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Preface

P.1. How this book came to be, and its peculiarities

This book presents an introduction to hyperbolic partial differential equa-
tions. A major subtheme is linear and nonlinear geometric optics. The two
central results of linear microlocal analysis are derived from geometric op-
tics. The treatment of nonlinear geometric optics gives an introduction to
methods developed within the last twenty years, including a rethinking of
the linear case.

Much of the material has grown out of courses that I have taught. The
crucial step was a series of lectures on nonlinear geometric optics at the
Institute for Advanced Study/Park City Mathematics Institute in July 1995.
The Park City notes were prepared with the assistance of Markus Keel
and appear in [Rauch, 1998]. They presented a straight line path to some
theorems in nonlinear geometric optics. Graduate courses at the University
of Michigan in 1993 and 2008 were important. Much of the material was
refined in invited minicourses:

• École Normale Supérieure de Cachan, 1997;

• Nordic Conference on Conservation Laws at the Mittag-Leffler Institute
and KTH in Stockholm, December 1997 (Chapters 9–11);

• Centro di Ricerca Matematica Ennio De Giorgi, Pisa, February 2004;

• Université de Provence, Marseille, March 2004 (§3.4, 5.4, Appendix 2.I);

• Università di Pisa, February–May 2005, March–April 2006 (Chapter 3,
§6.7, 6.8), March–April 2007 (Chapters 9–11);

• Université de Paris Nord, February 2006–2010 (§1.4–1.7).

xi



xii Preface

The auditors included many at the beginnings of their careers, and I
would like to thank in particular R. Carles, E. Dumas, J. Bronski, J. Col-
liander, M. Keel, L. Miller, K. McLaughlin, R. McLaughlin, H. Zag, G.
Crippa, A. Figalli, and N. Visciglia for many interesting questions and com-
ments.

The book is aimed at the level of graduate students who have studied one
hard course in partial differential equations. Following the lead of the book
of Guillemin and Pollack (1974), there are exercises scattered throughout
the text. The reader is encouraged to read with paper and pencil in hand,
filling in and verifying as they go. There is a big difference between passive
reading and active acquisition. In a classroom setting, correcting students’
exercises offers the opportunity to teach the writing of mathematics.

To shorten the treatment and to avoid repetition with a solid partial
differential equations course, basic material such as the fundamental solution
of the wave equation in low dimensions is not presented. Naturally, I like
the treatment of that material in my book Partial Differential Equations
[Rauch, 1991].

The choice of subject matter is guided by several principles. By restrict-
ing to symmetric hyperbolic systems, the basic energy estimates come from
integration by parts. The majority of examples from applications fall under
this umbrella.

The treatment of constant coefficient problems does not follow the usual
path of describing classes of operators for which the Cauchy problem is
weakly well posed. Such results are described in Appendix 2.I along with the
Kreiss matrix theorem. Rather, the Fourier transform is used to analyse the
dispersive properties of constant coefficient symmetric hyperbolic equations
including Brenner’s theorem and Strichartz estimates.

Pseudodifferential operators are neither presented nor used. This is not
because they are in any sense vile, but to get to the core without too many
pauses to develop machinery. There are several good sources on pseudo-
differential operators and the reader is encouraged to consult them to get
alternate viewpoints on some of the material. In a sense, the expansions
of geometric optics are a natural replacement for that machinery. Lax’s
parametrix and Hörmander’s microlocal propagation of singularities theo-
rem require the analysis of oscillatory integrals as in the theory of Fourier
integral operators. The results require only the method of nonstationary
phase and are included.

The topic of caustics and caustic crossing is not treated. The sharp
linear results use more microlocal machinery and the nonlinear analogues
are topics of current research. The same is true for supercritical nonlinear
geometric optics which is not discussed. The subjects of dispersive and
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diffractive nonlinear geometric optics in contrast have reached a mature
state. Readers of this book should be in a position to readily attack the
papers describing that material.

The methods of geometric optics are presented as a way to understand
the qualitative behavior of partial differential equations. Many examples
proper to the theory of partial differential equations are discussed in the
text, notably the basic results of microlocal analysis. In addition two long
examples, stabilization of waves in §5.6 and dense oscillations for inviscid
compressible fluid flow in Chapter 11 are presented. There are many impor-
tant examples in science and technology. Readers are encouraged to study
some of them by consulting the literature. In the scientific literature there
will not be theorems. The results of this book turn many seemingly ad hoc
approximate methods into rigorous asymptotic analyses.

