Semiclassical Analysis

Maciej Zworski

Graduate Studies
in Mathematics
Volume I38

Semiclassical Analysis

Semiclassical Analysis

Maciej Zworski

Graduate Studies in Mathematics
Volume 138

EDITORIAL COMMITTEE

David Cox (Chair)
Daniel S. Freed
Rafe Mazzeo
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 35Q40, 81Q20, 35S05, 35S30, 35P20, 81S10.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-138

Library of Congress Cataloging-in-Publication Data
 Zworski, Maciej.
 Semiclassical analysis / Maciej Zworski.
 p. cm. - (Graduate studies in mathematics ; v. 138)
 Includes bibliographical references and index.
 ISBN 978-0-8218-8320-4 (alk. paper)
 1. Quantum theory-Mathematics. 2. Differential equations, Partial. I. Title.
 QC174.17.D54Z96 2012
 515-dc23

2012010649

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2012 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
©
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
$10987654321 \quad 171615141312$

Contents

Preface xi
Chapter 1. Introduction 1
§1.1. Basic themes 1
§1.2. Classical and quantum mechanics 3
§1.3. Overview 5
§1.4. Notes 9
Part 1. BASIC THEORY
Chapter 2. Symplectic geometry and analysis 13
§2.1. Flows 13
$\S 2.2$. Symplectic structure on $\mathbb{R}^{2 n}$ 14
§2.3. Symplectic mappings 16
§2.4. Hamiltonian vector fields 20
§2.5. Lagrangian submanifolds 23
§2.6. Notes 26
Chapter 3. Fourier transform, stationary phase 27
§3.1. Fourier transform on \mathscr{S} 27
§3.2. Fourier transform on \mathscr{S}^{\prime} 35
§3.3. Semiclassical Fourier transform 38
§3.4. Stationary phase in one dimension 40
§3.5. Stationary phase in higher dimensions 46
§3.6. Oscillatory integrals 52
§3.7. Notes 54
Chapter 4. Semiclassical quantization 55
§4.1. Definitions 56
§4.2. Quantization formulas 59
§4.3. Composition, asymptotic expansions 65
§4.4. Symbol classes 72
§4.5. Operators on L^{2} 81
§4.6. Compactness 87
§4.7. Inverses, Gårding inequalities 90
§4.8. Notes 96
Part 2. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS
Chapter 5. Semiclassical defect measures 99
§5.1. Construction, examples 99
§5.2. Defect measures and PDE 104
§5.3. Damped wave equation 106
§5.4. Notes 117
Chapter 6. Eigenvalues and eigenfunctions 119
§6.1. The harmonic oscillator 119
$\S 6.2$. Symbols and eigenfunctions 124
§6.3. Spectrum and resolvents 129
§6.4. Weyl's Law 132
§6.5. Notes 137
Chapter 7. Estimates for solutions of PDE 139
§7.1. Classically forbidden regions 140
§7.2. Tunneling 143
§7.3. Order of vanishing 148
§7.4. $\quad L^{\infty}$ estimates for quasimodes 152
§7.5. Schauder estimates 158
§7.6. Notes 167
Part 3. ADVANCED THEORY AND APPLICATIONS
Chapter 8. More on the symbol calculus 171
§8.1. Beals's Theorem 171
§8.2. Real exponentiation of operators 177
§8.3. Generalized Sobolev spaces 182
§8.4. Wavefront sets, essential support, and microlocality 187
§8.5. Notes 196
Chapter 9. Changing variables 197
§9.1. Invariance, half-densities 197
§9.2. Changing symbols 203
§9.3. Invariant symbol classes 206
§9.4. Notes 217
Chapter 10. Fourier integral operators 219
§10.1. Operator dynamics 220
§10.2. An integral representation formula 226
§10.3. Strichartz estimates 235
§10.4. L^{p} estimates for quasimodes 240
§10.5. Notes 244
Chapter 11. Quantum and classical dynamics 245
§11.1. Egorov's Theorem 245
§11.2. Quantizing symplectic mappings 251
§11.3. Quantizing linear symplectic mappings 257
§11.4. Egorov's Theorem for longer times 264
§11.5. Notes 271
Chapter 12. Normal forms 273
§12.1. Overview 273
§12.2. Normal forms: real symbols 275
§12.3. Propagation of singularities 279
§12.4. Normal forms: complex symbols 282
§12.5. Quasimodes, pseudospectra 286
§12.6. Notes 289
Chapter 13. The FBI transform 291
§13.1. Motivation 291
§13.2. Complex analysis 293
§13.3. FBI transforms and Bergman kernels 302
§13.4. Quantization and Toeplitz operators 311
§13.5. Applications 321
$\S 13.6$. Notes 336
Part 4. SEMICLASSICAL ANALYSIS ON MANIFOLDS
Chapter 14. Manifolds 339
§14.1. Definitions, examples 339
§14.2. Pseudodifferential operators on manifolds 345
§14.3. Schrödinger operators on manifolds 354
§14.4. Notes 362
Chapter 15. Quantum ergodicity 365
§15.1. Classical ergodicity 366
§15.2. A weak Egorov Theorem 368
§15.3. Weyl's Law generalized 370
§15.4. Quantum ergodic theorems 372
§15.5. Notes 379
Part 5. APPENDICES
Appendix A. Notation 383
§A.1. Basic notation 383
§A.2. Functions, differentiation 385
§A.3. Operators 387
§A.4. Estimates 388
§A.5. Symbol classes 389
Appendix B. Differential forms 391
§B.1. Definitions 391
§B.2. Push-forwards and pull-backs 394
§B.3. Poincaré's Lemma 396
§B.4. Differential forms on manifolds 397
Appendix C. Functional analysis 399
§C.1. Operator theory 399
§C.2. Spectral theory 403
§C.3. Trace class operators 411
Appendix D. Fredholm theory 415
§D.1. Grushin problems 415
§D.2. Fredholm operators 416
§D.3. Meromorphic continuation 418
Bibliography 421
Index 427

