge of the
behavior of the solutions to these ode systems can be vital to understanding

xiii



xiv Preface

the solutions of related pde’s (partial differential equations), if any, and the
corresponding physical phenomena. Thus our interests come into play and
are, we hope, helpful to the modeler who originally obtained the equations.

The emphasis in this book is on mathematical techniques, rather than
results or applications. We choose a variety of applied problems to illustrate
these techniques, but we often do not give much discussion of the back-
ground of these problems. However we are careful to cite references where
this background may be found. We also do not aim for great generality in
our results. Instead, for ease of exposition, we usually discuss the simplest
examples which illustrate the methods of interest. Again, we give citations
where the reader will find more comprehensive discussions.

We wish to emphasize our belief that many of the important problems
in differential equations arise from applications. There may be more general
theories to be developed; indeed we hope this is the case. But we think that
the inspiration for these theories will often come from particular models
of new phenomena, discovered either by scientific research or by numerical
experiments. We hope that the techniques we discuss in this book will be
among those that are useful in analyzing the new phenomena on which the
future development of the theory may depend.

The book is written under the assumption that the reader has had a
basic course in ordinary differential equations which includes the following
topics:

(1) The Picard theorem on existence and uniqueness of solutions to an
initial value problem of the form

x′ = f (t,x),

x (t0) = x0

when the vector-valued function f is continuous and satisfies a local
Lipshitz condition in x.

(2) The continuous dependence of solutions on initial conditions and
parameters.

(3) The general theory of linear systems of ode’s with variable coeffi-
cients.

(4) Sturm-Liouville problems and Green’s functions.

(5) An introduction to qualitative theory and phase plane analysis.

(6) Stability theory of equilibrium points for nonlinear autonomous
systems, including the concepts of stable and unstable manifolds.

The material listed above is usually included in a standard graduate
course in ode’s, and also in some more advanced undergraduate courses.
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Much of the material may be difficult for those with only a basic undergrad-
uate course.

Some sections of the book use more advanced material, particularly non-
linear functional analysis and some topics in the calculus of variations. We
attempt to outline some of the required background, but frankly, a student
with only an ode prerequisite will find this material challenging. Such a
student will have to consult the cited basic literature for a better under-
standing. However, in almost every case there is a classical approach to
the same results offered later in the chapter, and these sections can be read
independently.

In Chapter 1 we describe what we mean by “classical methods” for ode’s
and give some simple illustrative examples. Chapter 2 gives an introduction
to the so-called “shooting” method for proving the existence of solutions
to boundary value problems for ode’s. Detailed examples of the shooting
method will appear in a number of other chapters.

Chapters 3–18 are the heart of the book. Each chapter introduces one or
more techniques, perhaps classical, perhaps modern, in a relatively simple
setting that still includes the essential points. These are mostly examples
which we have worked on, and often they have also been studied by other
authors with alternative approaches. When this is the case, we discuss some
of these alternative methods as well. Usually each approach has its own
strong points, which we try to bring out in our discussion. For example, one
approach may give a simpler proof while another may yield more informa-
tion. Which type of proof, modern or classical, has which advantage varies
from one problem to another. In some cases, the alternative method may
not give the simplest proofs or most complete results for the ode problem
at hand but has the advantage that it can be extended to cover related
problems in partial differential equations. We do not attempt to cover these
extensions, however.

Chapter 3 begins with an example where the shooting method appears
not to work but where a proof using real analysis in infinite dimensions
(Helly’s theorem) can be replaced by a simple compactness argument in two
dimensions. In the second part of this chapter we contrast two different
shooting techniques for proving existence of certain important solutions to
the second Painlevé transcendent, a second order nonlinear equation which
arises in studying the Korteweg-de Vries equation for water waves.

In Chapter 4 we show how the Brouwer fixed point theorem can be used
to prove the existence of periodic solutions to some autonomous systems.
In Chapter 5 we describe three different approaches to a boundary value
problem for a linear system.
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In Chapter 6 we consider the existence of traveling wave solutions of the
FitzHugh-Nagumo equations from neurobiology. Comparison is made with
the technique of geometric perturbation theory.

