To Susanne, Simon, and Jakob
Contents

Preface ix

Part 1. Classical theory

Chapter 1. Introduction 3
§1.1. Newton’s equations 3
§1.2. Classification of differential equations 6
§1.3. First-order autonomous equations 9
§1.4. Finding explicit solutions 13
§1.5. Qualitative analysis of first-order equations 20
§1.6. Qualitative analysis of first-order periodic equations 28

Chapter 2. Initial value problems 33
§2.1. Fixed point theorems 33
§2.2. The basic existence and uniqueness result 36
§2.3. Some extensions 39
§2.4. Dependence on the initial condition 42
§2.5. Regular perturbation theory 48
§2.6. Extensibility of solutions 50
§2.7. Euler’s method and the Peano theorem 54

Chapter 3. Linear equations 59
§3.1. The matrix exponential 59
§3.2. Linear autonomous first-order systems 66
§3.3. Linear autonomous equations of order n 74
§3.4. General linear first-order systems 80
§3.5. Linear equations of order n 87
§3.6. Periodic linear systems 91
§3.7. Perturbed linear first-order systems 97
§3.8. Appendix: Jordan canonical form 103

Chapter 4. Differential equations in the complex domain 111
§4.1. The basic existence and uniqueness result 111
§4.2. The Frobenius method for second-order equations 116
§4.3. Linear systems with singularities 130
§4.4. The Frobenius method 134

Chapter 5. Boundary value problems 141
§5.1. Introduction 141
§5.2. Compact symmetric operators 146
§5.3. Sturm–Liouville equations 153
§5.4. Regular Sturm–Liouville problems 155
§5.5. Oscillation theory 166
§5.6. Periodic Sturm–Liouville equations 175

Part 2. Dynamical systems

Chapter 6. Dynamical systems 187
§6.1. Dynamical systems 187
§6.2. The flow of an autonomous equation 188
§6.3. Orbits and invariant sets 192
§6.4. The Poincaré map 197
§6.5. Stability of fixed points 198
§6.6. Stability via Liapunov’s method 201
§6.7. Newton’s equation in one dimension 203

Chapter 7. Planar dynamical systems 209
§7.1. Examples from ecology 209
§7.2. Examples from electrical engineering 215
§7.3. The Poincaré–Bendixson theorem 220

Chapter 8. Higher dimensional dynamical systems 229
§8.1. Attracting sets 229
§8.2. The Lorenz equation 234
§8.3. Hamiltonian mechanics	238
§8.4. Completely integrable Hamiltonian systems	243
§8.5. The Kepler problem	247
§8.6. The KAM theorem	250

Chapter 9. Local behavior near fixed points | 255
§9.1. Stability of linear systems	255
§9.2. Stable and unstable manifolds	257
§9.3. The Hartman–Grobman theorem	264
§9.4. Appendix: Integral equations	270

Part 3. Chaos

Chapter 10. Discrete dynamical systems | 281
§10.1. The logistic equation	281
§10.2. Fixed and periodic points	284
§10.3. Linear difference equations	287
§10.4. Local behavior near fixed points	288

Chapter 11. Discrete dynamical systems in one dimension | 293
§11.1. Period doubling	293
§11.2. Sarkovskii’s theorem	296
§11.3. On the definition of chaos	297
§11.4. Cantor sets and the tent map	300
§11.5. Symbolic dynamics	303
§11.6. Strange attractors/repellers and fractal sets	309
§11.7. Homoclinic orbits as source for chaos	313

Chapter 12. Periodic solutions | 317
§12.1. Stability of periodic solutions	317
§12.2. The Poincaré map	319
§12.3. Stable and unstable manifolds	321
§12.4. Melnikov’s method for autonomous perturbations	324
§12.5. Melnikov’s method for nonautonomous perturbations	329