PREFACE

This book originated with a course I taught at UC Berkeley during the spring of 2003 , with class notes taken by my colleague Lawrence C. Evans. Various versions of these notes have been available on-line as the Evans-Zworski lecture notes on semiclassical analysis and our original intention was to use them as the basis of a coauthored book. Craig Evans's contributions to the current manuscript can be recognized by anybody familiar with his popular partial differential equations (PDE) text [E]. In the end, the scope of the project and other commitments prevented Craig Evans from participating fully in the final stages of the effort, and he decided to withdraw from the responsibility of authorship, generously allowing me to make use of the contributions he had already made. I and my readers owe him a great debt, for this book would never have appeared without his participation.

Semiclassical analysis provides PDE techniques based on the classicalquantum (particle-wave) correspondence. These techniques include such well-known tools as geometric optics and the Wentzel-Kramers-Brillouin (WKB) approximation. Examples of problems studied in this subject are high energy eigenvalue asymptotics or effective dynamics for solutions of evolution equations. From the mathematical point of view, semiclassical analysis is a branch of microlocal analysis which, broadly speaking, applies harmonic analysis and symplectic geometry to the study of linear and nonlinear PDE.

The book is intended to be a graduate level text introducing readers to semiclassical and microlocal methods in PDE. It is augmented in later chapters with many specialized advanced topics. Readers are expected to have reasonable familiarity with standard PDE theory (as recounted, for example, in Parts I and II of $[\mathbf{E}]$), as well as a basic understanding of linear functional analysis. On occasion familiarity with differential forms will also prove useful.

Several excellent treatments of semiclassical analysis have appeared recently. The book [D-S] by Dimassi and Sjöstrand starts with the WKBmethod, develops the general semiclassical calculus, and then provides hightech spectral asymptotics. Martinez $[\mathbf{M}]$ provides a systematic development of FBI transform techniques, with applications to microlocal exponential estimates and to propagation estimates. This text is intended as a more elementary, but much broader, introduction. Except for the general symbol calculus, for which we followed Chapter 7 of $[\mathbf{D}-\mathbf{S}]$, there is little overlap with these other two texts or with the influential books by Helffer [He] and by Robert [R]. Guillemin and Sternberg [G-St1] offer yet another perspective on the subject, very much complementary to that given here. Their notes concentrate on global and functorial aspects of semiclassical analysis, in particular on the theory of Fourier integral operators and on trace formulas.

The approach to semiclassical analysis presented here is influenced by my long collaboration with Johannes Sjöstrand. I would like to thank him for sharing his philosophy and insights over the years. I first learned microlocal analysis from Richard Melrose, Victor Guillemin, and Gunther Uhlmann, and it is a pleasure to acknowledge my debt to them. Discussions of semiclassical physics and chemistry with Stéphane Nonnenmacher, Paul Brumer, William H. Miller, and Robert Littlejohn have been enjoyable and valuable. They have added a lot to my appreciation of the subject.

I am especially grateful to Stéphane Nonnenmacher, Semyon Dyatlov, Claude Zuily, Oran Gannot, Xi Chen, Hans Christianson, Jeff Galkowski, Justin Holmer, Long Jin, Gordon Linoff, and Steve Zelditch for their very careful reading of the earlier versions of this book and for their many valuable comments and corrections.

My thanks also go to Faye Yeager for typing the original lecture notes and to Jonathan Dorfman for $\mathrm{TE}_{\mathrm{E}} \mathrm{X}$ advice. Stephen Moye at the AMS provided fantastic help on deeper $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ issues and Arlene O'Sean's excellent copyediting removed many errors and inconsistencies.

I will maintain on my website at the UC Berkeley Mathematics Department http://math.berkeley.edu/~zworski a list of errata and corrections, as well as at the American Mathematical Society's website www.ams.org/bookpages/gsm-138. Please let me know about any errors you find.

I have been supported by NSF grants during the writing of this book, most recently by NSF grant DMS-0654436.