Only a few of the many important hyperbolic systems arising in appli-
cations are discussed. I recommend the books [Courant, 1962], [Benzoni-
Gavage and Serre, 2007], and [Métivier, 2009]. The asymptotic expansions
of geometric optics explain the physical theory, also called geometric optics,
describing the rectilinear propagation, reflection, and refraction of light rays.
A brief discussion of the latter ideas is presented in the introductory chap-
ter that groups together elementary examples that could be, but are usually
not, part of a partial differential equations course. The WKB expansions of
geometric optics also play a crucial role in understanding the connection of
classical and quantum mechanics. That example, though not hyperbolic, is
presented in §5.2.2.

The theory of hyperbolic mixed initial boundary value problems, a sub-
ject with many interesting applications and many difficult challenges, is not
discussed. Nor is the geometric optics approach to shocks.

I have omitted several areas where there are already good sources; for
example, the books [Smoller, 1983], [Serre, 1999], [Serre, 2000], [Dafermos,
2010], [Majda, 1984], [Bressan, 2000] on conservation laws, and the books
[Hörmander, 1997] and [Taylor, 1991] on the use of pseudodifferential tech-
niques in nonlinear problems. Other books on hyperbolic partial differential
equations include [Hadamard, 1953], [Leray, 1953], [Mizohata, 1965], and
[Benzoni-Gavage and Serre, 2007]. Lax’s 1963 Stanford notes occupy a spe-
cial place for me. I took a course from him in the late 1960s that corre-
sponded to the enlarged version [Lax, 2006]. When I approached him to ask
if he’d be my thesis director he asked what interested me. I indicated two
subjects from the course, mixed initial boundary value problems and the
section on waves and rays. The first became the topic of my thesis, and the
second is the subject of this book and at the core of much of my research. I
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owe a great intellectual debt to the lecture notes, and to all that Peter Lax
has taught me through the years.

The book introduces a large and rich subject and I hope that readers
are sufficiently attracted to probe further.

P.2. A bird’s eye view of hyperbolic equations

The central theme of this book is hyperbolic partial differential equations.
These equations are important for a variety of reasons that we sketch here
and that recur in many different guises throughout the book.

The first encounter with hyperbolicity is usually in considering scalar
real linear second order partial differential operators in two variables with
coefficients that may depend on x,

aux1x1 + b ux1x2 + c ux2x2 + lower order terms .

Associate the quadratic form ξ �→ a ξ21+ b ξ1ξ2+c ξ22 . The differential opera-
tor is elliptic when the form is positive or negative definite. The differential
operator is strictly hyperbolic when the form is indefinite and nondegener-
ate.1

In the elliptic case one has strong local regularity theorems and solv-
ability of the Dirichlet problem on small discs. In the hyperbolic cases, the
initial value problem is locally well set with data given at noncharacteristic
curves and there is finite speed of propagation. Singularities or oscillations
in Cauchy data propagate along characteristic curves.

The defining properties of hyperbolic problems include well posed
Cauchy problems, finite speed of propagation, and the existence of wave
like structures with infinitely varied form. To see the latter, consider in
R2
t,x initial data on t = 0 with the form of a short wavelength wave packet,

a(x) eix/ε, localized near a point p. The solution will launch wave packets
along each of two characteristic curves. The envelopes are computed from
those of the initial data, as in §5.2, and can take any form. One can send
essentially arbitrary amplitude modulated signals.

The infinite variety of wave forms makes hyperbolic equations the pre-
ferred mode for communicating information, for example in hearing, sight,
television, and radio. The model equations for the first are the linearized
compressible inviscid fluid dynamics, a.k.a. acoustics. For the latter three it
is Maxwell’s equations. The telecommunication examples have the property
that there is propagation with very small losses over large distances. The
examples of wave packets and long distances show the importance of short
wavelength and large time asymptotic analyses.

1The form is nondegenerate when its defining symmetric matrix is invertible.
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Well posed Cauchy problems with finite speed lead to hyperbolic equa-
tions.2 Since the fundamental laws of physics must respect the principles
of relativity, finite speed is required. This together with causality requires
hyperbolicity. Thus there are many equations from physics. Those which
are most fundamental tend to have close relationships with Lorentzian ge-
ometry. D’Alembert’s wave equation and the Maxwell equations are two
examples. Problems with origins in general relativity are of increasing in-
terest in the mathematical community, and it is the hope of hyperbolicians
that the wealth of geometric applications of elliptic equations in Riemann-
ian geometry will one day be paralleled by Lorentzian cousins of hyperbolic
type.