Chapter 13. Chaos in higher dimensional systems | 333
<p>| §13.1. The Smale horseshoe | 333 |
| §13.2. The Smale–Birkhoff homoclinic theorem | 335 |
| §13.3. Melnikov’s method for homoclinic orbits | 336 |</p>
<table>
<thead>
<tr>
<th>Bibliographical notes</th>
<th>341</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>345</td>
</tr>
<tr>
<td>Glossary of notation</td>
<td>349</td>
</tr>
<tr>
<td>Index</td>
<td>351</td>
</tr>
</tbody>
</table>
About

When you publish a textbook on such a classical subject the first question you will be faced with is: Why another book on this subject? Everything started when I was supposed to give the basic course on *Ordinary Differential Equations* in Summer 2000. (At that time the course met 5 hours per week.) While there were many good books on the subject available, none of them quite fit my needs. I wanted a concise but rigorous introduction with full proofs that also covered classical topics such as Sturm–Liouville boundary value problems, differential equations in the complex domain, as well as modern aspects of the qualitative theory of differential equations. The course was continued with a second part on *Dynamical Systems and Chaos* in Winter 2000/01, and the notes were extended accordingly. Since then the manuscript has been rewritten and improved several times according to the feedback I got from students over the years when I redid the course. Moreover, since I had the notes on my homepage from the very beginning, this triggered a significant amount of feedback as well, from students who reported typos, incorrectly phrased exercises, etc., to colleagues who reported errors in proofs and made suggestions for improvements, to editors who approached me about publishing the notes. All this interest eventually resulted in a Chinese translation of an earlier version of the book. Moreover, if you google for the manuscript, you can see that it is used at several places worldwide, linked as a reference at various sites, including Wikipedia. Finally, Google Scholar will tell you that it is even cited in several publications. Hence I decided that it was time to turn it into a *real* book.
This book’s main aim is to give a self-contained introduction to the field of ordinary differential equations with emphasis on the dynamical systems point of view while still keeping an eye on classical tools as pointed out before.

The first part is what I typically cover in the introductory course for bachelor’s level students. Of course it is typically not possible to cover everything and one has to skip some of the more advanced sections. Moreover, it might also be necessary to add some material from the first chapter of the second part to meet curricular requirements.

The second part is a natural continuation beginning with planar examples (culminating in the generalized Poincaré–Bendixson theorem), continuing with the fact that things get much more complicated in three and more dimensions, and ending with the stable manifold and the Hartman–Grobman theorem.

The third and last part gives a brief introduction to chaos, focusing on two selected topics: Interval maps with the logistic map as the prime example plus the identification of homoclinic orbits as a source for chaos and the Melnikov method for perturbations of periodic orbits and for finding homoclinic orbits.

Prerequisites

This book requires only some basic knowledge of calculus, complex functions, and linear algebra. In addition, I have tried to show how a computer system, *Mathematica*\(^1\), can help with the investigation of differential equations. However, the course is not tied to *Mathematica* and any similar program can be used as well.

Updates

The AMS is hosting a Web page for this book at

http://www.ams.org/bookpages/gsm-140/

where updates, corrections, and other material may be found, including a link to material on my website:

\(^1\) *Mathematica* \(^\circledR\) is a registered trademark of Wolfram Research, Inc.
There you can also find an accompanying Mathematica notebook with the code from the text plus some additional material.

Acknowledgments

I wish to thank my students, Ada Akerman, Kerstin Ammann, Jörg Arnberger, Alexander Beigl, Paolo Capka, Jonathan Eckhardt, Michael Fischer, Anna Geyer, Ahmed Ghneim, Hannes Grimm-Strele, Tony Johansson, Klaus Kröncke, Alice Lakits, Simone Lederer, Oliver Leingang, Johanna Michor, Thomas Moser, Markus Müller, Andreas Németh, Andreas Pichler, Tobias Preinerstorfer, Jin Qian, Dominik Rasipanov, Martin Ringbauer, Reinaldo Garcia Rosario, Simon Rößler, Robert Stadler, Shelby Stanhope, Raphael Stuhlmeier, Gudrun Szewieczek, Gerhard Tulzer, Paul Wedrich, Florian Wissler, and colleagues, Edward Dunne, Klemens Fellner, Giuseppe Ferrero, Ilse Fischer, Delbert Franz, Heinz Hanßmann, Daniel Lenz, Jim Sochacki, and Eric Wahlén, who have pointed out several typos and made useful suggestions for improvements. Finally, I would like to thank the anonymous referees for valuable suggestions that improved the presentation of the material.