Bibliography

[A] I. Alexandrova, Semi-classical wavefront set and Fourier integral operators, Can. J. Math. 60(2008), 241-263.
[A-G] S. Alinhac and P. Gérard, Pseudo-differential Operators and the Nash-Moser Theorem, American Math Society, 2007.
[A-N] N. Anantharaman and S. Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. l'institut Fourier 57(2007), 2465-2523.
[Ba] W. Ballman, Lectures on Spaces of Non-positive Curvature, with an appendix by M. Brin, Birkhäuser, 1995.
[Bar] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. I, Commun. Pure Appl. Math. 14(1961), 187-214.
[B-M-N] A. Bényi, D. Maldonado, and V. Naibo, What is... a Paraproduct?, Notices A.M.S. 57(7) (2010), 858-860.
[Ber] F. A. Berezin, Wick and anti-Wick symbols of operators, Mat. Sb. (N.S.) 86(128) (1971), 578-610.
[Ber-Sh] F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Kluwer Academic Publishers, 1991.
[Be-Ber-S] R. Berman, B. Berndtsson, and J. Sjöstrand, A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Math. 46(2008), 197-217.
[B-B-R] J.-F. Bony, N. Burq, and T. Ramond, Minoration de la résolvante dans le cas captif, Comptes Rendus Acad. Sci. Mathematique 348(23-24)(2010), 12791282.
[B] J.-M. Bony, Evolution equations and generalized Fourier integral operators, in Advances in Phase Space Analysis of Partial Differential Equations, Progr. Nonlinear Differential Equations Appl., 78, Birkhäuser.
[B-C] J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122(1994), 77-118.
[B-M-S] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of Kähler and $g l(N), N \rightarrow \infty$ limits, Comm. Math. Phys. 165(1994), 281-296.
[B-P-U] D. Borthwick, T. Paul, and A. Uribe, Legendrian distributions with applications to relative Poincaré series, Invent. Math. 122(1995), 359-402.
[BdM-G] L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Operators, Annals of Mathematics Studies, 99, 1981.
[BdM-S] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35(1976), 123-164.
[B-R] A. Bouzouina and D. Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J. 111(2002), 223-252.
[B-G-T] N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126(2004), 569605.
[CdS] A. Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, 1764, 2001.
[Car] R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations, World Scientific Publishing, 2008.
[Ca] D. W. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math. 1-23, Birkhäuser Boston, 1999.
[Ca-D] D. W. Catlin and J. P. D'Angelo, A stabilization theorem for Hermitian forms and applications to holomorphic mappings, Math. Res. Lett. 3(1996), 149-166.
[Cha] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239(2003), 1-28.
[Ch] B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52(1979), 264-379.
[Chr] H. Christiansen, Semiclassical nonconcentration near hyperbolic orbits, J. Funct. Analysis 262(2007), 145-195.
[CdV] Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102(1985), 497-502.
[C-F] A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. PDE 3(1978), 979-1005.
[Da] E. B. Davies, Semi-classical states for non-selfadjoint Schrödinger operators, Comm. Math. Phys. 200(1999), 35-41.
[Da1] E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, 1995.
[De] J.-M. Delort, F.B.I. Transformation: Second Microlocalization and Semilinear Caustics, Lecture Notes in Mathematics, 1522, Springer, 1992.
[D-S-Z] N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical differential operators, Comm. Pure Appl. Math. 57(2004), 384-415.
[D-S] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, Cambridge University Press, 1999.
[dC] M. do Carmo, Differential Forms and Applications, Springer, 1994.
[DoLi] V. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic, Comm. Math. Phys. 135(1991), 267-302.
[D-F] H. Donnelly and C. Fefferman, Nodal sets for eigenfunctions of the Laplacian on surfaces, Journal of the American Math. Society 3(1990), 333-353.
[D] J. Duistermaat, Fourier Integral Operators, Birkhäuser, 1996.
[Du-Sj] J. J. Duistermaat and J. Sjöstrand, A global construction for pseudodifferential operators with non-involutive characteristics, Inv. Math. 20(1973), 209-225.
[Dy-Gu] S. Dyatlov and C. Guillarmou, Microlocal limits of plane waves and Eisenstein functions, arXiv 1204.1305.
[Dy-Zw] S. Dyatlov and M. Zworski, Quantum ergodicity for restrictions in hypersurfaces, arXiv 1204.0284.
[E] L. C. Evans, Partial Differential Equations, Graduate Studies in Math., 19, American Math. Society, 1998.
[E-G] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
[F-M] M. V. Fedoriuk and V. P. Maslov, Semi-Classical Approximation in Quantum Mechanics, Reidel, 1981.
[Fe1] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Inv. Math. 26(1974), 1-65.
[Fe2] C. Fefferman, The uncertainty principle, Bull. A.M.S. 9(1983), 129-206.
[F] G. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, Princeton University Press, 1989.
[F-J] G. Friedlander and M. Joshi, An Introduction to the Theory of Distributions (2nd edition), Cambridge University Press, 1998.
[Ge] P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire Équations aux Dérivées Partielles 1990-1991, exp. XVI, École Polytech., Palaiseau, 1991.
[Ge-Le] P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. Journal 71(1993), 559-607.
[G-T] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.
[G] D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, 1995.
[G-S] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators, An Introduction, Cambridge University Press, 1994.
[G-St] V. Guillemin and S. Sternberg, Geometric Asymptotics. Mathematical Surveys, No. 14, American Mathematical Society, 1977.
[G-St1] V. Guillemin and S. Sternberg, Semiclassical Analysis, on-line lecture notes, http://www-math.mit.edu/~vwg/semiclassGuilleminSternberg.pdf.
[Gu-Si] S. J. Gustafson and I. M. Sigal, Mathematical Concepts of Quantum Mechanics, Springer, 2003.
[Gut] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, 1990.
[Hak] F. Haake, Quantum Signatures of Chaos, Springer, 2001.
[HaLi] Q. Han and F.-H. Lin, Nodal Sets of Solutions of Elliptic Differential Equations, book in preparation, http://www.nd.edu/~qhan/nodal.pdf.
[Ha] K. Hannabuss, An Introduction to Quantum Theory, Oxford University Press, 1997.
[He] B. Helffer, Semi-classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, 1336, Springer, 1988.
