A Course in Abstract Analysis

John B. Conway

Graduate Studies
in Mathematics
Volume 141

A Course in Abstract Analysis

A Course in Abstract Analysis

John B. Conway

Graduate Studies in Mathematics
Volume 14I

EDITORIAL COMMITTEE

David Cox (Chair)
Daniel S. Freed
Rafe Mazzeo
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 28-01, 46-01.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-141

Library of Congress Cataloging-in-Publication Data
Conway, John B., author.
A course in abstract analysis / John B. Conway.
pages ; cm. - (Graduate studies in mathematics ; volume 141)
Includes bibliographical references and index.
ISBN 978-0-8218-9083-7 (alk. paper)
1. Measure theory. 2. Integration, Functional. 3. Functional analysis. I. Title.

QA312.C5785 2012

515-dc23

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2012 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
(®) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

For Ann,
The love of my life, the source of my happiness

Contents

Preface xi
Chapter 1. Setting the Stage 1
§1.1. Riemann-Stieltjes integrals 1
§1.2. Metric spaces redux 12
§1.3. Normed spaces 21
§1.4. Locally compact spaces 29
§1.5. Linear functionals 37
Chapter 2. Elements of Measure Theory 41
§2.1. Positive linear functionals on $C(X)$ 41
§2.2. The Radon measure space 42
§2.3. Measurable functions 51
§2.4. Integration with respect to a measure 56
§2.5. Convergence theorems 71
§2.6. Signed measures 78
§2.7. $\quad L^{p}$-spaces 84
Chapter 3. A Hilbert Space Interlude 93
§3.1. Introduction to Hilbert space 93
§3.2. Orthogonality 98
§3.3. The Riesz Representation Theorem 103
Chapter 4. A Return to Measure Theory 107
§4.1. The Lebesgue-Radon-Nikodym Theorem 107
§4.2. Complex functions and measures 114
§4.3. Linear functionals on $C(X)$ 119
$\S 4.4$. Linear functionals on $C_{0}(X)$ 124
§4.5. Functions of bounded variation 127
§4.6. Linear functionals on L^{p}-spaces 129
$\S 4.7$. Product measures 133
§4.8. Lebesgue measure on \mathbb{R}^{d} 141
§4.9. Differentiation on \mathbb{R}^{d} 144
§4.10. Absolutely continuous functions 151
§4.11. Convolution* 156
§4.12. The Fourier transform* 161
Chapter 5. Linear Transformations 171
§5.1. Basics 171
§5.2. Orthonormal basis 175
§5.3. Isomorphic Hilbert spaces 179
§5.4. The adjoint 183
§5.5. The direct sum of Hilbert spaces 190
§5.6. Compact linear transformations 195
§5.7. The Spectral Theorem 202
§5.8. Some applications of the Spectral Theorem* 205
§5.9. Unitary equivalence* 210
Chapter 6. Banach Spaces 213
§6.1. Finite-dimensional spaces 213
§6.2. Sums and quotients of normed spaces 216
§6.3. The Hahn-Banach Theorem 220
§6.4. Banach limits* 226
§6.5. The Open Mapping and Closed Graph Theorems 228
§6.6. Complemented subspaces* 232
§6.7. The Principle of Uniform Boundedness 234
Chapter 7. Locally Convex Spaces 237
§7.1. Basics of locally convex spaces 237
§7.2. Metrizable locally convex spaces* 243
§7.3. Geometric consequences 244
Chapter 8. Duality 251
§8.1. Basics of duality 251
§8.2. The dual of a quotient space and of a subspace 260
§8.3. Reflexive spaces 263
§8.4. The Krein-Milman Theorem 266
$\S 8.5$. The Stone-Weierstrass Theorem 270
Chapter 9. Operators on a Banach Space 277
§9.1. The adjoint 277
§9.2. Compact operators 282
Chapter 10. Banach Algebras and Spectral Theory 287
§10.1. Elementary properties and examples 287
§10.2. Ideals and quotients 290
§10.3. Analytic functions 292
§10.4. The spectrum 297
§10.5. The spectrum of an operator 302
$\S 10.6$. The spectrum of a compact operator 310
§10.7. Abelian Banach algebras 314
Chapter 11. C*-Algebras 319
§11.1. Elementary properties and examples 319
§11.2. Abelian C*-algebras 323
§11.3. Positive elements in a C^{*}-algebra 327
§11.4. A functional calculus for normal operators 332
§11.5. The commutant of a normal operator 342
§11.6. Multiplicity theory 345
Appendix 355
§A.1. Baire Category Theorem 355
§A.2. Nets 356
Bibliography 359
List of Symbols 361
Index 363