If you find any errors or if you have comments or suggestions (no matter how small), please let me know.

I have been supported by the Austrian Science Fund (FWF) during much of this writing, most recently under Grant Y330.

Gerald Teschl

Vienna, Austria
April 2012

Gerald Teschl
Fakultät für Mathematik
Nordbergstraße 15
Universität Wien
1090 Wien, Austria

E-mail: Gerald.Teschl@univie.ac.at
URL: http://www.mat.univie.ac.at/~gerald/
Bibliographical notes

The aim of this section is not to give a comprehensive guide to the literature, but to document the sources from which I have learned the materials and which I have used during the preparation of this text. In addition, I will point out some standard references for further reading.

Chapter 2: Initial value problems
The material in this section is, of course, standard. Classical references are Coddington and Levinson [7], Hartman [14], Hale [13], Ince [23], and Walter [44]. More modern introductions are Amann [2], Arnold [4], Hirsch, Smale, and Devaney [18], Robinson [36], Verhulst [43], and Wiggins [48].

Further uniqueness results can be found in the book by Walter [44] (see the supplement to §12). There you can also find further technical improvements, in particular, for the case alluded to in the remark after Corollary 2.6 (see the second supplement to §10).

More on Mathematica in general can be found in the standard documentation [49] and in connection with differential equations in [11] and [39].

General purpose references are the handbooks by Kamke [24] and Zwillinger [50].

Chapter 3: Linear equations
Again this material is mostly standard and the same references as those for the previous chapter apply. More information in particular on \(n \)'th order equations can be found in Coddington and Levinson [7], Hartman [14], and Ince [23].
Chapter 4: Differential equations in the complex domain
Classical references with more information on this topic include Coddington and Levinson [7], Hille [17], and Ince [23]. For a more modern point of view see Ilyashenko and Yakovenko [21]. The topics here are also closely connected with the theory of special functions. See Beals and Wong [5] for a modern introduction. For a collection of properties of special function a standard reference is the *NIST Handbook of Mathematical Functions* [30].

Chapter 5: Boundary value problems
Classical references include Coddington and Levinson [7] and Hartman [14]. A nice informal treatment (although in German) can be found in Jänich [22]. More on Hill’s equation can be found in Magnus and Winkler [28]. For a modern introduction to singular Sturm–Liouville problems, see the books by Weidmann [45], [46], my textbook [42], and the book by Levitan and Sargsjan [27]. A reference with more applications and numerical methods is by Hastings and McLeod [16].

Chapter 6: Dynamical systems
Classical references include Chicone [6], Guckenheimer and Holmes [12], Hasselblat and Katok [15], [25], Hirsch, Smale, and Devaney [18], Palis and de Melo [33], Perko [34], Robinson [35], [36], Ruelle [38], Verhulst [43], and Wiggins [47], [48]. In particular, [15] and [25] emphasize ergodic theory, which is not covered here.

More on the connections with Lie groups and symmetries of differential equations, briefly mentioned in Problem 6.5, can be found in the monograph by Olver [31].

Chapter 7: Planar dynamical systems
The proof of the Poincaré–Bendixson theorem follows Palis and de Melo [33]. More on ecological models can be found in Hofbauer and Sigmund [19]. Hirsch, Smale, and Devaney [18] and Robinson [36] also cover these topics nicely.

Chapter 8: Higher dimensional dynamical systems
More on the Lorenz equation can be found in the monograph by Sparrow [40]. The classical reference for Hamiltonian systems is, of course, Arnold’s book [3] (see also [4]) as well as the monograph by Abraham, Marsden, and Ratiu [1], which also contains extensions to infinite-dimensional systems. Other references are the notes by Moser [29] and the monograph by Wiggins [47]. A brief overview can be found in Verhulst [43].