[H-M-R] B. Helffer, A. Martinez, and D. Robert, Ergodicité et limite semi-classique, Commun. Math. Phys 109(1987), 313-326.
[H-S] B. Helffer and J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, Springer Lecture Notes in Physics, 345, 118-197, Springer, Berlin, 1989.
[H-S1] B. Helffer and J. Sjöstrand, Semiclassical analysis for Harper's equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) 39(1989), 1-124.
[H-T] E. J. Heller and S. Tomsovic, Postmodern quantum mechanics, Physics Today 46(1993), 38-46.
[Hi-Si] P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory: With Applications to Schrödinger operators, Applied Mathematical Sciences, 113, Springer, 1996.
[Ho-Ze] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel, 1994.
[H] L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd edition, North Holland, 1990.
[H1] L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume I, Springer, 1983.
[H2] L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume II, Springer, 1983.
[H3] L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume III, Springer, 1985.
[H4] L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume IV, Springer, 1985.
[H5] L. Hörmander, Quadratic hyperbolic operators, in Microlocal Analysis and Applications, Lecture Notes in Mathematics, 1991, Volume 1495, 118-160.
[H6] L. Hörmander, Symplectic classification of quadratic forms and general Mehler formulas, Math. Z. 219(1995), 413-449.
[I] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics, Springer Monographs in Mathematics, Springer, 1998.
$[\mathrm{K}-\mathrm{T}]$ M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120(1998), 955-980.
[Ko-T] H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58(2005), 217-284.
[K-T-Z] H. Koch, D. Tataru, and M. Zworski, Semiclassical L^{p} estimates, Annales Henri Poincaré 8(2007), 885-916.
[L] G. Lebeau, Equation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), 73-109, Math. Phys. Stud., 19, Kluwer, 1996.
[L-V] G. Lion and M. Vergne, The Weil Representation, Maslov Index, and Theta Series, Progress in Mathematics, 6, Birkhäuser, 1980.
[L-P] P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9(1993), 553-618.
[M] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer, 2002.
[Me] G. Métivier, Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, CRM Series, 5th Ed. Norm., Pisa, 2008.
[Mi] W. H. Miller, The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations, J. of Phys. Chem. A 105, 2942 (2001).
[Mo] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120(1965), 286-294.
[N$] \quad$ S. Nakamura, Agmon-type exponential decay estimates for pseudodifferential operators, J. Math. Sci. Univ. Tokyo 5(1998), 693-712.
[P-U] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis 132(1995), 192-249.
[Po] T. Potter, Effective dynamics for N-solitons of the Gross-Pitaevskii equation, J. Nonlin. Science, 22(2012), 351-370.
[Pu] M. Putinar, Sums of hermitian squares: old and new, to appear.
[Q] D. G. Quillen, On the representation of hermitian forms as sums of squares, Invent. Math. 5(1968), 237-242.
[R-T] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds, Comm. Pure Appl. Math. 28(1975), 501-523.
[R-S] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis, Academic Press, 1980.
[R] D. Robert, Autour de l'approximation semi-classique, Progress in Mathematics, 68, Birkhäuser, 1987.
[R1] D. Robert, Propagation of coherent states in quantum mechanics and applications, in Partial Differential Equations and Applications, 181-252, Sémin. Congr., 15, Soc. Math. France, Paris, 2007.
[Sa-V] Yu. Safarov and D. Vassiliev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Translations of Mathematical Monographs, American Math. Society, 1997.
[SR] X. Saint Raymond, Elementary Introduction to the Theory of Pseudodifferential Operators, CRC Press, 1991.
[Sh] A. I. Schnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29(1974), 181-182.
[Shu] Mihail A. Shubin, Pseudodifferential operators and spectral theory, second edition, Springer, 2001.
[Si] B. Simon, Trace Ideals and Their Applications, second edition, Mathematical Surveys and Monographs, Vol. 120, American Mathematical Society, 2005.
[S1] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, Volume 95, 1982.
[S2] J. Sjöstrand, Unpublished lecture notes, Lund University, 1985-1986.
[S3] J. Sjöstrand, Function spaces associated to global I-Lagrangian manifolds, in Structure of Solutions of Differential Equations, Katata/Kyoto, 1995, World Scientific, 1996, 369-423.
[S-Z1] J. Sjöstrand and M. Zworski, Quantum monodromy and semiclassical trace formulae, J. Math. Pure Appl. 81(2002), 1-33.
[S-Z2] J. Sjöstrand and M. Zworski, Elementary linear algebra for advanced spectral problems, Ann. Inst. Fourier 57(2007), 2095-2141.
[S-Z3] J. Sjöstrand and M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137(2007), 381-459.
[S-Z4] J. Sjöstrand and M. Zworski, The complex scaling method for scattering by strictly convex obstacles, Ark. Mat. 33(1995), 135-172.
[S] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, 1993.
[S-Z] C. D. Sogge and S. Zelditch, Riemannian manifolds with maximal eigenfunction growth, Duke Math. J. 114(2002), 387-437.
[St] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.
[Sto] H.-J. Stöckmann, Quantum Chaos. An Introduction, Cambridge University Press, 1999.
[T] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Royal Soc. Edinburgh. Sect. A. 115(1999), 193-230.
[Ta] M. E. Taylor, Pseudodifferential operators, Princeton University Press, 1981.
[T-E] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, 2005.
[W] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, GMT, 94, Springer, 1983.
[Za] G. M. Zaslavsky, Stochasticity in quantum systems, Phys. Rep. 80(1981), 157-250.
[Ze1] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55(1987), 919-941.
[Ze2] S. Zelditch, Szegö kernels and a theorem of Tian, IMRN 1998, no. 6, 317-331.
[Z-Z] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175(1996), 673-682.
[Zh] F. Zhang, The Schur complement and its applications, in Numerical Methods and Algorithms, Vol. 4, Springer, 2005.
[Zu] W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. 75(2003), 715-775.
[Zw] M. Zworski, A remark on a paper by E. B. Davies, Proc. A.M.S. 129(2001), 2955-2957.

