Lie Superalgebras and Enveloping Algebras
Dedicated to my parents, Eric and Jessie
Contents

Preface xv

Chapter 1. Introduction 1
- §1.1. Basic Definitions 1
- §1.2. Simple Lie Superalgebras 3
- §1.3. Classification of Classical Simple Lie Superalgebras 8
- §1.4. Exercises 9

Chapter 2. The Classical Simple Lie Superalgebras. I 11
- §2.1. Introduction 11
- §2.2. Lie Superalgebras of Type \(A(m,n) \) 12
- §2.3. The Orthosymplectic Lie Superalgebras 14
 - 2.3.1. The Lie Superalgebras \(\mathfrak{osp}(2m + 1, 2n) \) 15
 - 2.3.2. The Lie Superalgebras \(\mathfrak{osp}(2m, 2n) \) 16
 - 2.3.3. The Lie Superalgebras \(\mathfrak{osp}(2, 2n - 2) \) 16
- §2.4. The Strange Lie Superalgebras \(\mathfrak{p}(n) \) and \(\mathfrak{q}(n) \) 17
 - 2.4.1. The Lie Superalgebras \(\mathfrak{p}(n) \) 17
 - 2.4.2. The Lie Superalgebras \(\mathfrak{q}(n) \) 17
- §2.5. Rationality Issues 19
- §2.6. The Killing Form 19
- §2.7. Exercises 20

Chapter 3. Borel Subalgebras and Dynkin-Kac Diagrams 25
- §3.1. Introduction 25
- §3.2. Cartan Subalgebras and Borel-Penkov-Serganova Subalgebras 28
Contents

§3.3.	Flags, Shuffles, and Borel Subalgebras	30
§3.4.	Simple Roots and Dynkin-Kac Diagrams	38
3.4.1.	Definitions and Low Rank Cases	38
3.4.2.	From Borel Subalgebras and Shuffles to Simple Roots	39
3.4.3.	From Simple Roots to Diagrams	41
3.4.4.	Back from Diagrams to Shuffles and Simple Roots	44
3.4.5.	Distinguished Simple Roots and Diagrams	47
3.4.6.	Cartan Matrices	48
3.4.7.	Connections with Representation Theory	50
§3.5.	Odd Reflections	51
§3.6.	Borel Subalgebras in Types $A(1,1)$, $p(n)$, and $q(n)$	55
3.6.1.	Lie Superalgebras of Type $A(1,1)$	55
3.6.2.	The Lie Superalgebra $p(n)$	58
3.6.3.	The Lie Superalgebra $q(n)$	63
§3.7.	Exercises	64

Chapter 4. The Classical Simple Lie Superalgebras. II

§4.1.	Introduction and Preliminaries	69
§4.2.	The Lie Superalgebras $D(2,1;\alpha)$	71
§4.3.	Alternative Algebras	75
§4.4.	Octonions and the Exceptional Lie Superalgebra $G(3)$	78
§4.5.	Fierz Identities and the Exceptional Lie Superalgebra $F(4)$	82
§4.6.	Borel Subalgebras versus BPS-subalgebras	88
§4.7.	Exercises	88

Chapter 5. Contragredient Lie Superalgebras

§5.1.	Realizations and the Algebras $\tilde{g}(A,\tau)$	95
§5.2.	Contragredient Lie Superalgebras: First Results	101
5.2.1.	The Center, Root Space Decomposition, and Antiautomorphism	101
5.2.2.	Equivalent Matrices	104
5.2.3.	Integrability and Kac-Moody Superalgebras	107
5.2.4.	Serre Relations	108
§5.3.	Identifying Contragredient Lie Superalgebras	109
5.3.1.	The Exceptional Lie Superalgebras	110
5.3.2.	The Nonexceptional Lie Superalgebras	111
Chapter 5.

In this chapter, we delve into the study of contragredient Lie superalgebras and their automorphisms, along with deriving the Poisson structure on these algebras. The chapter is divided into several sections:

<table>
<thead>
<tr>
<th>§5.4.</th>
<th>Invariant Bilinear Forms on Contragredient Lie Superalgebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>§5.4.1</td>
<td>The Invariant Form</td>
</tr>
<tr>
<td>§5.5.</td>
<td>Automorphisms of Contragredient Lie Superalgebras</td>
</tr>
<tr>
<td>§5.5.1</td>
<td>Semisimple Lie Algebras</td>
</tr>
<tr>
<td>§5.5.2</td>
<td>Automorphisms Preserving Cartan and Borel Subalgebras</td>
</tr>
<tr>
<td>§5.5.3</td>
<td>Diagram and Diagonal Automorphisms</td>
</tr>
<tr>
<td>§5.5.4</td>
<td>The Structure of H and $(\text{Aut}\ g)^0$</td>
</tr>
<tr>
<td>§5.5.5</td>
<td>More on Diagram Automorphisms</td>
</tr>
<tr>
<td>§5.5.6</td>
<td>Outer Automorphisms</td>
</tr>
<tr>
<td>§5.5.7</td>
<td>Automorphisms of Type A Lie Superalgebras</td>
</tr>
<tr>
<td>§5.6.</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

Chapter 6.

The PBW Theorem and Filtrations on Enveloping Algebras

This chapter explores the Poincaré-Birkhoff-Witt (PBW) theorem and its implications on enveloping algebras. It covers:

§6.1.	The Poincaré-Birkhoff-Witt Theorem
§6.2.	Free Lie Superalgebras and Witt’s Theorem
§6.3.	Filtered and Graded Rings
§6.4.	Supersymmetrization
§6.5.	The Clifford Filtration
§6.6.	The Rees Ring and Homogenized Enveloping Algebras
§6.7.	Exercises

Chapter 7.