Preface

I am an analyst. I use measure theory almost every day of my life. Yet for most of my career I have disliked it as a stand-alone subject and avoided teaching it. I taught a two-semester course on the subject during the second year after I earned my doctorate and never again until Fall 2010. Then I decided to teach our year long course that had a semester of measure theory followed by a semester of functional analysis, a course designed to prepare first-year graduate students for the PhD Qualifying exam. The spring before the course was to begin, I began to think about how I would present the material. In the process I discovered that with an approach different from what I was used to, there is a certain elegance in the subject.

It seems to me that the customary presentation of basic measure theory has changed little since I took it as a first-year graduate student. In addition, when I wrote my book on functional analysis [8], it was premised on students having completed a year long course in measure theory, something that seldom happens now. For these two reasons and because of my newly found appreciation of measure theory, I made the decision that I would write a book. For this project I resolved to look at this subject with fresh eyes, simplifying and streamlining the measure theory, and formulating the functional analysis so it depends only on the measure theory appearing in the same book. This would make for a self-contained treatment of these subjects at the level and depth appropriate for my audience. This book is the culmination of my effort.

What did I formerly find unpleasant about measure theory? It strikes me that most courses on measure theory place too much emphasis on topics I never again encountered as a working analyst. Some of these are natural enough within the framework of measure theory, but they just don't arise
in the life of most mathematicians. An example is the question of the measurability of sets. To be sure we need to have our sets measurable, and this comes up in the present book; but when I studied measure theory I spent more time on this topic than I did in the more than 40 years that followed. Simply put, every set and every function I encountered after my first year in graduate school was obviously measurable. Part of my resolve when I wrote this book was to restrict such considerations to what was necessary and simplify wherever I could. Another point in the traditional approach is what strikes me as an overemphasis on pathology and subtleties. I think there are other things on which time is better spent when a student first encounters the subject.

In writing this book I continued to adhere to one of the principles I have tried to adopt in my approach to teaching over the last 20 years or so: start with the particular and work up to the general and, depending on the topic, avoid the most general form of a result unless there is a reason beyond the desire for generality. I believe students learn better this way. Starting with the most general result sometimes saves space and time in the development of the subject, but it does not facilitate learning. To compensate, in many places I provide references where the reader can access the most general form of a result.

Most of the emphasis in this book is on regular Borel measures on a locally compact metric space that is also σ-compact. Besides dealing with the setting encountered most frequently by those who use measure theory, it allows us to bypass a lot of issues. The idea is to start with a positive linear functional on $C(X)$ when X is a compact metric space and use this to generate a measure. The Riemann-Stieltjes integral furnishes a good source of examples. Needless to say, this approach calls for a great deal of care in the presentation. For example, it necessitates a discussion of linear functionals before we begin measure theory, but that is a topic we would encounter in a course like this no matter how we approached measure theory. There is also a bonus to this approach in that it gives students an opportunity to gain facility in manufacturing continuous functions with specified properties, a skill that I have found is frequently lacking after they finish studying topology and measure theory.

Chapter 1 contains the preliminary work. It starts with the RiemannStieltjes integral on a bounded interval. Then it visits metric spaces so that all have a common starting point, to provide some handy references, and to present results on manufacturing continuous functions, including partitions of unity, that are needed later. It then introduces topics on normed spaces needed to understand the approach to measure theory. Chapter 2 starts with a positive linear functional on $C(X)$ and shows how to generate a measure
space. Then the properties of this measure space are abstracted and the theory of integration is developed for a general measure space, including the usual convergence theorems and the introduction of L^{p} spaces. Chapter 3 on Hilbert space covers just the basics. There is a later chapter on this subject, but here I just want to present what is needed in the following chapter so as to be sure to cover measure theory in a single semester. Chapter 4 starts by applying the Hilbert space results to obtain the Lebesgue-Radon-Nikodym Theorem. It then introduces complex-valued measures and completes the cycle by showing that when X is a σ-compact locally compact metric space, every bounded linear functional on $C_{0}(X)$ can be represented as integration with respect to a complex-valued Radon measure. The chapter then develops product measures and closes with a detailed examination of Lebesgue and other measures on Euclidean space, including the Fourier transform. That is the course on measure theory, and I had no difficulty covering it in a semester.