A source of countless mathematical and technological problems of hyper-
bolic type are the equations of inviscid compressible fluid dynamics. Lin-
earization of those equations yields linear acoustics. It is common that
viscous forces are important only near boundaries, and therefore for many
phenomena inviscid theories suffice. Inviscid models are often easier to com-
pute numerically. This is easily understood as a small viscous term ε2∂2/∂x2

introduces a length scale ∼ε, and accurate numerics require a discretization
small enough to resolve this scale, say ∼ε/10. In dimensions 1+d discretiza-
tion of a unit volume for times of order 1 on such a scale requires 104ε−4

mesh points. For ε only modestly small, this drives computations beyond
the practical. Faced with this, one can employ meshes which are only lo-
cally fine or try to construct numerical schemes which resolve features on
longer scales without resolving the short scale structures. Alternatively, one
can use asymptotic methods like those in this book to describe the bound-
ary layers where the viscosity cannot be neglected (see for example [Grenier
and Guès, 1998] or [Gérard-Varet, 2003]). All of these are active areas of
research.

One of the key features of inviscid fluid dynamics is that smooth large
solutions often break down in finite time. The continuation of such solutions
as nonsmooth solutions containing shock waves satisfying suitable conditions
(often called entropy conditions) is an important subarea of hyperbolic the-
ory which is not treated in this book. The interested reader is referred to
the conservation law references cited earlier. An interesting counterpoint is
that for suitably dispersive equations in high dimensions, small smooth data
yield global smooth (hence shock free) solutions (see §6.7).

The subject of geometric optics is a major theme of this book. The
subject begins with the earliest understanding of the propagation of light.
Observation of sunbeams streaming through a partial break in clouds or a

2See [Lax, 2006] for a proof in the constant coefficient linear case. The necessity of hyper-

bolicity in the variable coefficient case dates to [Lax, Duke J., 1957] for real analytic coefficients.
The smooth coefficient case is due to Mizohata and is discussed in his book.
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flashlight beam in a dusty room gives the impression that light travels in
straight lines. At mirrors the lines reflect with the usual law of equal angles
of incidence and reflection. Passing from air to water the lines are bent.
These phenomena are described by the three fundamental principles of a
physical theory called geometric optics. They are rectilinear propagation
and the laws of reflection and refraction.

All three phenomena are explained by Fermat’s principle of least time.
The rays are locally paths of least time. Refraction at an interface is ex-
plained by positing that light travels at different speeds in the two media.
This description is purely geometrical involving only broken rays and times
of transit. The appearance of a minimum principle had important philosoph-
ical impact, since it was consistent with a world view holding that nature
acts in a best possible way. Fermat’s principle was enunciated twenty years
before Römer demonstrated the finiteness of the speed of light based on
observations of the moons of Jupiter.

Today light is understood as an electromagnetic phenomenon. It is de-
scribed by the time evolution of electromagnetic fields, which are solutions
of a system of partial differential equations. When quantum effects are im-
portant, this theory must be quantized. A mathematically solid foundation
for the quantization of the electromagnetic field in 1 + 3 dimensional space
time has not yet been found.

The reason that a field theory involving partial differential equations can
be replaced by a geometric theory involving rays is that visible light has very
short wavelength compared to the size of human sensory organs and com-
mon physical objects. Thus, much observational data involving light occurs
in an asymptotic regime of very short wavelength. The short wavelength
asymptotic study of systems of partial differential equations often involves
significant simplifications. In particular there are often good descriptions
involving rays. We will use the phrase geometric optics to be synonymous
with short wavelength asymptotic analysis of solutions of systems of partial
differential equations.

In optical phenomena, not only is the wavelength short but the wave
trains are long. The study of structures which have short wavelength and
are in addition very short, say a short pulse, also yields a geometric theory.
Long wave trains have a longer time to allow nonlinear interactions which
makes nonlinear effects more important. Long propagation distances also
increase the importance of nonlinear effects. An extreme example is the
propagation of light across the ocean in optical fibers. The nonlinear effects
are very weak, but over 5000 kilometers, the cumulative effects can be large.
To control signal degradation in such fibers, the signal is treated about
every 30 kilometers. Still, there is free propagation for 30 kilometers which
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needs to be understood. This poses serious analytic, computational, and
engineering challenges.

