# Lie Superalgebras and Enveloping Algebras

### About this Title

**Ian M. Musson**, *University of Wisconsin, Milwaukee, Milwaukee, WI*

Publication: Graduate Studies in Mathematics

Publication Year
2012: Volume 131

ISBNs: 978-0-8218-6867-6 (print); 978-0-8218-8504-8 (online)

DOI: http://dx.doi.org/10.1090/gsm/131

MathSciNet review: MR2906817

MSC: Primary 17-02; Secondary 16S30, 17B35

### Table of Contents

**Front/Back Matter**

**Chapters**

- Chapter 1. Introduction
- Chapter 2. The classical simple Lie superalgebras. I
- Chapter 3. Borel subalgebras and Dynkin-Kac diagrams
- Chapter 4. The classical simple Lie superalgebras. II
- Chapter 5. Contragredient Lie superalgebras
- Chapter 6. The PBW Theorem and filtrations on enveloping algebras
- Chapter 7. Methods from ring theory
- Chapter 8. Enveloping algebras of classical simple Lie superalgebras
- Chapter 9. Verma modules. I
- Chapter 10. Verma modules. II
- Chapter 11. Schur-Weyl duality
- Chapter 12. Supersymmetric polynomials
- Chapter 13. The center and related topics
- Chapter 14. Finite dimensional representations of classical Lie superalgebras
- Chapter 15. Prime and primitive ideals in enveloping algebras
- Chapter 16. Cohomology of Lie superalgebras
- Chapter 17. Zero divisors in enveloping algebras
- Chapter 18. Affine Lie superalgebras and number theory
- Appendix A
- Appendix B