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PREFACE

This book originated with a course I taught at UC Berkeley during the spring
of 2003, with class notes taken by my colleague Lawrence C. Evans. Various
versions of these notes have been available on-line as the Evans-Zworski
lecture notes on semiclassical analysis and our original intention was to use
them as the basis of a coauthored book. Craig Evans’s contributions to the
current manuscript can be recognized by anybody familiar with his popular
partial differential equations (PDE) text [E]. In the end, the scope of the
project and other commitments prevented Craig Evans from participating
fully in the final stages of the effort, and he decided to withdraw from
the responsibility of authorship, generously allowing me to make use of the
contributions he had already made. I and my readers owe him a great debt,
for this book would never have appeared without his participation.

Semiclassical analysis provides PDE techniques based on the classical-
quantum (particle-wave) correspondence. These techniques include such
well-known tools as geometric optics and the Wentzel–Kramers–Brillouin
(WKB) approximation. Examples of problems studied in this subject are
high energy eigenvalue asymptotics or effective dynamics for solutions of
evolution equations. From the mathematical point of view, semiclassical
analysis is a branch of microlocal analysis which, broadly speaking, applies
harmonic analysis and symplectic geometry to the study of linear and non-
linear PDE.

The book is intended to be a graduate level text introducing readers
to semiclassical and microlocal methods in PDE. It is augmented in later
chapters with many specialized advanced topics. Readers are expected to
have reasonable familiarity with standard PDE theory (as recounted, for
example, in Parts I and II of [E]), as well as a basic understanding of linear
functional analysis. On occasion familiarity with differential forms will also
prove useful.

xi



xii PREFACE

Several excellent treatments of semiclassical analysis have appeared re-
cently. The book [D-S] by Dimassi and Sjöstrand starts with the WKB-
method, develops the general semiclassical calculus, and then provides high-
tech spectral asymptotics. Martinez [M] provides a systematic development
of FBI transform techniques, with applications to microlocal exponential
estimates and to propagation estimates. This text is intended as a more
elementary, but much broader, introduction. Except for the general symbol
calculus, for which we followed Chapter 7 of [D-S], there is little overlap
with these other two texts or with the influential books by Helffer [He] and
by Robert [R]. Guillemin and Sternberg [G-St1] offer yet another perspec-
tive on the subject, very much complementary to that given here. Their
notes concentrate on global and functorial aspects of semiclassical analy-
sis, in particular on the theory of Fourier integral operators and on trace
formulas.

The approach to semiclassical analysis presented here is influenced by my
long collaboration with Johannes Sjöstrand. I would like to thank him for
sharing his philosophy and insights over the years. I first learned microlocal
analysis from Richard Melrose, Victor Guillemin, and Gunther Uhlmann,
and it is a pleasure to acknowledge my debt to them. Discussions of semi-
classical physics and chemistry with Stéphane Nonnenmacher, Paul Brumer,
William H. Miller, and Robert Littlejohn have been enjoyable and valuable.
They have added a lot to my appreciation of the subject.

I am especially grateful to Stéphane Nonnenmacher, Semyon Dyatlov,
Claude Zuily, Oran Gannot, Xi Chen, Hans Christianson, Jeff Galkowski,
Justin Holmer, Long Jin, Gordon Linoff, and Steve Zelditch for their very
careful reading of the earlier versions of this book and for their many valuable
comments and corrections.

My thanks also go to Faye Yeager for typing the original lecture notes
and to Jonathan Dorfman for TEX advice. Stephen Moye at the AMS pro-
vided fantastic help on deeper TEX issues and Arlene O’Sean’s excellent
copyediting removed many errors and inconsistencies.

I will maintain on my website at the UC Berkeley Mathematics De-
partment http://math.berkeley.edu/~zworski a list of errata and cor-
rections, as well as at the American Mathematical Society’s website
www.ams.org/bookpages/gsm-138. Please let me know about any errors
you find.

I have been supported by NSF grants during the writing of this book,
most recently by NSF grant DMS-0654436.

Maciej Zworski
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Congr., 15, Soc. Math. France, Paris, 2007.

[Sa-V] Yu. Safarov and D. Vassiliev, The Asymptotic Distribution of Eigenvalues
of Partial Differential Operators, Translations of Mathematical Monographs,
American Math. Society, 1997.

[SR] X. Saint Raymond, Elementary Introduction to the Theory of Pseudodifferen-
tial Operators, CRC Press, 1991.

[Sh] A. I. Schnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk.
29(1974), 181–182.

[Shu] Mihail A. Shubin, Pseudodifferential operators and spectral theory, second edi-
tion, Springer, 2001.

[Si] B. Simon, Trace Ideals and Their Applications, second edition, Mathematical
Surveys and Monographs, Vol. 120, American Mathematical Society, 2005.
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108 Enrique Outerelo and Jesús M. Ruiz, Mapping Degree Theory, 2009

107 Jeffrey M. Lee, Manifolds and Differential Geometry, 2009

106 Robert J. Daverman and Gerard A. Venema, Embeddings in Manifolds, 2009

105 Giovanni Leoni, A First Course in Sobolev Spaces, 2009

104 Paolo Aluffi, Algebra: Chapter 0, 2009
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Semiclassical analysis provides PDE techniques based on the classical-quantum 
(particle-wave) correspondence. These techniques include such well-known tools 
as geometric optics and the Wentzel–Kramers–Brillouin approximation. Examples 
of problems studied in this subject are high energy eigenvalue asymptotics and 
effective dynamics for solutions of evolution equations. From the mathematical 
point of view, semiclassical analysis is a branch of microlocal analysis which, broadly 
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and nonlinear PDE. The book is intended to be a graduate level text introducing 
readers to semiclassical and microlocal methods in PDE. It is augmented in later 
chapters with many specialized advanced topics which provide a link to current 
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