Chapter 5 begins the study of functional analysis by studying linear transformations, first on Banach spaces but quickly focusing on Hilbert space and reaching the diagonalization of a compact hermitian operator. This chapter and the subsequent ones are based on my existing book [8]. There are, however, significant differences. A Course in Functional Analysis was designed as a one-year course on the subject for students who had completed a year-long study of measure theory as well as having some knowledge of analytic functions. The second half of the present book only assumes the presentation on measures done in the first half and is meant to be covered in a semester. Needless to say, many topics in $[\mathbf{8}]$ are not touched here. Even when this book does a topic found in [8], it is usually treated with less generality and in a somewhat simpler form. I'd advise all readers to use [8] as a reference - as I did.

Chapter 6 looks at Banach spaces and presents the three pillars of functional analysis. The next chapter touches on locally convex spaces, but only to the extent needed to facilitate the presentation of duality. It does include, however, a discussion of the separation theorems that follow from the Hahn-Banach Theorem. Chapter 8 treats the relation between a Banach space and its dual space. It includes the Krein-Milman Theorem, which is applied to prove the Stone-Weierstrass Theorem. Chapter 9 returns to operator theory, but this time in the Banach space setting and gets to the Fredholm Alternative. Chapter 10 presents the basics of Banach algebras and lays the groundwork for the last chapter, which is an introduction to C^{*}-algebras. This final chapter includes the functional calculus for normal operators and presents the characterization of their isomorphism classes.

When I taught my course I did not reach the end of the book, though I covered some topics in more detail and generality than they are covered here; I also presented some of the optional sections in this book - those that have a * in the title. Nevertheless, I wanted the readers to have access to the material on multiplicity theory for normal operators, which is one of the triumphs of mathematics. I suspect that with a good class like the one I had and avoiding the starred sections, the entire book could be covered in a year.

Biographies. I have included some biographical information whenever a mathematician's result is presented. (Pythagoras is the lone exception.) There is no scholarship on my part in this, as all the material is from secondary sources, principally what I could find on the web. In particular, I made heavy use of
http://www-history.mcs.st-andrews.ac.uk/history/BiogIndex.html
and Wikipedia. I did this as a convenience for the reader and from my experience that most people would rather have this in front of them than search it out. (A note about web addresses. There are a few others in this book and they were operational when I wrote the manuscript. We are all familiar with the fact that some web sites become moribund with time. If you experience this, just try a search for the subject at hand.)

I emphasize the personal aspects of the mathematicians we encounter along the way, rather than recite their achievements. This is especially so when I discover something unusual or endearing in their lives. I figure many students will see their achievements if they stick with the subject and most students at the start of their education won't know enough mathematics to fully appreciate the accomplishments. In addition I think the students will enjoy learning that these famous people were human beings.

Teaching. I think my job as an instructor in a graduate course is to guide the students as they learn the material, not necessarily to slog through every proof. In the book, however, I have given the details of the most tedious and technical proofs; but when I lecture I frequently tell my class, "Adults should not engage in this kind of activity in public." Students are usually amused at that, but they realize, albeit with my encouragement, that understanding a highly technical argument may be important. It certainly exposes them to a technique. Nevertheless, the least effective way to reach that understanding is to have someone stand in front of a student at a chalkboard and conscientiously go through all the details. The details should be digested by the student in the privacy of his/her office, away from public view.

I also believe in a gradual introduction of new material to the student. This is part of the reason for what I said earlier about going from the
particular to the general. This belief is also reflected in making changes in some notation and terminology as we progress. A vivid example of this is the use of the term "measure." Initially it means a positive measure and then in the course of developing the material it migrates to meaning a complexvalued measure. I don't think this will cause problems; in fact, as I said, I think it facilitates learning.

Prerequisites. The reader is assumed to be familiar with the basic properties of metric spaces. In particular the concepts of compactness, connectedness, continuity, uniform continuity, and the surrounding results on these topics are assumed known. I also assume the student has had a good course in basic analysis on the real line. In particular, (s)he should know the Riemann integral and have control of the usual topics appearing in such a course. There are a few other things from undergraduate analysis that are assumed, though usually what appears here doesn't depend so heavily on their mastery.