In Chapter 7 we give elementary and rigorous proofs of the validity of
matched asymptotic expansions for two example problems, in one case com-
paring our methods with those from geometric perturbation theory. Chapter
8 is something of a change of pace and is independent of the other sections.
It explores the use of complex function theory techniques by extending a
nonlinear ode into the complex plane. One point of interest is that the re-
sult established is the nonexistence of solutions to a simple looking third
order boundary value problem.

In Chapter 9 we return to the question of periodic solutions. The well-
known Falkner-Skan equation from fluid mechanics is rescaled, turning the
question of existence of periodic solutions into a singularly perturbed prob-
lem. In Chapter 10 we study a problem in Poiseuille flow, comparing an
elementary method with use of degree theory in a Sobolev space. Chapter
11 deals with buckling of a tapered rod. Classical methods are contrasted
with the use of calculus of variations and bifurcation theory in a Hilbert
space.

In Chapter 12 we give an extended discussion of uniqueness and multi-
plicity problems. We illustrate some techniques for proving that a boundary
value problem has only one solution, and in addition we discuss some exam-
ples where the solution is not unique and the goal is to determine just how
many solutions there are.

Chapter 13 gives an application of two-dimensional shooting to a prob-
lem from boundary layer theory in fluid mechanics. In Chapter 14 we give
classical ode approaches to some important results of A. Lazer and coau-
thors, as well as short proofs of related pde theorems. In Chapter 15 we
show how shooting techniques can lead to results about “chaos”. Compari-
son is made with the technique of Melnikov in the same setting of a forced
pendulum equation.

This idea is carried forward in Chapter 16, where we discuss solutions
with “spike” behavior and also a type of “chaos”. In Chapter 17 we outline a
very recent approach of X. Chen and Sadhu to obtaining asymptotic expan-
sions of solutions with boundary layers and spikes for a class of equations
with quadratic nonlinear terms. The last of the core chapters is Chapter
18, in which families of spikes and transition layer solutions are found for
another class of inhomogeneous reaction-diffusion equations. Three different
proofs of a central result are discussed.

Finally, in Chapter 19, we describe three important unsolved problems
in our area, problems which have challenged us and other researchers for a
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number of years and which we hope the reader will find attractive. It would
be gratifying to see these problems solved by someone who learned of them
from this book.

An experienced reader will now detect that important techniques have
been neglected. Undoubtedly many will feel that their favorite method is
omitted, or at least under-appreciated. Our main defense is that we have
written most extensively about what we know best. Also, many of the omit-
ted topics have been the subject of their own specialized monographs, which
we have tried to cite appropriately. It is undoubtedly true that many other
techniques have importance in a wide variety of problems, which we have
neither the space nor the background to discuss in detail. Topics which are
under-represented include Lin’s method and others from the important and
influential school of Hale, Chow, and Mallet-Paret, applications of the Moser
twist theorem, use of bifurcation and degree theory (including center man-
ifolds), comparison methods and ideas from the theory of competitive and
cooperative systems (developed particularly by M. Hirsch and H. Smith),
many topics generally related to chaos and to be found in the landmark
monograph of Guckenheimer and Holmes, and others perhaps even farther
from the realm of the classical techniques which are our focus. Our prejudice
is that for the particular kinds of problems we study here, problems which
appear frequently in applications, the methods illustrated are often effective
and efficient. This is not meant to suggest that they would be best in all
of the vast array of problems in ode’s which are found in modern applied
analysis.

Finally, we are delighted to thank the people who have assisted us with
various parts of the book. We are indebted to Ina Mette, AMS acquisi-
tions editor, whose emailed question “Have you thought of writing a book?”
started the project off and whose steady encouragement helped keep it going.
Other AMS staff, including Marcia Almeida, Barbara Beeton, our produc-
tion editor, Arlene O’Sean, and others have been especially helpful as well.

