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Preface

The main objective of this book is to give a comprehensive introduction
to the qualitative theory of ordinary differential equations. In particular,
among other topics, we study the existence and uniqueness of solutions,
phase portraits, linear equations and their perturbations, stability and Lya-
punov functions, hyperbolicity, and equations in the plane.

The book is also intended to serve as a bridge to important topics that
are often left out of a second course of ordinary differential equations. Exam-
ples include the smooth dependence of solutions on the initial conditions,
the existence of topological and differentiable conjugacies between linear
systems, and the Hölder continuity of the conjugacies in the Grobman–
Hartman theorem. We also give a brief introduction to bifurcation theory,
center manifolds, normal forms, and Hamiltonian systems.

We describe mainly notions, results and methods that allow one to dis-
cuss the qualitative properties of the solutions of an equation without solving
it explicitly. This can be considered the main aim of the qualitative theory
of ordinary differential equations.

The book can be used as a basis for a second course of ordinary differen-
tial equations. Nevertheless, it has more material than the standard courses,
and so, in fact, it can be used in several different ways and at various levels.
Among other possibilities, we suggest the following courses:

a) advanced undergraduate/beginning graduate second course: Chap-
ters 1–5 and 7–8 (without Sections 1.4, 2.5 and 8.3, and without the
proofs of the Grobman–Hartman and Hadamard–Perron theorems);

b) advanced undergraduate/beginning graduate course on equations in
the plane: Chapters 1–3 and 6–7;

ix
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c) advanced graduate course on stability: Chapters 1–3 and 8–9;

d) advanced graduate course on hyperbolicity: Chapters 1–5.

Other selections are also possible, depending on the audience and on the
time available for the course. In addition, some sections can be used for
short expositions, such as Sections 1.3.2, 1.4, 2.5, 3.3, 6.2 and 8.3.

Other than some basic pre-requisites of linear algebra and differential
and integral calculus, all concepts and results used in the book are recalled
along the way. Moreover, (almost) everything is proven, with the excep-
tion of some results in Chapters 8 and 9 concerning more advanced topics
of bifurcation theory, center manifolds, normal forms and Hamiltonian sys-
tems. Being self-contained, the book can also serve as a reference or for
independent study.

Now we give a more detailed description of the contents of the book.
Part 1 is dedicated to basic concepts and linear equations.

• In Chapter 1 we introduce the basic notions and results of the the-
ory of ordinary differential equations, in particular, concerning the
existence and uniqueness of solutions (Picard–Lindelöf theorem) and
the dependence of solutions on the initial conditions. We also estab-
lish the existence of solutions of equations with a continuous vector
field (Peano’s theorem). Finally, we give an introduction to the de-
scription of the qualitative behavior of the solutions in the phase
space.

• In Chapter 2 we consider the particular case of (nonautonomous)
linear equations and we study their fundamental solutions. It is of-
ten useful to see an equation as a perturbation of a linear equation,
and to obtain the solutions (even if implicitly) using the variation
of parameters formula. This point of view is often used in the book.
We then consider the particular cases of equations with constant co-
efficients and equations with periodic coefficients. More advanced
topics include the C1 dependence of solutions on the initial con-
ditions and the existence of topological conjugacies between linear
equations with hyperbolic matrices of coefficients.

Part 2 is dedicated to the study of stability and hyperbolicity.

• In Chapter 3, after introducing the notions of stability and asymp-
totic stability, we consider the particular case of linear equations, for
which it is possible to give a complete characterization of these no-
tions in terms of fundamental solutions. We also consider the partic-
ular cases of equations with constant coefficients and equations with
periodic coefficients. We then discuss the persistence of asymptotic
stability under sufficiently small perturbations of an asymptotically
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stable linear equation. We also give an introduction to the theory of
Lyapunov functions, which sometimes yields the stability of a given
solution in a more or less automatic manner.

• In Chapters 4–5 we introduce the notion of hyperbolicity and we
study some of its consequences. Namely, we establish two key re-
sults on the behavior of the solutions in a neighborhood of a hyper-
bolic critical point: the Grobman–Hartman and Hadamard–Perron
theorems. The first shows that the solutions of a sufficiently small
perturbation of a linear equation with a hyperbolic critical point are
topologically conjugate to the solutions of the linear equation. The
second shows that there are invariant manifolds tangent to the sta-
ble and unstable spaces of a hyperbolic critical point. As a more ad-
vanced topic, we show that all conjugacies in the Grobman–Hartman
theorem are Hölder continuous. We note that Chapter 5 is more tech-
nical: the exposition is dedicated almost entirely to the proof of the
Hadamard–Perron theorem. In contrast to what happens in other
texts, our proof does not require a discretization of the problem or
additional techniques that would only be used here. We note that
the material in Sections 5.3 and 5.4 is used nowhere else in the book.

In Part 3 we describe results and methods that are particularly useful in the
study of equations in the plane.

• In Chapter 6 we give an introduction to index theory and its ap-
plications to differential equations in the plane. In particular, we
describe how the index of a closed path with respect to a vector field
varies with the path and with the vector field. We then present sev-
eral applications, including a proof of the existence of a critical point
inside any periodic orbit, in the sense of Jordan’s curve theorem.

• In Chapter 7 we give an introduction to the Poincaré–Bendixson
theory. After introducing the notions of α-limit and ω-limit sets,
we show that bounded semiorbits have nonempty, compact and con-
nected α-limit and ω-limit sets. Then we establish one of the impor-
tant results of the qualitative theory of ordinary differential equa-
tions in the plane, the Poincaré–Bendixson theorem. In particular,
it yields a criterion for the existence of periodic orbits.

Part 4 is of a somewhat different nature and it is only here that not every-
thing is proved. Our main aim is to make the bridge to important topics
that are often left out of a second course of ordinary differential equations.

• In Chapter 8 we give an introduction to bifurcation theory, with
emphasis on examples. We then give an introduction to the theory
of center manifolds, which often allows us to reduce the order of an
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equation in the study of stability or the existence of bifurcations. We
also give an introduction to the theory of normal forms that aims
to eliminate through a change of variables all possible terms in the
original equation.

• Finally, in Chapter 9 we give an introduction to the theory of Hamil-
tonian systems. After introducing some basic notions, we describe
several results concerning the stability of linear and nonlinear Hamil-
tonian systems. We also consider the notion of integrability and the
Liouville–Arnold theorem on the structure of the level sets of inde-
pendent integrals in involution. In addition, we describe the basic
ideas of the KAM theory.

The book also includes numerous examples that illustrate in detail the new
concepts and results as well as exercises at the end of each chapter.

Luis Barreira and Claudia Valls

Lisbon, February 2012
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