Index

adjoint, 58
adjoint action, 174
almost analytic extension, 34, 358, 359
annihilation, creation operators, 120
asymptotic sum, 73
atlas, 340
average
in time, 109, 366
of symbols, 372

Beals's Theorem, 7, 171-177, 179, 180, 196, 216, 249, 271
Bergman kernel, 293, 307-309
Bergman projection, 307
Bergman projector, 293
Birkhoff's Ergodic Theorem, 367
Borel's Theorem, 74, 231, 278, 284

Cartan's formula, 22, 23, 255, 395, 397
Cauchy-Riemann operator, 34, 289, 294
characteristic
equations, 274
variety, 104
closable operator, 405
closed operator, 405
Coarea Formula, 366
coherent state, 102
commutator, 5, 61, 68, 106, 174
compact operator, $87-90,129,186$, 403-405, 409, 411, 416
composition formula, $6,66,160,175$, $178,186,193,194,263,268$
conjugation, 141, 277, 282
and symbols, 141
by Fourier transform, 56, 64
by unitary operators, $247,251,256$,
$257,260,266,368$
contraction of forms, 20, 393
coordinate patch, 340
cotangent bundle, 341
canonical symplectic form, 342
integral over, 342
cotangent space, 342
Cotlar-Stein Theorem, 86, 90, 401
defect measure, semiclassical, 99-117
definition, 101
examples, 102-104
on torus, 108
properties, 104-106
density of states, 132
diffeomorphism, 14, 18, 22, 24, 48, 192, 194, 197, 199, 203, 207, 340, 383, 386
differential, 392
differential forms, $15,22,24,230,342$, 391-398
canonical, 342
differential operator, 345
distribution, $35,58,76,345,347,387$, 399
domain of operator, 405
Duhamel's formula, 154, 234, 270, 271
dynamics
classical, 1, 4, 8, 13-14, 106, 272, 274
operator, 181, 220-227, 246
quantum, $5,106,219-226,245-251$, 264-271, 409