Methods from Ring Theory

The final chapter introduces methods from ring theory and their applications, including:

<p>| §7.1. | Introduction and Review of Basic Concepts |
| §7.1.1 | Motivation and Hypothesis |
| §7.1.2 | Bimodules |
| §7.1.3 | Prime and Primitive Ideals |
| §7.1.4 | Localization |
| §7.2. | Torsion-Free Bimodules, Composition Series, and Bonds |
| §7.3. | Gelfand-Kirillov Dimension |
| §7.4. | Restricted Extensions |
| §7.4.1 | Main Results |
| §7.4.2 | Applications |
| §7.5. | Passing Properties over Bonds |
| §7.6. | Prime Ideals in \mathbb{Z}_2-graded Rings and Finite Ring Extensions |
| §7.6.1 | \mathbb{Z}_2-graded Rings |</p>
<table>
<thead>
<tr>
<th>§</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.</td>
<td>The Jantzen Filtration</td>
<td>227</td>
</tr>
<tr>
<td>10.2.1.</td>
<td>The p-adic Valuation of a Certain Determinant</td>
<td>227</td>
</tr>
<tr>
<td>10.2.2.</td>
<td>The Jantzen Filtration</td>
<td>228</td>
</tr>
<tr>
<td>10.2.3.</td>
<td>Evaluation of the Šapovalov Determinant</td>
<td>229</td>
</tr>
<tr>
<td>10.3.</td>
<td>The Jantzen Sum Formula</td>
<td>232</td>
</tr>
<tr>
<td>10.4.</td>
<td>Further Results</td>
<td>233</td>
</tr>
<tr>
<td>10.4.1.</td>
<td>The Typical Case</td>
<td>233</td>
</tr>
<tr>
<td>10.4.2.</td>
<td>Reductive Lie Algebras</td>
<td>233</td>
</tr>
<tr>
<td>10.4.3.</td>
<td>Restriction of Verma Modules to \mathfrak{g}_0</td>
<td>234</td>
</tr>
<tr>
<td>10.5.</td>
<td>Exercises</td>
<td>235</td>
</tr>
</tbody>
</table>

Chapter 11. Schur-Weyl Duality | 239 |
11.1.	The Double Commutant Theorem	239
11.2.	Schur’s Double Centralizer Theorem	240
11.3.	Diagrams, Tableaux, and Representations of Symmetric Groups	246
11.4.	The Robinson-Schensted-Knuth Correspondence	249
11.5.	The Decomposition of W and a Basis for U^Λ	253
11.6.	The Module U^Λ as a Highest Weight Module	258
11.7.	The Robinson-Schensted Correspondence	259
11.8.	Exercises	260

Chapter 12. Supersymmetric Polynomials | 263 |
12.1.	Introduction	263
12.2.	The Sergeev-Pragacz Formula	265
12.3.	Super Schur Polynomials and Semistandard Tableaux	272
12.4.	Some Consequences	278
12.5.	Exercises	278

Chapter 13. The Center and Related Topics | 281 |
13.2.	The Harish-Chandra Homomorphism: Details of the Proof	284
13.3.	The Chevalley Restriction Theorem	293
13.4.	Supersymmetric Polynomials and Generators for $I(h)$	298
13.5.	Central Characters	299
13.5.1.	Equivalence Relations for Central Characters	299
13.5.2.	More on Central Characters	302
13.6.	The Ghost Center	304
§13.7.	Duality in the Category \tilde{O}	304
§13.8.	Exercises	306

Chapter 14. Finite Dimensional Representations of Classical Lie Superalgebras 307

§14.1.	Introduction	307
§14.2.	Conditions for Finite Dimensionality	308
§14.3.	The Orthosymplectic Case	310
14.3.1.	Statements of the Results	310
14.3.2.	A Special Case	311
14.3.3.	The General Case	314
§14.4.	The Kac-Weyl Character Formula	316
§14.5.	Exercises	317

Chapter 15. Prime and Primitive Ideals in Enveloping Algebras 319

§15.1.	The Dixmier-Moeglin Equivalence	320
§15.2.	Classical Simple Lie Superalgebras	322
15.2.1.	A Theorem of Duflo and Its Superalgebra Analog	322
15.2.2.	Type I Lie Superalgebras	323
§15.3.	Semisimple Lie Algebras	324
15.3.1.	Notation	325
15.3.2.	The Characteristic Variety	326
15.3.3.	Translation Functors on the Category O	329
15.3.4.	Translation Maps on Primitive Ideals	332
15.3.5.	Primitive Ideals for Type A Lie Algebras	337
15.3.6.	The Poset of Primitive Ideals and the Kazhdan-Lusztig Conjecture	342
15.3.7.	The Lie Superalgebra $osp(1,2n)$	344
§15.4.	More on Prime Ideals and Related Topics	346
15.4.1.	Strongly Typical Representations, Annihilation, and Separation Theorems	346
15.4.2.	Primeness of $U(g)$	347
15.4.3.	The Unique Minimal Prime	348
15.4.4.	The Goldie Rank of $U(g)$	349
15.4.5.	Enveloping Algebras of Nilpotent and Solvable Lie Superalgebras	349
§15.5.	Exercises	350

Chapter 16. Cohomology of Lie Superalgebras 355

| §16.1. | Introduction and Preliminaries | 355 |
| 16.1.1. | Complexes and Filtrations | 355 |
§16.2. Spectral Sequences 357
16.2.1. The Spectral Sequence Associated to a Filtered Complex 357
16.2.2. Bounded Filtrations and Convergence 359
§16.3. The Standard Resolution and the Cochain Complex 361
16.3.1. The Standard Resolution 361
16.3.2. The Cochain Complex 363
§16.4. Cohomology in Low Degrees 367
§16.5. The Cup Product 369
16.5.1. Definition and Basic Properties 369
16.5.2. Examples of Cup Products 372
§16.6. The Hochschild-Serre Spectral Sequence 374
§16.7. Exercises 379