Chapter 9: Local behavior near fixed points
The classical reference here is Hartman [14]. See also Coddington and Levinson [7], Hale [13], Robinson [35], and Ruelle [38].
Chapter 10: Discrete dynamical systems
One of the classical references is the book by Devaney [8]. A nice introduction is provided by Holmgren [20]. Further references are Hasselblat and Katok [15], [25] and Robinson [36].

Chapter 11: Discrete dynamical systems in one dimension
The classical reference here is Devaney [8]. More on the Hausdorff measure can be found in Falconer [9]. See also Holmgren [20] and Robinson [36].

Chapter 12: Periodic solutions
For more information see Chicone [6], Robinson [35], [36], and Wiggins [47].

Chapter 13: Chaos in higher dimensional systems
A proof of the Smale–Birkhoff theorem can be found in Robinson [35]. See also Chicone [6], Guckenheimer and Holmes [12], and Wiggins [47].
Bibliography

Glossary of notation

\[A_\pm \] ...matrix \(A \) restricted to \(E^\pm(A) \), 264
\[B_r(x) \] ...open ball of radius \(r \) centered at \(x \)
\[C(U,V) \] ...set of continuous functions from \(U \) to \(V \)
\[C_b(U,V) \] ...set of bounded continuous functions from \(U \) to \(V \)
\[C(U) \] = \(C(U,\mathbb{R}) \)
\[C^k(U,V) \] ...set of \(k \) times continuously differentiable functions
\[\mathbb{C} \] ...the set of complex numbers
\[\chi_A \] ...Characteristic polynomial of \(A \), 103
\[d(U) \] ...diameter of \(U \), 309
\[d(x,y) \] ...distance in a metric space
\[d(x,A) \] ...distance between a point \(x \) and a set \(A \), 196
\[df_x = \frac{\partial f}{\partial x} \] Jacobian matrix of a differentiable mapping \(f \) at \(x \)
\[\delta_{j,k} \] ...Kronecker delta: \(\delta_{j,j} = 1 \) and \(\delta_{j,k} = 0 \) if \(j \neq k \)
\[E^0(A) \] ...center subspace of a matrix, 109
\[E^\pm(A) \] ...(un)stable subspace of a matrix, 109
\[\text{Fix}(f) = \{ x | f(x) = x \} \] set of fixed points of \(f \), 284
\[\gamma(x) \] ...orbit of \(x \), 192
\[\gamma_\pm(x) \] ...forward, backward orbit of \(x \), 192
\[\Gamma(z) \] ...Gamma function, 126
\[\delta_0 \] ...inner product space, 146
\[\mathbb{I} \] ...identity matrix
\[I_x = (T_-(x),T_+(x)) \] maximal interval of existence, 189
\[\text{Ker}(A) \] ...kernel of a matrix
\[L_\mu \] ...logistic map, 282
\[\Lambda \] ...a compact invariant set
\[M^\pm \] ...(un)stable manifold, 258, 322
\[\mathbb{N} = \{1, 2, 3, \ldots \} \text{ the set of positive integers} \]
\[\mathbb{N}_0 = \mathbb{N} \cup \{0\} \]
\[o(.) \quad \ldots \text{Landau symbol} \]
\[O(.) \quad \ldots \text{Landau symbol} \]
\[\Omega(f) \quad \ldots \text{set of nonwandering points}, 196 \]
\[P_{\Sigma}(y) \quad \ldots \text{Poincaré map}, 198 \]
\[\text{Per}(f) = \{x|f(x) = x\} \text{ set of periodic points of } f, 284 \]
\[\Phi(t, x_0) \quad \ldots \text{flow of a dynamical system}, 189 \]
\[\Pi(t, t_0) \quad \ldots \text{principal matrix of a linear system}, 81 \]
\[\mathbb{R} \quad \ldots \text{the set of reals} \]