Egorov's Theorem, 8, 245-251, 278
for long times, 8, 264-271
weak, 368-370
Ehrenfest time, 8, 264-271
eigenfunctions, 7, 119-137, 143, 152
basis of, 129, 157, 357
clusters of, 157, 243
concentration in phase space, 125
equidistribution of, $365,378,379$
exponential decay estimates, 143
for harmonic oscillator, 120-124, 127
for Laplace-Beltrami operator, 357, 378
for pseudodifferential operator, 187
on manifolds, 356
order of vanishing, 152
regularity, 354
eigenvalues, $48,120,123,286,287,357$, $362,363,370,404,405,411,412$
and trace, 413
counting, 410
for harmonic oscillator, 120-124
for Laplace-Beltrami operator, 157, 243, 357, 362
for Schrödinger's equation, 1, 7, 119, 286, 357
minimax formulas for, 409, 410
of matrix, 36
of operator, 403
elliptic
estimates, 140
symbol, 91, 133, 144, 146, 156, 222, 242, 260, 277, 282, 288, 289
energy
decay, 114-117
surface, 366
wave equation, 109
ergodicity, 8
classical, 366-368
quantum, 365-379
essential support, 192-194
essentially selfadjoint operator, 406
estimates
$H_{h}^{2}, 140$
$H_{h}^{k}, 149$
Agmon-Lithner, 142
Carleman, 7, 146-148
notation for, 388
Schauder, 7, 158-167

Strichartz, 8, 235-240
exponential map, 14
FBI transform, 291, 302-311
flow map, 14
forbidden region, 139, 141
Fourier
decomposition, 65
integral operator, $8,199,228,244$, 245
Fourier transform, 2, 27-40
exponential of imaginary quadratic form, 36
exponential of real quadratic form, 28
on $\mathscr{S}, 28$
on $\mathscr{S}^{\prime}, 36$
semiclassical, 38-40
Fredholm
operator, 416
theory, 415-419
functional calculus, 137, 354, 357-361, 370
generalized Sobolev space $H_{h}(m)$, 182-187
definition, 183
dual space of, 184
examples, 183
pseudodifferential operators and, 185, 187
geodesic flow, 365, 378, 379
graph, 405
twisted, 25, 262, 383
Grushin problems, 415-417
half-density, 197-206, 234-235, 345
Hamilton-Jacobi equation, 7, 228, 231-233, 238, 260
harmonic oscillator, 119-124, 126, 135
Weyl's Law for, 123
heat equation, 285
Helffer-Sjöstrand formula, 358, 361, 363
Helmholtz's equation, 274
Hermite polynomials, 121
hypoellipticity
condition, 144, 145
estimate, 144
Implicit Function Theorem, 19, 25, 156, 366
index of Fredholm operator, 416
inequality
Fefferman-Phong, 93, 216

Gårding, 6, 73, 92-96, 101, 142, 145, 214-216
Gronwall, 117, 265
Hardy-Littlewood-Sobolev, 236
Minkowski, 239
Schur, 82, 314, 327
interpolation, 236, 241, 244
inverse, 91-92
approximate, 400
Inverse Function Theorem, 49, 400, 420
Jacobi's identity, 20, 21
kernel
Bergman, 293, 307-309
of Fredholm operator, 416
Schwartz, 59, 65, 81, 82, 175, 209, 210, 238, 263, 370, 399