Chapter 17. Zero Divisors in Enveloping Algebras 381
§17.1. Introduction 381
§17.2. Derived Functors and Global Dimension 383
§17.3. The Yoneda Product and the Bar Resolution 386
17.3.1. The Yoneda Product 386
17.3.2. The Bar Resolution 387
§17.4. The Löfwall Algebra 389
§17.5. Proof of the Main Results 392
§17.6. Further Homological Results 398
17.6.1. Tor and Homology of Lie Superalgebras 398
17.6.2. The Auslander and Macaulay Conditions 399
§17.7. Exercises 400

Chapter 18. Affine Lie Superalgebras and Number Theory 403
§18.1. Some Identities 403
§18.2. Affine Kac-Moody Lie Superalgebras 405
§18.3. Highest Weight Modules and the Affine Weyl Group 412
§18.4. The Casimir Operator 414
§18.5. Character Formulas 418
§18.6. The Jacobi Triple Product Identity 420
§18.7. Basic Classical Simple Lie Superalgebras 422
§18.8. The Case \(\hat{\mathfrak{g}} = \mathfrak{sl}(2, 1) \) 425
§18.9. The Case \(\hat{\mathfrak{g}} = \mathfrak{osp}(3, 2) \) 428
§18.10. Exercises 430
Appendix A. 433

§A.1. Background from Lie Theory 433
 A.1.1. Root Systems 433
 A.1.2. The Weyl Group 434
 A.1.3. Reductive Lie Algebras 435
 A.1.4. A Theorem of Harish-Chandra 436

§A.2. Hopf Algebras and \mathbb{Z}_2-Graded Structures 437
 A.2.1. Hopf Algebras 437
 A.2.2. Remarks on \mathbb{Z}_2-Graded Structures: The Rule Of Signs 440
 A.2.3. Some Constructions with $U(g)$-Modules 443
 A.2.4. The Supersymmetric and Superexterior Algebras 446
 A.2.5. Actions of the Symmetric Group 447

§A.3. Some Ring Theoretic Background 449
 A.3.1. The Diamond Lemma 449
 A.3.2. Clifford Algebras 452
 A.3.3. Ore Extensions 455

§A.4. Exercises 456

Appendix B. 463

Bibliography 471

Index 485
Preface

The publication of Dixmier’s book [Dix74] in 1974 led to increased interest in the structure of enveloping algebras. Considerable progress was made in both the solvable and semisimple cases. For example the primitive ideals were completely classified and much information was obtained about the structure of the primitive factor rings [BGR73], [Dix96], [Jan79], [Jan83], [Mat91].

Most of this work was complete by the early 1980s, so it was natural that attention should turn to related algebraic objects. Indeed at about this time some new noncommutative algebras appeared in the work of the Leningrad school led by L. D. Faddeev on quantum integrable systems. The term “quantum group” was used by V. G. Drinfel’d and M. Jimbo to describe particular classes of Hopf algebra that emerged in this way. This subject underwent a rapid development, spurred on in part by connections with Lie theory, low dimensional topology, special functions, and so on. The algebraic aspects of quantum groups are treated in detail in the books [CP95], [Kas95], [KS97], [Lus93], [Jos95], and [Maj95].

Against this background, Lie superalgebras seem to have been somewhat overlooked. Finite dimensional simple Lie superalgebras over algebraically closed fields of characteristic zero were classified by V. G. Kac in his seminal paper [Kac77a]. However more than thirty years after the classification, the representation theory of these algebras is still not completely understood and the structure of the enveloping algebras of these superalgebras remains rather mysterious.
Nevertheless some fundamental progress has been made. For example the characters of finite dimensional simple representations have been determined for Lie superalgebras of Types A and Q and recently for the orthosymplectic Lie algebras [Bru03], [Bru04], [CLW09], [GS10], [PS97a], [PS97b], [Ser96]. Furthermore exciting connections have been uncovered between Lie superalgebra representations, Khovanov’s diagram algebra, and the parabolic category \mathcal{O} for semisimple Lie algebras; see the series of papers [BS08], [BS10], [BS11], [BS09]. We mention here also the superduality conjectures from [CW08] and [CLW09].

Moreover we know when the enveloping algebra $U(g)$ is a domain, when it has finite global dimension, and some progress has been made on understanding its primitive ideals.

Therefore it is timely, I hope, for a volume that brings together some of what is known about Lie superalgebras and their representations. My original motivation for writing the book was to collect results that were difficult to find. For this reason I tried to include primarily results that have only appeared in research journals. Of course it is impossible to keep to this rule consistently. No attempt was made to be comprehensive, and I needed to include a certain amount of background material that is well known.

Here is a brief overview of the contents of the book. Chapter 1 contains some basic definitions and the statement of the Classification Theorem for finite dimensional classical simple Lie superalgebras over an algebraically closed field of characteristic zero. Since the proof of the Classification Theorem can be found in the book [Sch79], as well as in the paper of Kac, we do not include the proof here. However we give explicit constructions for each classical simple Lie superalgebra g. This is done in Chapter 2 if g is a close relative of $\mathfrak{gl}(m,n)$, g is orthosymplectic, or g belongs to one of the series p or q in the Kac classification. The other classical simple Lie superalgebras, which we will call exceptional, are dealt with in Chapter 4. Now in order to construct highest weight modules for g, we need to understand its Borel subalgebras. Unlike the case of a semisimple Lie algebra, there are in general several conjugacy classes of Borel subalgebras. However, at least if $g \neq \mathfrak{psl}(2,2)$, there are only a finite number of conjugacy classes, and we give a combinatorial description of them in Chapter 3. If $g \neq \mathfrak{p}(n), \mathfrak{q}(n)$, then the choice of a Borel subalgebra b of g leads, in Chapter 5, to a second construction of g as a contragredient Lie superalgebra. This approach is less explicit than the first, and some work is required to reconcile the two points of view. However contragredient Lie superalgebras give a unified approach

1Because of lack of space and time, the topics mentioned in this paragraph are not treated in this book.
to several results, in particular to the existence of an even nondegenerate invariant bilinear form on \mathfrak{g}. An algebra that admits such a form is often called basic.