\[\text{Ran}(A) \quad \ldots \text{range of a matrix} \]
\[\sigma \quad \ldots \text{shift map on } \Sigma_N, 305 \]
\[\sigma(A) \quad \ldots \text{spectrum (set of eigenvalues) of a matrix}, 103 \]
\[\Sigma_N \quad \ldots \text{sequence space over } N \text{ symbols}, 304 \]
\[\text{sign}(x) \quad \ldots +1 \text{ for } x > 0 \text{ and } -1 \text{ for } x < 0; \text{ sign function} \]
\[T_{\pm}(x) \quad \ldots \text{positive, negative lifetime of } x, 192 \]
\[T(x) \quad \ldots \text{period of } x \text{ (if } x \text{ is periodic), 192} \]
\[T_{\mu} \quad \ldots \text{tent map, 299} \]
\[\omega_{\pm}(x) \quad \ldots \text{positive, negative } \omega \text{-limit set of } x, 193 \]
\[W_{\pm} \quad \ldots \text{(un)stable set, 257, 231, 284} \]
\[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \} \text{ the set of integers} \]
\[z \quad \ldots \text{a complex number} \]
\[\sqrt{z} \quad \ldots \text{square root of } z \text{ with branch cut along } (-\infty, 0) \]
\[z^* \quad \ldots \text{complex conjugation} \]
\[\| \cdot \| \quad \ldots \text{norm in a Banach space} \]
\[| \cdot | \quad \ldots \text{Euclidean norm in } \mathbb{R}^n \text{ respectively } \mathbb{C}^n \]
\[\langle \ldots \rangle \quad \ldots \text{scalar product in } \ell_2, 146 \]
\[(\lambda_1, \lambda_2) = \{\lambda \in \mathbb{R} \mid \lambda_1 < \lambda < \lambda_2\}, \text{ open interval} \]
\[[\lambda_1, \lambda_2] = \{\lambda \in \mathbb{R} \mid \lambda_1 \leq \lambda \leq \lambda_2\}, \text{ closed interval} \]
\[[x] = \max\{n \in \mathbb{Z} \mid n \leq x\}, \text{ floor function} \]
\[\lceil x \rceil = \min\{n \in \mathbb{Z} \mid n \geq x\}, \text{ ceiling function} \]
\[a \wedge b = \text{cross product in } \mathbb{R}^3 \]
Adela's identity, 83
action integral, 238
action variable, 244
adjoint matrix, 103
analytic, 111
angle variable, 245
angular momentum, 242, 248
arc, 220
Arzelà-Ascoli theorem, 55
asymptotic phase, 323
asymptotic stability, 71, 198, 286, 317
attracting set, 231
attractor, 233, 309
strange, 309
autonomous differential equation, 7
backward asymptotic, 285
Banach algebra, 66
Banach space, 34
basin of attraction, 231
basis
orthonormal, 149
Bendixson criterion, 227
Bernoulli equation, 15
Bessel
equation, 122
function, 123
inequality, 148
bifurcation, 21
diagram, 295
pitchfork, 200
Poincaré-Andronov-Hopf, 220
point, 294
saddle-node, 200
theory, 200
transcritical, 200
boundary condition, 144, 156
antiperiodic, 177
Dirichlet, 156
Neumann, 156
periodic, 177
Robin, 156
boundary value problem, 144
canonical transform, 243
Cantor set, 301
Carathéodory, 42
catenary, 19
Cauchy sequence, 33
Cauchy-Hadamard theorem, 112
Cauchy-Schwarz inequality, 147
center, 69
characteristic
exponents, 93, 118, 138
multipliers, 93
characteristic polynomial, 103
commutator, 61
competitive system, 213
complete, 34
completely integrable, 245
confluent hypergeometric equation, 128
conjugacy
topological, 268
constant of motion, 202, 240
contraction, 35
contraction principle, 35
cooperative system, 213
cover, 309