For students. When I first studied the subject, I regarded it as very difficult. I found the break with $\epsilon-\delta$ analysis dramatic, calling for a shift in thinking. A year later I wondered what all the fuss was about. So work hard at this, and I can guarantee that no matter how much trouble you have, it will eventually all clear up. Also I leave a lot of detail checking to the reader and frequently insert such things as (Why?) or (Verify!) in the text. I want you to delve into the details and answer these questions. It will check your understanding and give some perspective on the proof. I also strongly advise you to at least read all the exercises. With your schedule and taking other courses, you might not have the time to try to solve them all, but at least read them. They contain additional information. Learning mathematics is not a spectator sport.

Thanks. I have had a lot of help with this book. First my class was great, showing patience when a first draft of an argument was faulty, making comments, and pointing out typos. Specifically Brian Barg, Yosef Berman, Yeyao Hu, Tom Savistky, and David Shoup were helpful; Tanner Crowder was especially so, pointing out a number of typos and gaps. Also William J. Martin, who was an auditor, showed me a proof of Hölder's Inequality using Young's Inequality (though I decided not to use it in the book), and we had several enjoyable and useful discussions. A pair of friends helped significantly. Alejandro Rodríguez-Martínez did a reading of the penultimate draft as did William Ross. Bill, in addition to pointing out typos, made many pedagogical, stylistic, and mathematical comments which influenced the final product. I feel very fortunate to have such friends.

Needless to say, I am responsible for what you see before you.

Bibliography

[1] M. B. Abrahamse and T. L. Kriete [1973], "The spectral multiplicity of a multiplication operator," Indiana Math. J., 22, pp. 845-857.
[2] E. Bishop [1961], "A generalization of the Stone-Weierstrass Theorem," Pacfic J. Math. 11, pp. 777-783.
[3] J. K. Brooks [1971], "The Lebesgue Decomposition Theorem for Measures," Amer. Math. Monthly 78, pp. 660-662.
[4] R. B. Burckel [1984], "Bishop's Stone-Weierstrass theorem," Amer. Math. Monthly 91, pp. 22-32.
[5] L. Carleson [1966], "On the convergence and growth of partial sums of Fourier series," Acta Mathematica 116, pp. 135-157.
[6] J. B. Conway [1969], "The inadequacy of sequences," Amer. Math. Monthly 76, pp. $68-69$.
[7] J. B. Conway [1978], Functions of One Complex Variable, Springer-Verlag, New York.
[8] J. B. Conway [1990], A Course in Functional Analysis, Springer-Verlag, New York.
[9] M. M. Day [1958], Normed linear spaces, Springer-Verlag, Berlin.
[10] L. de Branges [1959], "The Stone-Weierstrass theorem," Proc. Amer. Math. Soc. 10, pp. 822-824.
[11] J. Diestel [1984], Sequences and Series in Banach Spaces, Springer-Verlag.
[12] J. Dixmier [1964], Les C^{*}-Algèbras et leurs Représentations, Gautiers-Villars, Paris.
[13] J.. Dugundji [1967], Topology, Allyn and Bacon.
[14] Per Enflo [1973], "A counterexample to the approximation problem in Banach spaces," Acta Mathematica 130, pp. 309-317.
[15] G. B. Folland [1999], Real Analysis: Modern Techniques and Their Applications, Wiley (Hoboken).
[16] I. Glicksberg [1962], "Measures orthogonal to algebras and sets of antisymmetry," Trans. Amer. Math. Soc. 105, pp. 415-435.
[17] S. Grabiner [1986], "The Tietze extension theorem and the open mapping theorem," Amer. Math. Monthly 93, pp. 190-191.
[18] E. Hewitt and K. Stromberg [1975], Real and Abstract Analysis, Springer-Verlag, New York.
[19] R. A. Hunt [1967], "On the convergence of Fourier series, orthogonal expansions and their continuous analogies," pp. 235-255, Proc. Conf. at Edwardsville, Ill, Southern Illinois Univ. Press, Carbondale.
[20] R. C. James [1951], "A non-reflexive Banach space isometric with its second conjugate space," Proc. Nat. Acad. Sci. USA 37, pp. 174-177.
[21] R. V. Kadison and J. R. Ringrose [1997a], Fundamentals of the Theory of Operator Algebras. Volume I: Elementary Theory, Amer. Math. Soc., Providence.
[22] R. V. Kadison and J. R. Ringrose [1997b], Fundamentals of the Theory of Operator Algebras. Volume II: Advanced Theory, Amer. Math. Soc, Providence.
[23] R. V. Kadison and J. R. Ringrose [1998a], Fundamentals of the Theory of Operator Algebras. Volume III, Amer. Math. Soc, Providence.
[24] R. V. Kadison and J. R. Ringrose [1998b], Fundamentals of the Theory of Operator Algebras. Volume IV, Amer. Math. Soc, Providence.
[25] J. L. Kelley [1966], "Decomposition and representation theorems in measure theory," Math. Ann. 163, pp. 89-94.
[26] J. L. Kelley [2008], General Topology, Ishi Press.
[27] H. Kestelman [1971], "Mappings with Non-Vanishing Jacobian," Amer. Math. Monthly 78, pp. 662-663.
[28] J. Lindenstrauss and L. Tzafriri [1971], "On complemented subspaces problem," Israel J. Math. 5, pp. 153-156.
[29] T. J. Ransford [1984], "A short elementary proof of the Bishop-Stone-Weierstrass theorem," Math. Proc. Camb. Phil. Soc. 96, pp. 309-311.
[30] W. Rudin [1991], Functional Analysis, McGraw-Hill, New York.
[31] M. E. Taylor [2006], Measure Theory and Integration, Amer. Math. Soc., Providence.
[32] D. E. Varberg [1965], "On absolutely continuous functions," Amer. Math. Monthly 72, pp. 831-841.
[33] A. Villani [1984], "On Lusin's condition for the inverse function," Rendiconti Circolo Mat. Palermo 33, pp. 331-333.