In Chapter 6 we define the enveloping algebra $U(\mathfrak{k})$ of a Lie superalgebra \mathfrak{k}. The study of representations of \mathfrak{k} is equivalent to that of $U(\mathfrak{k})$, and techniques from ring theory can be utilized to investigate $U(\mathfrak{k})$. We prove the Poincaré-Birkhoff-Witt (PBW) Theorem using the Diamond Lemma. A crucial difference with the PBW Theorem for Lie algebras is that the basis elements for the odd part of \mathfrak{k} can only appear with exponents zero or one in a PBW basis.

Let \mathfrak{k} be a finite dimensional Lie superalgebra over a field and let $R = U(\mathfrak{k}_0), S = U(\mathfrak{k})$ be the enveloping algebras of \mathfrak{k}_0 and \mathfrak{k} respectively. By the PBW Theorem, S is finitely generated and free as a left or right R-module. Suppose that S is a ring extension of R, that is, R is a subring of S with the same 1, and that S is a finitely generated R-module. We develop some general methods for studying such finite ring extensions in Chapter 7. Particular attention is paid to the relationship between prime and primitive ideals in R and S. When S is commutative, we have the classical Krull relations of lying over, going up, etc. The usual definitions and proofs do not work well in the noncommutative setting, and we adopt an approach using R-S bimodules.

In Chapter 8 we set up some of the notation that we will use in subsequent chapters to study the enveloping algebra of a classical simple Lie superalgebra \mathfrak{g}. Among the topics covered are triangular decompositions $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ of \mathfrak{g}, Verma modules, and the category \mathcal{O}. Partitions, which can be used to index a basis for $U(\mathfrak{n}^\pm)$, are also introduced here. For the rest of this introduction, we assume that K is an algebraically closed field of characteristic zero and all Lie superalgebras are defined over K. Chapters 9 and 10 are devoted to the study of Verma modules. If \mathfrak{f} is a semisimple Lie algebra, the homomorphisms between Verma modules were first described by I. N. Bernšteĩn, I. M. Gelf’fand, and S. I. Gelf’fand [BGG71] and later in more explicit form by N. N. Šapovalov [Šap72]. In Chapter 9 we introduce Šapovalov elements and Šapovalov maps for basic simple classical Lie superalgebras. In Chapter 10 we evaluate the Šapovalov determinant and study the Jantzen filtration and sum formula. Although the results of these two chapters complement each other, they can be read independently.

Classical Schur-Weyl duality provides a deep connection between representations of the symmetric group and representations of the Lie algebra $\mathfrak{gl}(n)$. This theory was extended to the Lie superalgebra $\mathfrak{g} = \mathfrak{gl}(m, n)$ first by Sergeev in [Ser84a] and then in more detail by Berele and Regev [BR87]. In Chapter 11, we give an exposition of this work and also of a beautiful
extension of the Robinson-Schensted-Knuth correspondence from [BR87]. This correspondence allows us to use semistandard tableaux to index a basis for the simple $U(\mathfrak{g})$-modules that appear in the decomposition of the tensor powers of the defining representation of \mathfrak{g}.

In the theory of symmetric polynomials a key role is played by Schur polynomials. These can be defined in three different ways: as a quotient of alternants, using the Jacobi-Trudi determinant formula in terms of elementary or complete symmetric polynomials, and by using semistandard tableaux. The first definition is directly related to the Weyl character formula. Our treatment of supersymmetric polynomials in Chapter 12 places particular emphasis on super Schur polynomials. Each of the above three definitions of the usual Schur polynomials can be extended to the super case, and the main results, due to Sergeev, Pragacz and Thorup [PT92], [Pra91] and Remmel [Rem84], demonstrate the equivalence of the extended definitions. There is a connection with Schur-Weyl duality since the characters of composition factors of tensor powers of the defining representation of $\mathfrak{gl}(m,n)$ are given by super Schur polynomials.

Chapter 13 is devoted to the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$ and related topics. Denote the ring of invariants of $S(\mathfrak{h})$ under the action of the Weyl group W by $S(\mathfrak{h})^W$. There is an injective algebra map from $Z(\mathfrak{g})$ to $S(\mathfrak{h})^W$ which we call the Harish-Chandra homomorphism. Unlike the case of semisimple Lie algebras, however, this map is not surjective, but its image can be explicitly described. This result was first formulated by Kac [Kac84], but a gap in the proof was later filled by Gorelik [Gor04] and independently by the present author (unpublished). On the other hand, Sergeev [Ser99a] proved a version of the Chevalley restriction theorem for basic classical simple Lie superalgebras, [Ser99a]. This can be used to give another proof of the theorem formulated by Kac, but we will in fact deduce Sergeev’s Theorem from the result about the center. If $\mathfrak{g} = \mathfrak{gl}(m,n)$ or an orthosymplectic Lie superalgebra, supersymmetric polynomials can be used to give an explicit set of generators for the image of the Harish-Chandra homomorphism and to describe the central characters of \mathfrak{g}.