A second way to bring nonlinear effects to the fore is to increase the
amplitude of disturbances. It was only with the advent of the laser that
sufficiently intense optical fields were produced so that nonlinear effects are
routinely observed. The conclusion is that for nonlinearity to be important,
either the fields or the propagation distances must be large. For the latter,
dissipative losses must be small.

The ray description as a simplification of the Maxwell equations is anal-
ogous to the fact that classical mechanics gives a good approximation to so-
lutions of the Schrödinger equation of quantum mechanics. The associated
ideas are called the quasiclassical approximation. The methods developed for
hyperbolic equations also work for this important problem in quantum me-
chanics. A brief treatment is presented in §5.2.2. The role of rays in optics is
played by the paths of classical mechanics. There is an important difference
in the two cases. The Schrödinger equation has a small parameter, Planck’s
constant. The quasiclassical approximation is an approximation valid for
small Planck’s constant. The mathematical theory involves the limit as this
constant tends to zero. The Maxwell equations apparently have a small
parameter too, the inverse of the speed of light. One might guess that rays
occur in a theory where this speed tends to infinity. This is not the case.
For the Maxwell equations in a vacuum the small parameter that appears is
the wavelength which is introduced via the initial data. It is not in the equa-
tion. The equations describing the dispersion of light when it interacts with
matter do have a small parameter, the inverse of the resonant frequencies of
the material, and the analysis involves data tuned to this frequency just as
the quasiclassical limit involves data tuned to Planck’s constant. Dispersion
is one of my favorite topics. Interested readers are referred to the articles
[Donnat and Rauch, 1997] (both) and [Rauch, 2007].

Short wavelength phenomena cannot simply be studied by numerical
simulations. If one were to discretize a cubic meter of space with mesh
size 10−5 cm so as to have five mesh points per wavelength, there would
be 1021 data points in each time slice. Since this is nearly as large as the
number of atoms per cubic centimeter, there is no chance for the memory of
a computer to be sufficient to store enough data, let alone make calculations.
Such brute force approaches are doomed to fail. A more intelligent approach
would be to use radical local mesh refinement so that the fine mesh was
used only when needed. Still, this falls far outside the bounds of present
computing power. Asymptotic analysis offers an alternative approach that is
not only powerful but is mathematically elegant. In the scientific literature
it is also embraced because the resulting equations sometimes have exact
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solutions and scientists are well versed in understanding phenomena from
small families of exact solutions.

Short wavelength asymptotics can be used to great advantage in many
disparate domains. They explain and extend the basic rules of linear geomet-
ric optics. They explain the dispersion and diffraction of linear electromag-
netic waves. There are nonlinear optical effects, generation of harmonics,
rotation of the axis of elliptical polarization, and self-focusing, which are
also well described.

Geometric optics has many applications within the subject of partial
differential equations. They play a key role in the problem of solvability of
linear equations via results on propagation of singularities as presented in
§5.5. They are used in deriving necessary conditions, for example for hy-
poellipticity and hyperbolicity. They are used by Ralston to prove necessity
in the conjecture of Lax and Phillips on local decay. Via propagation of
singularities they also play a central role in the proof of sufficiency. Propa-
gation of singularities plays a central role in problems of observability and
controlability (see §5.6). The microlocal elliptic regularity theorem and the
propagation of singularities for symmetric hyperbolic operators of constant
multiplicity is treated in this book. These are the two basic results of linear
microlocal analysis. These notes are not a systematic introduction to that
subject, but they present an important part en passant.

Chapters 9 and 10 are devoted to the phenomenon of resonance whereby
waves with distinct phases interact nonlinearly. They are preparatory for
Chapter 11. That chapter constructs a family of solutions of the compress-
ible 2d Euler equations exhibiting three incoming wave packets interacting
to generate an infinite number of oscillatory wave packets whose velocities
are dense in the unit circle.

Because of the central role played by rays and characteristic hypersur-
faces, the analysis of conormal waves is closely related to geometric optics.
The reader is referred to the treatment of progressing waves in [Lax, 2006]
and to [Beals, 1989] for this material.