List of Symbols

$(X, \mathcal{A}, \mu), 57$
$2^{X}, 52$
$A^{*}, 184$
$A^{\circ}, 254$
$A^{\perp}, 254$
$B(x ; r), 13$
$B V[a, b], 3$
$C(X), 16$
$C(X)_{+}, 16$
$C_{0}(X), 30$
$C_{b}(X), 16$
$C_{c}(X), 30$
$C_{c}^{\infty}(G), 159$
$E \Delta F, 71$
$E^{*}, 302$
$L^{1}(\mu), 65$
$L_{s}^{1}(\mu), 63$
$\left.L_{s}^{1}(\mu)\right)_{+}, 64$
$L_{\text {loc }}^{1}, 144$
$L^{p}(\mu), 84,88$
$L^{p}(\mathbb{R}), 156$
$L_{a}, 320$
$M(X, \mathcal{A}), 82$
$M_{\phi}, 171$
$N_{\mu}, 334$
$N_{e}, 333$
$P_{\mathcal{M}}, 101$
$S(f, P), 4$
$S_{\alpha}(f, P), 4$
$T \cong S, 211$
$T^{*}, 278$
$V f, 174$
$X_{\infty}, 31$
[$x, y], 29$
$\Sigma, 315$
$\|L\|, 38$
$\|P\|, 4$
$\|T\|, 172$
$\|f\|_{\infty}, 85$
$\|f\|_{p}, 85$
$\|x+\mathcal{M}\|, 217$
$\alpha_{\mu}, 127$
$\alpha_{t}, 8$
$\bar{z}, 93$
$\beta X, 126$
$\bigoplus \mathcal{H}_{n}, 191$
$\bigvee A, 27$
$\chi_{E}, 19$
$\ell^{1}, 22$
$\ell^{1}(w), 28$
$\ell^{\infty}, 22$
$\int f d \alpha, 6$
$\lambda, 50$
$\langle\cdot, \cdot\rangle, 94$
$\mu * \nu, 161$
$\mu^{*}(E), 45$
$\mu^{*}(G), 43$
$\mu_{E}, 58$
$\mu_{\alpha}, 127$
$\mu_{e}, 333$
$\nu \ll \mu, 107$
$\nu \perp \mu, 108$
$\nu_{a}, 109$
$\nu_{s}, 109$
$\omega(f, \delta), 4$
$\overline{\mathrm{co}}(A), 99$
$\phi(T), 207$
$\sigma\left(\mathcal{X}^{*}, \mathcal{X}\right), 252$
$\sigma\left(\mathcal{X}, \mathcal{X}^{*}\right), 252$
$\sigma_{p}(T), 199$
$\sigma_{a p}(T), 302$
$\operatorname{sign}(f), 87$
$\operatorname{sign} z, 93$
$\tau_{a}, 143$
$|T|, 330$
$|\mu|, 82$
$|\mu|(E), 117$
$\widehat{f}, 161,181$
$\widehat{\mathbb{R}}, 53$
$\widetilde{\alpha}, 10$
$\widetilde{g}, 166$
${ }^{\circ} A^{\circ}, 254$
${ }^{\circ} B, 254$
${ }^{\perp}$ B, 254
${ }^{\perp}\left(A^{\perp}\right), 254$
$c_{0}, 22$
$c_{0}(w), 28$
$c_{00}, 22$
$f * g, 156$
$f=\frac{d \nu_{a}}{d \mu}, 111$
$f \vee g, 2$
$f \wedge g, 3$
$f_{ \pm}, 17$
$h \mu, 272$
$m_{T}(\lambda), 211$
$p_{x}, 252$
$p_{x^{*}}, 252$
$x \perp y, 98$
$\mathbb{C}, 16$
F, 16
$\mathbb{Q}, 33$
$\mathbb{R}, 1$
$\mathcal{A}^{\prime}, 342$
$\mathcal{A}_{+}, 327$
$\mathcal{A}_{E}, 58$
$\mathcal{A}_{\mu}, 46,342$
$\mathcal{B}(\mathcal{X}), 171$
$\mathcal{B}(\mathcal{X}, \mathcal{Y}), 171$
$\mathcal{B}_{0}(\mathcal{X}), 195$
$\mathcal{B}_{0}(\mathcal{X}, \mathcal{Y}), 195$
$\mathcal{H} \oplus \mathcal{K}, 190$
$\mathcal{H} \cong \mathcal{K}, 179$
$\mathcal{H}_{e}, 333$
$\mathcal{M}(X), 53$
$\mathcal{M}(X, \mathcal{A}), 53$
$\mathcal{M} \leq \mathcal{X}, 101$
$\mathcal{M}_{+}, 55$
$\mathcal{M}_{+}(X), 55$
$\mathcal{M}_{+}(X, \mathcal{A}), 55$
$\mathcal{P}_{\delta}, 4$
$\mathcal{S}, 163$
$\mathcal{X}^{* *}, 263$
$\operatorname{Var}(\alpha), 2$
ball $\mathcal{X}, 23$
cl $A, 13$
$\operatorname{co}(A), 99$
diam, 13
$\operatorname{dist}(A, B), 21$
$\operatorname{dist}(x, A), 17$
ext $K, 266$
int $A, 13$
ker $T, 101$
$\operatorname{ran} T, 101$
spt $\mu, 272$