In Chapter 14 we study finite dimensional modules for a basic classical simple Lie superalgebra. If \mathfrak{g} is a close relative of $\mathfrak{gl}(m,n)$ or \mathfrak{g} is orthosymplectic, we give necessary and sufficient conditions for a simple highest weight module to be finite dimensional in terms of the highest weight. Then we prove the Kac-Weyl character formula for finite dimensional typical modules.

If \mathfrak{k} is a finite dimensional Lie algebra, then the space of primitive ideals $\text{Prim } U(\mathfrak{k})$ is now well understood in both the solvable and semisimple cases. By comparison much less is known about primitive ideals in the enveloping
algebra of a Lie superalgebra \(g \), but in Chapter 15 we survey what is known, with particular emphasis on the case where \(g \) is classical simple. To do this, it is convenient to review the semisimple Lie algebra case.

Unlike the Lie algebra case, the enveloping algebra \(U(\mathfrak{t}) \) of a Lie superalgebra \(\mathfrak{t} \) may contain zero divisors. This will be the case if \(\mathfrak{t} \) contains a nonzero odd element \(x \) such that \([x, x] = 0 \). In the absence of such elements \(\mathfrak{t} \) is called *torsion free*. In Chapter 17 we prove a theorem of R. Bøgvad, stating that the enveloping algebra of a torsion-free Lie superalgebra is a domain, \([Bøg84]\); see also \([AL85]\). The proof of this result, in contrast to the simplicity of its statement, requires a considerable amount of homological algebra.

In Chapter 16 we develop the necessary *cohomology theory of Lie superalgebras*. This includes the fact that if \(M \) is a \(\mathbb{Z}_2 \)-graded \(\mathfrak{t} \)-module, then the even part of \(H^2(\mathfrak{t}, M) \) parameterizes extensions of \(\mathfrak{t} \) by \(M \), the cup product in cohomology, and the Hochschild-Serre spectral sequence. We give a self-contained account of the necessary background on spectral sequences. The cohomology of a Lie superalgebra \(\mathfrak{t} \) can be computed using the standard resolution of the trivial \(\mathfrak{t} \)-module. In contrast to the Lie algebra case, this resolution has infinitely many terms if \(\mathfrak{t}_1 \neq 0 \). Chapter 17 deals with the more ring theoretic aspects of homological algebra needed to prove Bøgvad’s result. These include standard results on derived functors and global dimension, as well as the Yoneda product, the bar resolution, and the Löfwall algebra.

In the final chapter we introduce *affine Lie superalgebras* and obtain some applications to number theory. These applications concern the number of ways to write an integer as the sum of a given number of squares, or as the sum of a given number of triangular numbers. The main results here are due to Kac and Wakimoto \([KW94]\) and Gorelik \([Gor09]\), \([Gor11]\).

Some background material on Lie theory, Hopf algebras, and ring theory is given in Appendix A, and the Dynkin-Kac diagrams for (nonexceptional) low rank Lie superalgebras may be found in Appendix B.

This book has grown to about twice the length I originally intended, and nevertheless some important results had to be left out. However some of the topics not covered here are treated in other texts. Connections with physics are dealt with in \([DM99]\) and \([Var04]\). The *Dictionary of Lie Algebras and Lie Superalgebras* \([FSS00]\), while not containing any proofs, is nevertheless an invaluable source for detailed information about Lie superalgebras and their representations. We also recommend the survey article of Serganova on affine Lie superalgebras and integrable representations \([Ser09]\).

On the other hand many topics are included which I believe can be found in no other texts. These topics include, in the order they appear in the book,
the construction of the exceptional Lie superalgebras, many of the ring theoretic methods used to study enveloping algebras, material on Schur-Weyl duality, supersymmetric polynomials, the center and central characters, the question of when the enveloping algebra contains zero divisors, and applications of affine Lie superalgebras to number theory. The treatment of Borel subalgebras that we give here is probably new.

I have used parts of this book to teach courses at the University of Wisconsin-Milwaukee and elsewhere. Of course it works best for students with some background in Lie theory. Here are some suggestions about how to use this book as a textbook. Chapter 1 contains the basic definitions so is a prerequisite for everything else. Then Chapters 2–5 form a basic course on Lie superalgebras. Chapters 6–8, possibly followed by parts of Chapters 9, 10, 13, 14, 15, could be used for a course dealing with enveloping algebras. For more combinatorics use Chapters 11 and 12, for homological topics use Chapters 16 and 17, and for applications to number theory use Chapter 18. Exercises are given at the end of each chapter, often providing examples to illustrate the theory.

Acknowledgements

I would like to thank Georgia Benkart, Jason Gaddis, Maria Gorelik, Ed Letzter, America Masaros, Ivan Penkov, Georges Pinczon, José Santos, Paul Smith, Wolfgang Soergel, Elizaveta Vishnyakova, Lauren Williams, Hiroyuki Yamane, and James Zhang for many useful comments on the presentation. In addition I thank Rikard Bøgvad for explaining the proof of his result about global dimension to me. This text has been greatly improved thanks to the many helpful suggestions of Vera Serganova and Catharina Stroppel. Thanks are also due to Hedi Benamor, Paula Carvalho, Georges Pinczon, Wolfgang Soergel, and Rosane Ushirobira for invitations to lecture on this material in Metz, Porto, Dijon, and Freiburg. For her help in typing the manuscript, I would like to thank Gail Boviall. During the time that this book was written, I was partially supported by grants from the National Science Foundation and the National Security Agency.
An ↑ followed by page numbers indicates the pages on which a citation occurs.