Acknowledgments. I have been studying hyperbolic partial differential
equations for more that forty years. During that period, I have had the
pleasure and privilege to work for extended periods with (in order of ap-
pearance) M. Taylor, M. Reed, C. Bardos, G. Métivier, G. Lebeau, J.-L.
Joly, and L. Halpern. I thank them all for the things that they have taught
me and the good times spent together. My work in geometric optics is mostly
joint with J.-L. Joly and G. Métivier. This collaboration is the motivation
and central theme of the book. I gratefully acknowledge my indebtedness
to them.
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G. Métivier, Para-differential Calculus and Applications to the Cauchy problem for
Nonlinear Systems. Centro di Ricerca Matematica Ennio De Giorgi (CRM)
Series, 5. Edizioni della Normale, Pisa, 2008.

G. Métivier and J. Rauch, Real and complex regularity are equivalent for hyperbolic
characteristic varieties, Differential Integral Equations, 16 (2003), 993–999.

G. Métiver and J. Rauch, Invariance and stability of the profile equations of geo-
metric optics, Acta Math. Sci. 31 B6 (2011), 2141–2158.
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simple examples, 152–155
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cautionary example, 27
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from solution by Fourier transform,

20–27
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law of, xvi, 28
operator, 30
total, 42

refraction, Snell’s law, xvi, 36–42
resonance, xviii

collinear, 341
examples of, 291–302, 317–332
introduction to, 291–294
quadratic, definition, 341
quasilinear, 302–314, 327–332
relation, 292
relations for Euler equations, 341–342
semilinear, 291–302, 314–315,

321–327
Römer, xvi

Schauder’s lemma, 217–222
Schrödinger’s equation, 149–151
self phase modulation, 287, 288
semiclassical limit of quantum

mechanics, 278
semisimple eigenvalue, 117
short wavelength asymptotic analysis,

xvi
singularities

(microlocal) of piecewise smooth
functions, 140

and the method of characteristics,
10–11

for progressing waves, 12–16
propagation for piecewise smooth

waves, 10–11, 194
propagation global in time, 192–195
propagation local in time, 188–191
propagation of, xiv, xviii
propagation of and stabilization,

195–205
slowly varying envelope approximation,

287
small divisor, 310–313

hypothesis, 312, 318

for Euler equations, 339

smooth characteristic variety
hypothesis, 163–178, 286–289

smooth points, of the characteristic
variety, 76–78

Snell’s law, see refraction

Sobolev embedding, 216, 220

space like, 146

spectral projection, 117

spectrum

of a periodic function, 309

of F (V ), 315

of principal profile, 309

stability

Hadamard’s notion of, 43

theorem, quasilinear, 314

theorem, semilinear, 283

stationary phase, 210

stationary phase inequality, 120–122

stationary point, nondegenerate, 120

stratification theorem, 76, 94, 99

Strichartz inequalities, xii, 111–117,
251–257

three wave interaction

infinite system, 337

ode, 298–302, 330–332, 336

pde, 294–298, 322–327

resonance of order three, 341

time of nonlinear interaction

quasilinear, 303

semilinear, 262

time-like, 146

cone, 64–71

transport equation, 144, 146

wave

acoustic, xiv, 341

conormal, xviii, 16, 194

plane, 14, 33–34, 71–79, 150

progressing, 12–16

shock, xv, 12

short pulse, xvi

spherical, 32, 171–173

vorticity, 341

wave packet, xiv, 1, 22–28, 34–36, 142

wave train, 1, 291

wave number, good and bad, 93–96

wavefront set, 136–140, 186–195,
201–204

Wiener algebra, 96
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WKB
from Euler’s method, 123–127
from iterative improvement, 125–127
from perturbation theory, 131–132
from solution by Fourier transform,

20–27

Young measure, 293
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equations of hyperbolic type, which are used, in particular, to 
describe propagation of waves at fi nite speed.

Among the topics carefully presented in the book are nonlinear 
geometric optics, the asymptotic analysis of short wavelength solu-
tions, and nonlinear interaction of such waves. Studied in detail are 
the damping of waves, resonance, dispersive decay, and solutions to 
the compressible Euler equations with dense oscillations created 
by resonant interactions. Many fundamental results are presented for the fi rst time 
in a textbook format. In addition to dense oscillations, these include the treatment of 
precise speed of propagation and the existence and stability questions for the three 
wave interaction equations.

One of the strengths of this book is its careful motivation of ideas and proofs, 
showing how they evolve from related, simpler cases. This makes the book quite 
useful to both researchers and graduate students interested in hyperbolic partial 
differential equations. Numerous exercises encourage active participation of the 
reader.
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