Index

\mathcal{A}-measurable, 53
\mathcal{A}-partition, 82
absolutely continuous, 107
absolutely continuous function, 152
adjoining the identity, 289
adjoint, 184, 278
affine hyperplane, 246
affine manifold, 246
affine map, 269
affine subspace, 246
Alaoglu, Leonidas, 256
Alaoglu's Theorem, 256
algebra, 16, 287
algebraically complemented, 232
almost everywhere, 64
almost uniformly, 78
analytic, 293
annihilator, 254
approximate identity, 158
approximate point spectrum, 302
Arzelà-Ascoli Theorem, 283
Arzelà, Cesare, 283
Ascoli, Giulio, 283
atom, 87
average, 144
backward shift, 185, 304
Baire, René-Louis, 355
Baire Category Theorem, 355
balanced, 240
Banach, Stefan, 23
Banach algebra, 287
Banach limit, 228

Banach space, 23
Banach-Steinhaus Theorem, 235
Banach-Stone Theorem, 280
basis, 175
Bessel, Wilhelm, 177
Bessel's Inequality, 177
bilateral ideal, 290
bilateral shift, 180
bipolar, 254
Bipolar Theorem, 255
Borel, Emile, 52
Borel function, 53
Borel sets, 52
bounded, 171, 183
bounded linear functional, 37
bounded variation, 1
Bunyakovsky, Viktor, 94

C*-identity, 319
Cantor, Georg, 13
Cantor function, 61, 62
Cantor middle-third set, 59
Cantor ternary set, 59
Cantor-Lebesgue function, 61
Cauchy, Augustin-Louis, 94
Cauchy's Theorem, 295
Cauchy-Bunyakovsky-Schwarz
Inequality, 94
CBS Inequality, 94
CGT, 231
Chain Rule, 113
Change of Variables Formula, 142
characteristic function, 19