[BGG71] I. N. Bernšteǐn, I. M. Gel’fand, and S. I. Gel’fand, Structure of representations that are generated by vectors of higher weight, Funkcional. Anal. i Priložen. 5 (1971), no. 1, 1–9 (Russian). MR0291204 (45 #298) ↑xvii, 188, 207

Bibliography

Bibliography

[SNR76a] M. Scheunert, W. Nahm, and V. Rittenberg, Classification of all simple graded Lie algebras whose Lie algebra is reductive. I, J. Mathematical Phys. 17 (1976), no. 9, 1626–1639. MR0414642 (54 #2742a) ↑8

[SNR76b] , Classification of all simple graded Lie algebras whose Lie algebra is reductive: II Construction of the exceptional algebras, J. Mathematical Phys. 17 (1976), no. 9, 1640–1644. MR0414643 (54 #2742b) ↑8, 69, 80

[Ser84a] , Representations of the Lie superalgebras $gl(n, m)$ and $Q(n)$ in a space of tensors, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 80–81 (Russian). MR739101 (86b:17005) ↑tvii, 19, 239, 448

Index

This index gives the section in which the term appears.

\begin{itemize}
 \item a-basal, 15.3
 \item Admissible pair, 18.7
 \item Ad-nilpotent, 5.5
 \item Affine denominator, 18.7
 \item Affine Weyl group, 18.3
 \begin{itemize}
 \item translation subgroup of, 18.3
 \end{itemize}
 \item Affinization, 18.2
 \item Almost commutative algebra, 6.3
 \item Alternative algebra, 4.3
 \item Ambiguity, A.3
 \begin{itemize}
 \item resolvability of, A.3
 \end{itemize}
 \item Annihilator of a module, 7.1
 \item Annihilator prime, 7.4
 \item Anticenter, 13.6
 \item Antipode, A.2
 \item Associated graded ring, 6.3
 \item Associated Type A diagram, 3.4
 \item Associator, 4.3
 \item Augmentation map, A.2
 \item Augmented algebra, 17.3
 \item Auslander condition,
 \begin{itemize}
 \item Auslander-Gorenstein, 17.6
 \item Auslander regular, 17.6
 \end{itemize}
 \item b-dominant, 14.2
 \item Bar resolution, 17.3
 \item Basis of simple roots, 3.2, A.1
 \item Bernstein number, 7.3
 \item Bialgebra, A.2
 \item Bimodule, 7.1
 \item Noetherian, 7.1
 \item Bimodule composition factors, series, 7.2
 \begin{itemize}
 \item restricted, 7.4
 \end{itemize}
 \item Blocks, 8.2
 \item Bond, 7.2
 \item Borel subalgebra, 3.1
 \begin{itemize}
 \item adjacent, 3.1
 \item positive, 8.1
 \end{itemize}
 \item Bounded filtration, 16.2
 \item BPS-subalgebra, 3.2
 \item Braid equation, A.2
 \item Braid group, 11.2
 \item Bruhat order, 10.4.2
 \item Canonical Cartan subalgebras, 5.2
 \item Cartan matrix associated to a basis, 3.4
 \begin{itemize}
 \item decomposable, symmetrizable
 \end{itemize}
 \item Cartan matrix, 5.2
 \item Cartan subalgebra, 3.2
 \begin{itemize}
 \item regular element of, 3.2
 \end{itemize}
 \item Casimir element, 8.5
 \item Casimir operator, 18.4
 \item Category \mathcal{O}, 8.2
 \item Catenary, 15.4
 \item Cayley algebra, octonion algebra, 4.4
 \item Central character, 8.2
 \item Central simple algebra, central simple graded algebra, A.3
\end{itemize}
Character of a module in the
Category O, 8.4
Characteristic variety, 15.3
Clifford algebra, A.3
Cochain complex, 16.1
filtration on, 16.1
Cochain map, 16.1
Commutant, 11.1
Comodule, A.2
Contravariant bilinear form, 8.2
Coproduct, counit, A.2
Cup product, 16.5

δ-ϵ-diagram, 3.3
Diagonal automorphism, diagram automorphism, 5.5
Directional derivative, 12.1
Distinguished simple roots, diagrams and Borel subalgebras, 3.4
Dixmier-Moeglin equivalence, 15.1
Dominates, 3.6
Duflo involutions, 15.3
Dynkin-Kac diagrams, 3.4

Elementary reduction, A.3
Equivalent matrices, 3.4
Essential submodule, 7.1
Extension of a Lie superalgebra by a module, 16.4

F-form, defined over F, 2.5
F-split, Q-split, 2.5
Faithful R-module, 7.1
Filtered rings and modules, 6.3
Flag, 3.3

G-ideal, G-prime, 7.6
Gelfand-Kirillov Dimension, 7.3
Ghost center, 13.6
GK-homogeneous, 7.4
GK-Macaulay, 17.6
Global dimension, 17.2
Good filtration, 6.3
Graded center, graded centralizer, A.3
Graded ring, 6.3
Graded-prime, graded-primitive ideal, 7.5

Grothendieck group, 8.4
Harish-Chandra homomorphism, 13.1, A.1
Harish-Chandra projection, 8.1
Height, 5.1
Hochschild-Serre spectral sequence, 16.6
Homogeneous element, 1.1
Homogenized enveloping algebra, 6.6
Homology of Lie superalgebras, 17.6
Hook, 11.3
skew Schur polynomial, 12.3
Hopf algebra, superalgebra, A.2
coquasitriangular, A.4
triangular, quasitriangular, A.2

Initial part, 3.4
Inner derivation, 16.4
Insertion and recording tableau, 11.4
Invariant bilinear form, 1.1
Inversions, A.2
Involution on an algebra, 4.4
Isotropic flag, subspace, 3.3

Jacobson radical, 7.1
Jacobson ring, 7.5
Jacobson topology, 7.1
Jantzen filtration, 10.2.1
Jantzen sum formula, 10.3
Jantzen’s multiplicity matrix, 15.3

Kac module, 8.1
Kazhdan-Lusztig polynomials, 15.3
Killing form, 2.6
Knuth equivalence, Knuth relations, 11.7