Laplace-Beltrami operator, 157, 243, 351, 353, 357, 362, 378
Leibnitz rule, 150
Lidskii's Theorem, 413
Lie derivative, 395
lifting, 18-19, 203
Liouville measure, 366
Littlewood-Paley theory, 158, 159, 161, 163, 167, 214
localization, 39, 153, 155, 188, 195
manifolds, 339-363
definition of, 339
PDE on, 353-362
pseudodifferential operators on, 345-352
Riemannian, 344-345
smooth functions on, 340
Maslov index, 264
matrices
$J, 15,16,64,257$
notation for, 384
symplectic, 252-253, 262
transition, 340
Mean Ergodic Theorem, 367
meromorphic
family of operators, 110, 419
resolvents, 129, 131
microlocality, 195
microlocally invertible, 195
Morse Lemma, 46, 48-50
nondegeneracy condition, $15,48,155$, 157, 237, 239, 240, 244, 282
nonnormal operators, 287
norm, 140, 346, 347, 371, 387, 411
normal forms, 273-289
complex symbols, 282-286
real symbols, 275-279
notation, 383-389
basic, 383-384
for estimates, 388
for functions, 385-387
for matrices, 384
for operators, 387
for sets, 384
multiindex, 385
observables, $3,5,8,56,247,348,370$
Open Mapping Theorem, 417
order functions, 73
change of, 182, 183
definition, 72
examples, 72
\log of, 182
order of vanishing, 148-152
oscillatory integral, $6,40,46,52-54$
oscillatory testing, 80
phase shift, 36
Planck's constant, 1, 5
plurisubharmonic functions, 300-302
Poincaré's Lemma, 230, 255, 396
on manifolds, 398
Poisson bracket, 4, 5, 20, 68, 106, 369, 386
polar decomposition, 252
principal symbol, $74,213,277,279,281$, 282, 361, 371
principal type, 276, 278, 282
projection, $127-129,131,134,368,371$, 373
Bergman, 293, 307
propagation of singularities, 279-281
pseudodifferential operators, 2, 4, 55-96
on manifold, 347
symbol of, 348, 349, 351
pseudolocality, 81, 204
pseudospectrum, 287, 288
push-forward, 246, 394
quadratic forms, 295
quantization
and commutators, 61
composition, 66
Fourier decomposition, 65
general, 56
linear symbols, 59, 60
on torus, 106-108
standard, 56
symbols
exponentials of linear symbols, 62
exponentials of quadratic symbols, 63
symbols depending on x only, 59
symbols linear in $x, 60$
Toeplitz, 8, 293, 311-320
Weyl, 4, 6, 56
complex, 312-316
quantum mechanics, 1, 198
Heisenberg picture, 5, 247, 271, 368
quasimode, 152-157, 240-243, 286-288
Quillen's Theorem, 332
rank, 410
Rank-Nullity Theorem, 418
Rauch-Taylor Theorem, 354
rescaling, 2, 38, 39, 57, 95, 123, 126
standard, 57
Riemannian manifold, 152, 157, 243, 344-345, 365, 378
Riesz Representation Theorem, 101
Riesz-Thorin Theorem, 236
s-density bundles, 342
Schrödinger's equation, 1, 7
Schur complement formula, 415
Schwartz space $\mathscr{S}, 28$
section, 341
selfadjoint operator, $58,106,130,177$, $221,222,244,286,368,401,402$, 404-409, 411-413
seminorm, 28, 76, 108, 131, 192, 211, 388
signature of matrix, 36
singular values, 411
Sobolev space, 140, 183, 346, 351, 355
generalized, 7, 182-187, 279
Sogge's Theorem, 243
spectral clusters, 157, 243
spectrum, 129-132, 177, 286, 287, 357, 403, 405, 408-411
stationary phase, $2,6,40-52,68,69,72$, $78,103,213,239$
higher-dimensional, 46-52
one-dimensional, 40-46
Stirling's formula, 150, 151, 328
Stone's Theorem, 222, 409
subadditive function, 265
symbol calculus, 55
symbols, $3,56,389$
depending only on $x, 59$
distributional, 58
exponentials of linear symbols, 62
exponentials of quadratic symbols, 63
Kohn-Nirenberg, 7, 206-217, 389
linear, 59, 60
linear in $x, 60$
symmetric operator, $132,222,355,406$
symplectic
form, 342
geometry, 2, 13-26
complex, 299
mapping, $16-20$
matrix, 16-17, 252, 262
product $\sigma, 14,50$
tangent
bundle, 341
space, 341
Taylor's Theorem, 93, 95, 151
tempered
distributions, 35
family of distributions, 187
family of operators, 187, 188
Toeplitz quantization, 293, 311-320
torus, 7, 106-109, 366, 383
trace, 413
integral operators, 413
trace class, 361, 411-413
norm, 411
transform
Bargmann, 292, 306
FBI (Fourier-Bros-Iagolnitzer), 291, 302-311
Fourier, 2
Gabor, 292
Segal-Bargmann, 292
tunneling, 2, 7, 143-148
uncertainty principle, 39-40, 132, 196
unitary
matrix, 253
operators, $85,100,126,172,176,220$, 222, 228, 246, 251, 256, 259, 260, 263, 368, 404, 408, 409
vector bundles, 340-343
fibers of, 340
sections of, 341
transition matrices, 340
version, 162
wave equation, 281
damped, 2, 7, 109-117
wavefront set
classical, 190
for operators, 194
semiclassical, 188, 191, 192, 196
using FBI transform, 323
wedge product, 391
weight, 145
Weyl's Law, 7, 132-137, 370
for harmonic oscillator, 123
on manifolds, 361-362
WKB approximation, xii, 227, 228, 273-274

Young's inequality, 160

Selected Titles in This Series

138 Maciej Zworski, Semiclassical Analysis, 2012
137 Luis Barreira and Claudia Valls, Ordinary Differential Equations, 2012
136 Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, 2012
135 Pascal Cherrier and Albert Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, 2012
134 Jean-Marie De Koninck and Florian Luca, Analytic Number Theory, 2012
133 Jeffrey Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, 2012
132 Terence Tao, Topics in Random Matrix Theory, 2012
131 Ian M. Musson, Lie Superalgebras and Enveloping Algebras, 2012
130 Viviana Ene and Jürgen Herzog, Gröbner Bases in Commutative Algebra, 2011
129 Stuart P. Hastings and J. Bryce McLeod, Classical Methods in Ordinary Differential Equations, 2012
128 J. M. Landsberg, Tensors: Geometry and Applications, 2012
127 Jeffrey Strom, Modern Classical Homotopy Theory, 2011
126 Terence Tao, An Introduction to Measure Theory, 2011
125 Dror Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, 2011
123 Gregory Eskin, Lectures on Linear Partial Differential Equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic Groups and Differential Galois Theory, 2011