cyclic vector, 106
d'Alembert reduction, 84, 88
d'Alembert's formula, 145
damping
 critical, 78
 over, 78
 under, 78
damping factor, 79
diameter, 309
difference equation, 126, 283
differential equation
 autonomous, 7
 exact, 18
 homogeneous, 7, 15
 hyperbolic, 256
 integrating factor, 18
 linear, 7
 order, 6
 ordinary, 6
 partial, 7
 separable, 11
 solution, 6
 system, 7
diophantine condition, 251
directional field, 16
Dirichlet boundary condition, 156
domain of attraction, 231
dominating function, 272
Duffing equation, 233, 263, 339
Duhamel's formula, 72
Dulac criterion, 227
dynamical system, 187
 chaotic, 298
 continuous, 188
 discrete, 187
 invertible, 187

eigenfunction, see eigenvector
eigenspace, 103, 149
 generalized, 105
eigenvalue, 103, 149
 simple, 149
eigenvector, 103, 149
 eigenvectors
 generalized, 105
Einstein equation, 242
 entire function, 153
 equicontinuous, 55
 equilibrium point, see fixed point
equivalence
 topological, 298
error function, 89
Euler equation, 18, 116
Euler system, 131
Euler's formula, 67
Euler's reflection formula, 127
Euler–Lagrange equations, 239
Euler–Mascheroni constant, 124
exponential stability, 199
Fermi–Paste–Ulam experiment, 247
Fibonacci numbers, 288
first integral, 240
first variational equation, 46
 periodic, 318
fixed point, 35, 192, 284
 asymptotically stable, 198, 286
 exponentially stable, 199
 hyperbolic, 257
 stable, 198
 unstable, 198
fixed-point theorem
 contraction principle, 35
 Weissinger, 39
Floquet
 discriminant, 176
 exponents, 93
 multipliers, 93, 176
 solutions, 176
flow, 189
forcing, 79
forward asymptotic, 284
Fourier cosine series, 165
Fourier sine series, 143, 164, 165
Frobenius method, 138
from domain, 161
Fuchs system, 138
fundamental matrix solution, 83
Gamma function, 126
Gauss error function, 89
geodesics, 241
global solution, 51
gradient systems, 203
Green function, 158
Grobman–Hartman theorem, 266
Gronwall inequality, 42
 group, 187
Hamilton mechanics, 206, 239
Hamilton principle, 238
Index

Hammerstein integral equation, 275
Hankel function, 125
harmonic numbers, 124
harmonic oscillator, 246
Hartman–Grobman theorem, 266
maps, 288
Hausdorff dimension, 311
Hausdorff measure, 310
heat equation, 145
Heun’s method, 57
Hilbert space, 146
Hilbert’s 16th problem, 226
Hilbert–Schmidt operator, 164
Hill equation, 93
homoclinic orbit, 315
homoclinic point, 315, 335
transverse, 335
homoclinic tangle, 336
Hopf bifurcation, 220, 324
Hurwitz matrix, 71
hyperbolic, 256, 257
hypergeometric equation, 128
indicial equation, 118
inequality
 Cauchy–Schwarz, 147
 Gronwall, 42
initial value problem, 36
inner product, 146
 space, 146
integral curve, 189
 maximal, 189
integral equation, 36
 Hammerstein, 275
 Volterra, 273
integrating factor, 18
invariant
 set, 193, 284
 subspace, 103
isoclines, 24
itinerary map, 302, 313, 314
Jacobi identity, 242
Jacobian matrix, 39
Jordan block, 106
Jordan canonical form, 61, 107
 real, 65
Jordan curve, 220
Kepler’s laws for planetary motion, 249
Kirchhoff’s laws, 76
Korteweg–de Vries equation, 207
Krasovskii–LaSalle principle, 202
Kronecker torus, 251
Kummer function, 128
Lagrange function, 238
Lagrange identity, 157
Laplace transform, 73
LaSalle principle, 202
Laurent series, 116
Lax equation, 247
Lax pair, 247
Legendre equation, 128
Legendre transform, 239
Leibniz’ rule, 242
Liénard equation, 216
Liapunov function, 201, 286
 strict, 201, 286
Liapunov–Schmidt reduction, 330
Lie derivative, 202
Lie group, 191
Lie series, 192
lifetime, 192
limit cycle, 226
Liouville’s formula, 83, 237
Lipschitz continuous, 27, 37
logistic map, 282
Lorenz equation, 234
Lotka–Volterra equation, 209
lower solution, 24
manifold
 (un)stable, fixed point, 258, 289
 (un)stable, linear, 255
 (un)stable, periodic point, 323
 center, linear, 255
 stable, 289
 unstable, 289
mass spectrometry, 96
mathematical pendulum, 204
Mathieu equation, 95
matrix
 adjoint, 103
 exponential, 60
 Hurwitz, 71
 logarithm, 108
 norm, 60
 orthogonal, 104
 symmetric, 104
 symplectic, 240
 unitary, 104
 maximal solution, 51
measure
Hausdorff, 310
outer, 310
Melnikov integral
 homoclinic, 339
 periodic, 326
minimal polynomial, 105
monodromy matrix, 91, 176
movable singularity, 131