Lattice path, 12.3
Left cone representation, 15.3
Length lexicographic ordering, A.3
Length of a permutation, 3.3
Lie superalgebra, 1.1
abelian, nilpotent, solvable, 1.1
basic, 1.2
cohomology of, 16.3
consistently graded, 1.1
contragredient, 5.2
derived series of, 1.1
Index

free, 6.2
Heisenberg, 6.7
ideal, left ideal of, 1.1
lower central series of, 1.1
module, 1.1
orthosymplectic, 2.3
semidirect product, 17.7
simple, classical simple, 1.1
simple superalgebras of Cartan
type, 1.3
strange, 2.4
torsion free, absolutely torsion
free, 17.1
Type I, 8.1
Limit superior, 7.3
Locally closed ideal, 7.6
Locally nilpotent linear operator, 5.2
Löfwall algebra., 17.4
Loop algebra, 18.2
Lying over, direct lying over, 7.6
Mate, perfect mate, 15.4
Maximal isotropic set, 13.5
Minimal graded resolution, 17.2
Modular law, 1.2
Multiplicative set, 7.1
Nilradical, 7.1
Norm, trace on an algebra, 4.4
Numerical marks, 14.2
Odd reflections, 3.4
One-line notation, 3.3
Ore condition, 7.1
Ore domain, 7.7
Ore extension, A.3
Outer tensor product, 2.2
Parity vector, parity change functor,
A.2
Partition into positive roots,
partition function, 8.4
Partition of an integer, conjugate
partition, 11.3
Positive root, 3.2
Prime and primitive ideals, 7.1
Principal \(Z\)-gradings, 5.4
Projective dimension, 17.2
\(Q\)-regular, 3.2
Quadratic module, A.3
Quasiroot, 10.2
Quasisimple, 5.2
Quiver, 3.6
Borel, 3.6
representation of, 3.6
Quotient ring, 7.1
\(R\)-matrix, A.2
Rational ideal, 15.1
Realization of a matrix, 5.1
isomorphic realizations, 5.1
minimal, 5.1
Reduced expression, A.1
Reduction system, A.3
Rees ring, 6.6
Reflection in the hyperplane
orthogonal to a root, 8.3, A.1
Regular element on a module, 8.1
Ring extension, 7.1
Root, 2.1
decomposable, simple, 3.4
isotropic, 8.3
positive, 8.1
root lattice, 5.1
root space decomposition, 2.1, 8.1,
A.1
root system, A.1
string, 3.4
Rule of signs, A.2
Šapovalov determinant, 10.1
Šapovalov element, 9.2
Šapovalov maps, 9.3
Semigroup ordering, A.3
Semiprime ring, 7.1
Semistandard, standard tableau, 11.3
Separation of variables, 15.3
Serre relations, 5.2
Set of simple roots, 3.4
initial part of, 3.4
Shuffle, 3.3
of Type \(C\) or \(D\), 3.3
Signed determinant, A.3
Simple reflection, A.1
Skew diagram, skew tableau, 11.3
Space of harmonics, 15.3
Spectral sequence, 16.2
Spinors, A.3
Standard resolution, 16.3
Strongly typical, 16.5
Superbialgebra, A.2
Supercommutative, 1.4
Superderivation, 1.1
Superexterior, supersymmetric algebra, A.2
Supersymmetric polynomial, 12.1
Supertrace, 2.2
Supertranspose, A.2
Support of an ℏ-module, 3.3
Symbol, 6.3

Tensor algebra, A.3
Torsion submodule, 7.1
Trace ideal, 7.5
Translation functors, translation maps, 15.3
Triangular decomposition, 8.1, A.1
Twist map, A.2
Twisted adjoint action, 13.6
Typical, 8.6

Universal enveloping algebra, 6.1
 Clifford filtration on, 6.5
 standard filtration on, 6.3
Universal Verma module, 9.1

Verma module, 8.2

Weight module, highest weight module, 8.2
Weyl chamber, A.1
Weyl denominator, 18.7
Weyl group, 8.3, A.1
 longest element of, A.1
Words, A.3