Our colleague William Troy has been particularly helpful, providing use-
ful advice and some clever proofs (as pointed out later). Thanks also to Matt
Stoffregen, who while an undergraduate has gone over much of the material
and done many of the problems, and to Susmita Sadhu, whose doctoral dis-
sertation influenced several parts of the book. Others who have contributed
useful discussions and proofs, and in some cases read entire chapters, in-
clude Professors Shangbing Ai, Xinfu Chen, David Kinderlehrer, Chunqing
Lu, Patrick Rabier, Jon Rubin, Marshall Slemrod, Charles Stuart, Shin-Hwa
Wang, and Yieh-Hei Wan. We are grateful to all for their help.
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437 (1992), 1-24.

[16] J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory,
Springer, 1989.

[17] E. S. Benilov, S. J. Chapman, J. B. McLeod, J. R. Ockendon, and S. Zubkov, On
liquid films on an inclined plate, J. Fluid Mech. 663 (2010), 53-69.

[18] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers, Springer, 1999.

[19] M. V. Berry and K. E. Mount, Semi-classical approximations in wave mechanics,
Reports on Progress in Physics 35 (1972), 315-397.

[20] S. R. Bishop, A. Sofroniou, and P. Shi, Symmetry-breaking in the response of the
parametrically excited pendulum model, Chaos, Solitons and Fractals 25 (2005),
257-264.

[21] J. Bona and F. Weissler, Traveling fronts of a conservation law with hyper-
dissapation, Adv. Diff. Eqns. 16 (2011), 917–935.

[22] W. Borsch-Supan and M. Fiebig-Wittmaack, Stability of stationary solutions of a
one-dimensional parabolic equation with homogeneous Neumann boundary condi-
tions, J. Diff. Eqns. 94 (1991), 55–66.

[23] E. F. F. Botta, F. J. Hut, and A. E. P. Veldman, The role of periodic solutions in
the Falkner Skan equation for λ > 0, J. Eng. Math. 20 (1986), 81-93.

[24] J. S. Bramley and S. C. R. Dennis, The calculation of eigenvalues for the stationary
perturbation of Poiseuille flow, Journal of Computational Physics 47 (1982), 179-
198.

[25] H. Brezis, Analyse Functionnelle, Masson, Paris, 1983.

[26] P. Brunovsky, Tracking invariant manifolds without differential forms, Acta Math.
Univ. Comenianai LXV (1996), 23-32.

[27] G. Carpenter, A geometric approach to singular perturbation problems with appli-
cations to nerve impulse equations, J. Diff. Eqns. 23 (1977), 335-367.

[28] J. Carr, Applications of Center Manifold Theory, Springer, 1981.

[29] G. F. Carrier, Singular perturbation theory and geophysics, SIAM. Rev. 12 (1970),
175-193.

[30] S. Chen, W. R. Derrick, and J. Cima, Positive and oscillatory radial solutions of
semilinear elliptic equations, J. Appl. Math and Stochastic Anal. 10 (1997), 95-108.

[31] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in non-
local evolution equations, Adv. Diff. Eqns 2 (1997), 125-160.

[32] X. Chen and S. Sadhu, Asymptotic expansions of solutions of an inhomogeneous
equation, preprint.

[33] Y. Chen and P. J. McKenna, Traveling waves in a nonlinear suspended beam: The-
oretical results and numerical observations, J. Diff. Eqns. 136 (1997), 325-355.

[34] C. Chicone, Ordinary Differential Equations with Applications, Springer, 1999.

[35] M. Chipot, S. P. Hastings, and D. Kinderlehrer, Transport in a molecular motor
system, Math. Model. and Numer. Anal. 38 (2004), 1011-1034.



Bibliography 359

[36] M. Chipot, D. Kinderlehrer, and M. Kowalczyk, A variational principle for molecular
motors, Meccanica 38 (2003), 505-518.

[37] D. C. Clark, A variant of the Ljusternik-Schnirelman theory, Indiana Univ. Math.
J. 22 (1972), 65-74.
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366 Bibliography

[191] L. Perko, Differential Equations and Dynamical Systems, Springer Texts in Applied
Mathematics 7, Third Edition, 2001.
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