N-body problem, 250
Neumann boundary condition, 156
Neumann series, 270
Newton’s second law of motion, 3
nilpotent, 106
nonresonant, 251
nonwandering, 196, 286
norm, 33
 matrix, 60
 operator, 270
normalized, 146

Ohm’s law, 77
omega limit set, 193, 229
one-parameter Lie group, 191
operator
 bounded, 150
 compact, 150
 domain, 149
 linear, 149
 symmetric, 149
orbit, 192, 284
 asymptotically stable, 317
 closed, 192
 heteroclinic, 262, 291
 homoclinic, 262, 291
 periodic, 192, 284
 stable, 317
order
 eigenvector, 105
orthogonal, 146
orthogonal matrix, 104
orthonormal basis, 104
oscillating, 173
Osgood uniqueness criterion, 58

Painlevé transcendent, 131
parallel, 146
parallelogram law, 152
Peano theorem, 56
pendulum, 204
perfect, 301
period annulus, 326

isochronous, 331
regular, 331
period doubling, 295
periodic orbit, 192, 284
 stable, 286
periodic point, 192, 284
 attracting, 285
 hyperbolic, 286
 period, 192
 repelling, 285
periodic solution
 stability, 317
perpendicular, 146
phase space, 203
Picard iteration, 38
Picard–Lindelöf theorem, 38
pitchfork bifurcation, 200
Pochhammer symbol, 123
Poincaré map, 29, 198, 319
Poincaré–Andronov–Hopf bifurcation, 220
point
 fixed, 192
 nonwandering, 196, 286
 recurrent, 286
Poisson bracket, 240
power series, 112
principal matrix solution, 82
projection, 109, 110
Prüfer variables, 166
 modified, 172
Pythagorean theorem, 147
quadratic form, 161
quadrupole mass spectrometry, 96
quasi-periodic, 251
radius of convergence, 112
Rayleigh–Ritz principle, 162
recurrent, 286
reduction of order, 84, 88
regular perturbation, 48
regular point, 192
relativistic mechanics, 242
repeller, 309
 strange, 309
resolvent, 158
resonance catastrophe, 79
resonance frequency, 79
resonant, 251
Riccati equation, 15, 90, 154
Riemann equation, 129
Index