Yang-Baxter equation, A.2
Yoneda product, 17.3
Young diagram, 11.3

Z-graded Lie algebra, 1.1
Z₂-graded vector space, 1.1
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie superalgebras and enveloping algebras</td>
<td>Ian M. Musson</td>
<td>2012</td>
</tr>
<tr>
<td>Gröbner bases in commutative algebra</td>
<td>Viviana Ene and Jürgen Herzog</td>
<td>2012</td>
</tr>
<tr>
<td>Classical methods in ordinary differential equations: With applications to boundary value problems</td>
<td>Stuart P. Hastings and J. Bryce McLeod</td>
<td>2012</td>
</tr>
<tr>
<td>Tensors: Geometry and applications</td>
<td>J. M. Landsberg</td>
<td>2011</td>
</tr>
<tr>
<td>Modern classical homotopy theory</td>
<td>Jeffrey Strom</td>
<td>2011</td>
</tr>
<tr>
<td>An introduction to measure theory</td>
<td>Terence Tao</td>
<td>2011</td>
</tr>
<tr>
<td>Riemann surfaces by way of complex analytic geometry</td>
<td>Dror Varolin</td>
<td>2011</td>
</tr>
<tr>
<td>Toric varieties</td>
<td>David A. Cox, John B. Little, and Henry K. Schenck</td>
<td>2011</td>
</tr>
<tr>
<td>Lectures on linear partial differential equations</td>
<td>Gregory Eskin</td>
<td>2011</td>
</tr>
<tr>
<td>Algebraic groups and differential Galois theory</td>
<td>Teresa Crespo and Zbigniew Hajto</td>
<td>2011</td>
</tr>
<tr>
<td>A course in minimal surfaces</td>
<td>Tobias Holck Colding and William P. Minicozzi II</td>
<td>2011</td>
</tr>
<tr>
<td>A basic course in partial differential equations</td>
<td>Qing Han</td>
<td>2011</td>
</tr>
<tr>
<td>Mathematical statistics: asymptotic minimax theory</td>
<td>Alexander Korostelev and Olga Korosteleva</td>
<td>2011</td>
</tr>
<tr>
<td>Dynamical systems and population persistence</td>
<td>Hal L. Smith and Horst R. Thieme</td>
<td>2010</td>
</tr>
<tr>
<td>An epsilon of room, I: pages from year three of a mathematical blog.</td>
<td>Terence Tao</td>
<td>2010</td>
</tr>
<tr>
<td>Linear functional analysis</td>
<td>Joan Cerdà</td>
<td>2010</td>
</tr>
<tr>
<td>An introductory course on mathematical game theory</td>
<td>Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro</td>
<td>2010</td>
</tr>
<tr>
<td>Continuous time Markov processes: An introduction</td>
<td>Thomas M. Liggett</td>
<td>2010</td>
</tr>
<tr>
<td>Optimal control of partial differential equations: Theory, methods and applications</td>
<td>Fredi Tröltzsch</td>
<td>2010</td>
</tr>
<tr>
<td>Ricci flow and the sphere theorem</td>
<td>Simon Brendle</td>
<td>2010</td>
</tr>
<tr>
<td>Differential algebraic topology: From stratifolds to exotic spheres</td>
<td>Matthias Kreck</td>
<td>2010</td>
</tr>
<tr>
<td>Training manual on transport and fluids</td>
<td>John C. Neu</td>
<td>2010</td>
</tr>
<tr>
<td>Mapping degree theory</td>
<td>Enrique Outerelo and Jesús M. Ruiz</td>
<td>2009</td>
</tr>
<tr>
<td>Manifolds and differential geometry</td>
<td>Jeffrey M. Lee</td>
<td>2009</td>
</tr>
<tr>
<td>Embeddings in manifolds</td>
<td>Robert J. Daverman and Gerard A. Venema</td>
<td>2009</td>
</tr>
<tr>
<td>A first course in Sobolev spaces</td>
<td>Giovanni Leoni</td>
<td>2009</td>
</tr>
<tr>
<td>Algebra: Chapter 0</td>
<td>Paolo Aluffi</td>
<td>2009</td>
</tr>
<tr>
<td>Configurations of points and lines</td>
<td>Branko Grünbaum</td>
<td>2009</td>
</tr>
<tr>
<td>Introduction to Fourier analysis and wavelets</td>
<td>Mark A. Pinsky</td>
<td>2009</td>
</tr>
<tr>
<td>A course in approximation theory</td>
<td>Ward Cheney and Will Light</td>
<td>2009</td>
</tr>
<tr>
<td>Algebra: A graduate course</td>
<td>I. Martin Isaacs</td>
<td>2009</td>
</tr>
<tr>
<td>Mathematical methods in quantum mechanics: With applications to Schrödinger operators</td>
<td>Gerald Teschl</td>
<td>2009</td>
</tr>
<tr>
<td>Discrete differential geometry: Integrable structure</td>
<td>Alexander I. Bobenko and Yuri B. Suris</td>
<td>2008</td>
</tr>
<tr>
<td>Complex made simple</td>
<td>David C. Ullrich</td>
<td>2008</td>
</tr>
<tr>
<td>Lectures on elliptic and parabolic equations in Sobolev spaces</td>
<td>N. V. Krylov</td>
<td>2008</td>
</tr>
<tr>
<td>Quantum mechanics for mathematicians</td>
<td>Leon A. Takhtajan</td>
<td>2008</td>
</tr>
<tr>
<td>Representations of semisimple Lie algebras in the BGG category O</td>
<td>James E. Humphreys</td>
<td>2008</td>
</tr>
<tr>
<td>Topics in differential geometry</td>
<td>Peter W. Michor</td>
<td>2008</td>
</tr>
<tr>
<td>Finite group theory</td>
<td>I. Martin Isaacs</td>
<td>2008</td>
</tr>
</tbody>
</table>
TITLES IN THIS SERIES

91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008
90 Larry J. Gerstein, Basic quadratic forms, 2008
89 Anthony Bonato, A course on the web graph, 2008
88 Nathaniel P. Brown and Narutaka Ozawa, C*-algebras and finite-dimensional approximations, 2008
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. This book develops the theory of Lie superalgebras, their enveloping algebras, and their representations.

The book begins with five chapters on the basic properties of Lie superalgebras, including explicit constructions for all the classical simple Lie superalgebras. Borel subalgebras, which are more subtle in this setting, are studied and described. Contragredient Lie superalgebras are introduced, allowing a unified approach to several results, in particular to the existence of an invariant bilinear form on g.

The enveloping algebra of a finite dimensional Lie superalgebra is studied as an extension of the enveloping algebra of the even part of the superalgebra. By developing general methods for studying such extensions, important information on the algebraic structure is obtained, particularly with regard to primitive ideals. Fundamental results, such as the Poincaré-Birkhoff-Witt Theorem, are established.

Representations of Lie superalgebras provide valuable tools for understanding the algebras themselves, as well as being of primary interest in applications to other fields. Two important classes of representations are the Verma modules and the finite dimensional representations. The fundamental results here include the Jantzen filtration, the Harish-Chandra homomorphism, the Šapovalov determinant, super-symmetric polynomials, and Schur-Weyl duality. Using these tools, the center can be explicitly described in the general linear and orthosymplectic cases.

In an effort to make the presentation as self-contained as possible, some background material is included on Lie theory, ring theory, Hopf algebras, and combinatorics.