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Preface

Gröbner basis theory has become a fundamental field in algebra which pro-
vides a wide range of theoretical and computational methods in many areas
of mathematics and other sciences. Bruno Buchberger defined the notion
of Gröbner basis in 1965 [Bu65]. An intensive research in this theory,
related algorithms and applications developed, and many books on this
topic have appeared since then. Among them, the books of Adams and
Loustaunau [AL94], Becker, Kredel, Weispfenning [BKW93], Cox, Little,
O’Shea [CLO05], [CLO07], and Eisenbud [E95] give a fine introduction to
Gröbner basis theory and its applications. Many computer algebra systems
like CoCoA, Macaulay2, Magma, Maple, Mathematica, or Singular have
implemented various versions of Buchberger’s algorithm.

This book aims to provide a concise but rather comprehensive introduc-
tion to the theory of Gröbner bases and to introduce the reader to different
current trends in theoretical applications of this theory. The complexity
level of the presentation increases gradually. The first three chapters and
part of Chapter 4 are self-contained and lead to a quick insight into the
basics of Gröbner basis theory. They require only a very basic knowledge of
algebra. Therefore, this first part of the book would also be appropriate for
those readers who are only familiar with elementary algebraic concepts. The
second part of Chapter 4 and the last two chapters discuss more advanced
topics related to the theory together with applications of it and require a
reasonable knowledge in commutative and homological algebra.

Our purpose in writing this book was to provide young researchers
and graduate students in commutative algebra and algebraic geometry with
methods and techniques related to the Gröbner basis theory. Although it
was not our goal to illustrate the algorithmic and computational attributes

ix



x Preface

of the Gröbner basis theory, the usage of the computer in testing examples
is indispensable. Users of computer algebra systems may consult specialized
monographs like [GP02], [Mac01] or [KR00], [KR05].

We give now a brief summary of the book’s content. Chapter 1 presents
polynomial rings in finitely many indeterminates over a field together with
their basic properties and studies ideals in this class of rings. The last two
sections are devoted to monomial ideals and standard operations on them.
Chapter 2 provides a short but comprehensive exposition of the Gröbner
basis notion and Buchberger’s criterion and algorithm. In Chapter 3 we
discuss first applications based on the Elimination Theorem. Chapter 4 is
devoted to the extension of the Gröbner basis theory to submodules of free
modules over polynomial rings. The chapter begins with a quick introduc-
tion to module theory. The more general concepts discussed here lead to a
proof, due to Schreyer, for the celebrated Hilbert’s Syzygy Theorem. Chap-
ter 5 opens the series of applications of Gröbner basis theory in commutative
algebra and combinatorics. In this chapter we discuss semigroup rings and
toric ideals which are intensively studied nowadays from different points of
view. Chapter 6 intends to introduce the reader to more advanced topics
and to subjects of recent research. The topics treated in this section are
not presented in the largest possible generality. Instead, one of the main
goals of this last chapter of this monograph is to inspire and to enable the
reader, who is interested in further developments and other aspects of the
theory, to read more advanced monographs and articles on these subjects,
for example, the monograph of Sturmfels [St95] which influenced the writ-
ing of this chapter substantially, the book [MS05] of Miller and Sturmfels,
the influential monograph [S96] of Stanley and the book of Hibi [Hi92]. A
compact and detailed presentation of determinantal ideals can be found in
the article of Bruns and Conca [BC03]. A reader who is interested in fur-
ther results on monomial ideals should consult the book [V01] of Villarreal
and the book [HH10] of Herzog and Hibi. Further references to research
articles are given in the text of Chapter 6. In the first section of the chapter
Gröbner bases are used to study Koszul algebras. In particular, it is shown
that algebras whose defining ideal has a quadratic Gröbner basis are Koszul.
Large classes of algebras whose defining ideal has a quadratic Gröbner basis
are provided by algebras generated by sortable sets. This is the topic of the
next section. The theory of sortable sets is then applied in the following
sections to study generalized Hibi rings and Rees algebras. Next we outline
the approach to the theory of determinantal ideals via Gröbner basis with
the conclusion that these ideals are all Cohen–Macaulay. Then we give a
short introduction to Sagbi bases and apply the theory to show that the
coordinate ring of the Grassmannian of m-dimensional vector K-subspaces
of Kn is a Gorenstein ring and compute its dimension. The last two sections



Preface xi

of the chapter deal with binomial edge ideals and some aspects of algebraic
statistics.

The book contains over one hundred problems with a moderate level of
difficulty which illuminate the theory and help the reader to fully understand
the results discussed in the text. Some of them complete the proofs. Other
problems are more complex and encourage the reader to re-examine the
simple but essential ideas, to establish connections, and to become interested
in further reading.

We wish to express our thanks to Marius Vlădoiu for the careful reading
of earlier drafts of this book.

Viviana Ene and Jürgen Herzog
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[HT96] J. Herzog, N. V. Trung, Gröbner bases and multiplicity of determinantal and
Pfaffian ideals, Adv. in Math. 96 (1992), 1–37.

[Hi87] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening
laws, Commutative Algebra and Combinatorics (M. Nagata and H. Matsumura, Eds.)
Adv. Stud. Pure Math. 11, North-Holland, Amsterdam, 1987, 93–109.

[Hi92] T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw, Glebe, N.S.W.,
Australia, 1992.

[Ho72] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by mono-
mials, and polytopes, Ann. of Math. 96 (1972), 228–235.

[Ho77] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Pro-
ceedings of the Second Oklahoma Ring Theory Conference (March 1976), Marcel-
Dekker, New York, 1977, 171-223.
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to Gröbner basis theory and its applications to various current research topics in 
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