Chebyshev's Inequality, 133
closed convex hull, 99
Closed Graph Theorem (CGT), 230
closed half-space, 246
closed linear span, 27
closed path, 294
commutant, 342
compact support, 30
compact transformation, 195
complementary subspaces, 233
completion, 27
complex measure, 115
continuous measure, 88, 113
converges in measure, 75
convex, 99
convex hull, 99
convolution, 156, 161
countable additivity, 57
counting measure, 57
DCT, 73
decreasing, 2
diagonalizable, 197
differentiating under the integral sign, 158
direct sum, 190
directed set, 356
discrete metric, 29
division algebra, 315
Dominated Convergence Theorem (DCT), 72
double annihilator, 254
dual space, 38
Egorov, Dimitri, 77
Egorov's Theorem, 77
eigenspace, 199
eigenvalue, 199
eigenvector, 199
equicontinuous, 283
equivalent metrics, 32
equivalent norms, 214
essential range, 301, 339
essentially bounded, 84
extended real numbers, 53
extreme point, 266
Fatou, Pierre, 72
Fatou's Lemma, 72
final space, 330
finite measure space, 57
finite rank, 195

Fourier, Joseph, 161
Fourier coefficient, 181
Fourier series, 182
Fourier transform, 161, 181
Fredholm Alternative, 313
Fredholm, Ivar, 313
Fubini, Guido, 134
Fubini's Theorem, 133, 140
Fuglede, Bent, 343
Fuglede-Putnam Theorem, 343
functional calculus, 207, 325
Fundamental Theorem of Calculus, 154
gauge, 241
Gelfand, Israel, 314
Gelfand transform, 317
Gelfand-Mazur Theorem, 314
generators, 317
Hahn Decomposition Theorem, 80
Hahn, Hans, 80
Hahn-Banach Theorem (HBT), 221
Hardy, G. H., 145
Hardy-Littlewood maximal function, 145
HBT, 221
Hermite, Charles, 186
hermitian, 186, 321
Hilbert, David, 97
Hilbert space, 97
Hölder, Otto, 86
Hölder's Inequality, 86
hyperplane, 220
ideal, 290
idempotent, 191
imaginary part, 93, 189
IMT, 229
increasing, 2
indicator function, 43
infinite atom, 88
initial space, 330
inner product, 94
integrable, 63, 65, 67
integrable function, 82,116
integral operator, 174
invariant subspace, 192
Inverse Mapping Theorem (IMT), 229
Inversion Formula, 165
Inversion Theorem, 165
invertible, 290
involution, 319
isomorphic, 179
isomorphism, 179, 230
Jacobian, 142
Jordan, Camille, 81
Jordan decomposition, 81, 116, 123
kernel, 101, 174
Krein, Mark, 267
Krein-Milman Theorem, 267
L-measurable, 46
LCS, 237
Lebesgue, Henri, 50
Lebesgue Covering Lemma, 15
Lebesgue decomposition, 111
Lebesgue Decomposition Theorem, 111
Lebesgue Differentiation Theorem, 149
Lebesgue measurable, 57
Lebesgue measure, 50, 58
Lebesgue set, 148
Lebesgue-Radon-Nikodym Theorem, 108, 116
left ideal, 290
left invertible, 290
left limit, 9
left regular representation, 320
left spectrum, 297
left-continuous, 9
line segment, 29
linear functional, 37
linear manifold, 101
linear transformation, 171
Liouville, Joseph, 295
Liouville's Theorem, 295
Lipschitz function, 152
Littlewood, John E., 145
locally compact, 29
locally convex space (LCS), 237
locally integrable, 144
Lusin, Nikolai, 120
maximal ideal, 291
maximal ideal space, 316
Maximal Theorem, 146
maximal vector, 336
Mazur, Stanisław, 314
measurable, 46, 53, 75
measurable function, 114
measurable rectangle, 140
measure, 57, 118
measure space, 57
mesh, 4