Riemann symbol, 129
RLC circuit, 77
Robin boundary condition, 156
Rofe-Beketov formula, 154
Routh–Hurwitz criterion, 71
Runge–Kutta algorithm, 57

saddle, 68
saddle-node bifurcation, 200
Sarkovskii ordering, 297
scalar product, 104, 146
Schrödinger equation, 86
semigroup, 187
sensitive dependence, 297
separation of variables, 142
sesquilinear form, 146
set
attracting, 231, 309
hyperbolic attracting, 309
hyperbolic repelling, 309
invariant, 193, 284
repelling, 309
shift map, 302, 305
singular point, see fixed point
singularity
movable, 131
regular, 133
simple, 133
weak, 133
sink, 68
Smale horseshoe, 333
small divisor, 251
snapback repeller, 315
soliton, 207
solution
lower, 24
matrix, 83, 287
sub, 24
super, 24
upper, 24
source, 68
spectral radius, 110
spectral theorem, 151
spectrum, 103
stability, 71, 198, 286, 317
stable set, 231, 257, 285
stationary point, see fixed point
strange attractor, 237
Sturm–Liouville problem, 144
sub solution, 24
submanifold, 197
subshift of finite type, 306
subspace
center, 109
invariant, 103
reducing, 103
stable, 109
unstable, 109
superposition principle, 81
symbol space, 304
symmetric matrix, 104
symplectic
gradient, 240
group, 243
map, 243
matrix, 240
two form, 243
tent map, 299
theorem
Arzelà–Ascoli, 55, 159
Cauchy–Hadamard, 112
Cayley–Hamilton, 107
dominated convergence, 272
Floquet, 92
Fuchs, 119, 121
Hartman–Grobman, 266, 288
Jordan curve, 220
KAM, 251
Kneser, 174
Krasovskii–LaSalle, 202
Liapunov, 202
Melnikov, 339
Noether, 240
Osgood, 58
Peano, 56
Picard–Lindelöf, 38
improved, 40
Poincaré’s recurrence, 241
Poincaré–Bendixon, 222, 223
Pythagorean, 147
Routh–Hurwitz, 71
Smale–Birkhoff homoclinic, 336
stable manifold, 261, 290, 322
Sturm’s comparison, 170
uniform contraction principle, 270
Weissinger, 39
time-one map, 237
totally disconnected, 301, 304
trajectory, 189
transcritical bifurcation, 200
transformation
fiber preserving, 14
transition matrix, 306
transitive, 306
transitive, 233, 298
trapping region, 232
traveling wave ansatz, 207
triangle inequality, 33
 inverse, 33
two-body problem, 247
uniform contraction principle, 270
unit vector, 146
unitary matrix, 104
unstable, 198
unstable set, 231, 257, 285
upper solution, 24
van der Pol equation, 219
variable
 dependent, 6
 independent, 6
variation of constants (parameters), 84
vector field, 188
 complete, 193
vector space, 33
 inner product space, 146
 normed, 33
Volterra integral equation, 273
Volterra–Lotka equation, 209
wave equation, 141
Weierstraß elliptic function, 207
well-posed, 42
Weyl asymptotics, 173
Weyl–Titchmarsh m-functions, 176
Wronski determinant, 83, 88
Wronskian, 88
 modified, 154
zeta function, 308
Zorn’s lemma, 51
This book provides a self-contained introduction to ordinary
differential equations and dynamical systems suitable for beginning
graduate students.

The first part begins with some simple examples of explicitly solv-
able equations and a first glance at qualitative methods. Then the
fundamental results concerning the initial value problem are proved:
existence, uniqueness, extensibility, dependence on initial condi-
tions. Furthermore, linear equations are considered, including the
Floquet theorem, and some perturbation results. As somewhat independent topics,
the Frobenius method for linear equations in the complex domain is established and
Sturm–Liouville boundary value problems, including oscillation theory, are investigated.

The second part introduces the concept of a dynamical system. The Poincaré–
Bendixson theorem is proved, and several examples of planar systems from classical
mechanics, ecology, and electrical engineering are investigated. Moreover, attractors,
Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally,
stability is studied, including the stable manifold and the Hartman–Grobman theorem
for both continuous and discrete systems.

The third part introduces chaos, beginning with the basics for iterated interval maps
and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic
orbits.

The text contains almost three hundred exercises. Additionally, the use of mathemat-
ical software systems is incorporated throughout, showing how they can help in the
study of differential equations.