121 Tobias Holck Colding and William P. Minicozzi, II, A Course in Minimal Surfaces, 2011

120 Qing Han, A Basic Course in Partial Differential Equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical Statistics, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical Systems and Population Persistence, 2011

117 Terence Tao, An Epsilon of Room, I: Real Analysis, 2010
116 Joan Cerdà, Linear Functional Analysis, 2010
115 Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro, An Introductory Course on Mathematical Game Theory, 2010
114 Joseph J. Rotman, Advanced Modern Algebra, 2010
113 Thomas M. Liggett, Continuous Time Markov Processes, 2010
112 Fredi Tröltzsch, Optimal Control of Partial Differential Equations, 2010
111 Simon Brendle, Ricci Flow and the Sphere Theorem, 2010
110 Matthias Kreck, Differential Algebraic Topology, 2010
109 John C. Neu, Training Manual on Transport and Fluids, 2010
108 Enrique Outerelo and Jesús M. Ruiz, Mapping Degree Theory, 2009
107 Jeffrey M. Lee, Manifolds and Differential Geometry, 2009
106 Robert J. Daverman and Gerard A. Venema, Embeddings in Manifolds, 2009
105 Giovanni Leoni, A First Course in Sobolev Spaces, 2009
104 Paolo Aluffi, Algebra: Chapter 0, 2009
103 Branko Grünbaum, Configurations of Points and Lines, 2009
102 Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, 2002
101 Ward Cheney and Will Light, A Course in Approximation Theory, 2000
100 I. Martin Isaacs, Algebra, 1994
99 Gerald Teschl, Mathematical Methods in Quantum Mechanics, 2009
98 Alexander I. Bobenko and Yuri B. Suris, Discrete Differential Geometry, 2008
97 David C. Ullrich, Complex Made Simple, 2008
96 N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, 2008

SELECTED TITLES IN THIS SERIES

95 Leon A. Takhtajan, Quantum Mechanics for Mathematicians, 2008
94 James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, 2008
93 Peter W. Michor, Topics in Differential Geometry, 2008
92 I. Martin Isaacs, Finite Group Theory, 2008
91 Louis Halle Rowen, Graduate Algebra: Noncommutative View, 2008
90 Larry J. Gerstein, Basic Quadratic Forms, 2008
89 Anthony Bonato, A Course on the Web Graph, 2008
88 Nathanial P. Brown and Narutaka Ozawa, C*-Algebras and Finite-Dimensional Approximations, 2008
87 Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-Four Hours of Local Cohomology, 2007
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on Analytic Differential Equations, 2008
85 John M. Alongi and Gail S. Nelson, Recurrence and Topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and Duality, 2007
83 Wolfgang Ebeling, Functions of Several Complex Variables and Their Singularities, 2007
82 Serge Alinhac and Patrick Gérard, Pseudo-differential Operators and the Nash-Moser Theorem, 2007
81 V. V. Prasolov, Elements of Homology Theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular Forms, a Computational Approach, 2007
78 Harry Dym, Linear Algebra in Action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton's Ricci Flow, 2006
76 Michael E. Taylor, Measure Theory and Integration, 2006
75 Peter D. Miller, Applied Asymptotic Analysis, 2006
4 V. V. Prasolov, Elements of Combinatorial and Differential Topology, 2006
3 Louis Halle Rowen, Graduate Algebra: Commutative View, 2006
R. J. Williams, Introduction to the Mathematics of Finance, 2006
S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, 2006

Seán Dineen, Probability Theory in Finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and Surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A Geometric Approach to Free Boundary Problems, 2005
67 T.Y. Lam, Introduction to Quadratic Forms over Fields, 2005
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional Analysis, 2004
5 S. Ramanan, Global Calculus, 2005
64 A. A. Kirillov, Lectures on the Orbit Method, 2004
63 Steven Dale Cutkosky, Resolution of Singularities, 2004
62 T. W. Körner, A Companion to Analysis, 2004
61 Thomas A. Ivey and J. M. Landsberg, Cartan for Beginners, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation Theory of Finite Groups: Algebra and Arithmetic, 2003
58 Cédric Villani, Topics in Optimal Transportation, 2003

This book is an excellent, comprehensive introduction to semiclassical analysis. I believe it will become a standard reference for the subject.
-Alejandro Uribe, University of Michigan
Semiclassical analysis provides PDE techniques based on the classical-quantum (particle-wave) correspondence. These techniques include such well-known tools as geometric optics and the Wentzel-Kramers-Brillouin approximation. Examples of problems studied in this subject are high energy eigenvalue asymptotics and effective dynamics for solutions of evolution equations. From the mathematical point of view, semiclassical analysis is a branch of microlocal analysis which, broadly speaking, applies harmonic analysis and symplectic geometry to the study of linear and nonlinear PDE. The book is intended to be a graduate level text introducing readers to semiclassical and microlocal methods in PDE. It is augmented in later chapters with many specialized advanced topics which provide a link to current research literature.

For additional information
and updates on this book, visit www.ams.org/bookpages/gsm-| 38