Milman, David, 267
modulus of continuity, 4
Monotone Convergence Theorem, 65
μ-measurable, 46
multiplicity function, 211,350
mutually absolutely continuous, 335
mutually singular, 108
natural map, 263
negative part, 67, 81
negative set, 79
net, 356
Nikodym, Otton, 108
norm, 21, 172
norm of a linear functional, 38
normal, 186, 321
normalization, 10, 127
normalized, 127
normed space, 22
OMT, 229
one-point compactification, 31
open half-space, 246
Open Mapping Theorem (OMT), 228
operator, 171
orthogonal, 98
orthogonal projection, 101
orthonormal, 175
outer measure, 43, 45
pairwise orthogonal, 98
Parseval, Marc-Antoine, 178
Parseval's Identity, 178, 182
partial isometry, 330, 331
partition, 1
partition of unity, 19
partition of unity subordinate to the cover, 19
path, 294
perfect set, 61
Plancherel, Michel, 168
Plancherel's Theorem, 168
polar, 254
polar decomposition, 330
polar identity, 96
positive, 208, 327
positive cone, 16
positive definite, 208
positive linear functional, 41
positive measure, 118
positive part, 67,81
positive set, 79
preannihilator, 254
prepolar, 254
Principle of Uniform Boundedness (PUB), 234
probability measure, 274
product measure, 134
projection, 101, 191
PUB, 234
purely atomic measure, 113
Putnam, C. Richard, 343
Pythagorean Theorem, 98
quotient map, 217
radical, 317
radius of convergence, 294
Radon, Johann, 46
Radon measure space, 46
Radon-Nikodym derivative, 111
Radon-Nikodym Theorem, 111
range, 101
rapidly decreasing function, 163
real part, 93, 189
rectifiable, 295
reducing subspace, 192
refinement, 1
reflexive, 263
regular Borel measure, 119
resolvent equation, 300
resolvent set, 297
Riemann, G. F. Bernhard, 6
Riemann-Lebesgue Lemma, 163, 182
Riemann-Stieltjes integral, 6, 129
Riesz, Frigyes, 104
Riesz Representation Theorem, 104, 123, 124
right ideal, 290
right invertible, 290
right limit, 9
right regular representation, 320
right spectrum, 297
right-continuous, 9
scalar-valued spectral measure, 336
Schauder, Julius, 282
Schauder's Theorem, 282
Schwartz, Laurent, 163
Schwartz function, 163
Schwarz, Hermann, 94
second dual, 263
self-adjoint, 186
semi-inner product, 96
seminorm, 213
separable, 21
separated, 246
separates the points, 271
separation theorem, 246
sesquilinear form, 183
shrinks nicely, 149
σ-algebra, 52
σ-algebra generated, 52
σ-compact, 30
σ-finite, 108
signed measure, 78, 118
simple measurable function, 63
Spectral Mapping Theorem, 325
spectral radius, 299
Spectral Theorem, 202, 206
spectrum, 297
star-cyclic vector, 334
*-homomorphism, 320
*-isomorphism, 320
Steinhaus, Hugo, 235
Stieltjes, Thomas Jan, 6
Stone, Marshall, 271
Stone-Weierstrass Theorem, 270
strictly decreasing, 2
strictly increasing, 2
strictly separated, 246
sublinear functional, 221
submanifold, 101
subspace, 101
support, 30
support of a measure, 272
Tietze, Heinrich, 20
Tietze Extension Theorem, 20
topologically complemented, 233
total variation, 2
totally bounded, 14
totally disconnected, 59
trace, 295
triangle inequality, 22
trigonometric polynomial, 181
unilateral shift, 180, 303
unilateral weighted shift, 185
unit ball, 23
unit point mass, 88
unitarily equivalent, 211
unitary, 179, 186, 321
Urysohn, Pavel, 17
Urysohn's Lemma, 17
vanishes at infinity, 30
variation, 82
Vitali, Giuseppe, 92
Vitali's Convergence Theorem, 92
Volterra, Vito, 308
Volterra kernel, 308
Volterra operator, 174, 199
weak operator topology, 339
weak topology, 252
weak-star topology, 252
Weierstrass, Karl, 271
weighted shift, 185

This book covers topics appropriate for a first-year graduate course preparing students for the doctorate degree. The first half of the book presents the core of measure theory, including an introduction to the Fourier transform. This material can easily be covered in a semester. The second half of the book treats basic functional analysis and can also be covered in a semester. After the basics, it discusses linear transformations, duality, the elements of Banach algebras, and C^{*}-algebras. It concludes with a characterization of the
 unitary equivalence classes of normal operators on a Hilbert space.

The book is self-contained and only relies on a background in functions of a single variable and the elements of metric spaces. Following the author's belief that the best way to learn is to start with the particular and proceed to the more general, it contains numerous examples and exercises.

