Higher Order Fourier Analysis
Higher Order Fourier Analysis

Terence Tao

Graduate Studies in Mathematics
Volume 142

American Mathematical Society
Providence, Rhode Island
EDITORIAL COMMITTEE

David Cox (Chair)
Daniel S. Freed
Rafe Mazzeo
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 11B30, 37A45, 11U07, 11L07.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-142

Library of Congress Cataloging-in-Publication Data
Tao, Terence, 1975-
Higher order Fourier analysis / Terence Tao.
   pages cm. – (Graduate studies in mathematics ; volume 142)
   Includes bibliographical references and index.
   1. Fourier analysis. I. Title.

QA403.5.T36 2012
515'.2433–dc23 201202023442

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2012 Terence Tao. All rights reserved.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 17 16 15 14 13 12
To Garth Gaudry, who set me on the road;
To my family, for their constant support;
And to the readers of my blog, for their feedback and contributions.
Contents

Preface ix
  Acknowledgments x

Chapter 1. Higher order Fourier analysis 1
  §1.1. Equidistribution of polynomial sequences in tori 2
  §1.2. Roth’s theorem 26
  §1.3. Linear patterns 45
  §1.4. Equidistribution of polynomials over finite fields 59
  §1.5. The inverse conjecture for the Gowers norm I. The finite field case 74
  §1.6. The inverse conjecture for the Gowers norm II. The integer case 92
  §1.7. Linear equations in primes 109

Chapter 2. Related articles 129
  §2.1. Ultralimit analysis and quantitative algebraic geometry 130
  §2.2. Higher order Hilbert spaces 149
  §2.3. The uncertainty principle 162

Bibliography 179

Index 185
Preface

Traditionally, Fourier analysis has been focused on the analysis of functions in terms of linear phase functions such as the sequence \( n \mapsto e(\alpha n) := e^{2\pi i \alpha n} \). In recent years, though, applications have arisen—particularly in connection with problems involving linear patterns such as arithmetic progressions—in which it has been necessary to go beyond the linear phases, replacing them to higher order functions such as quadratic phases \( n \mapsto e(\alpha n^2) \). This has given rise to the subject of quadratic Fourier analysis and, more generally, to higher order Fourier analysis.

The classical results of Weyl on the equidistribution of polynomials (and their generalisations to other orbits on homogeneous spaces) can be interpreted through this perspective as foundational results in this subject. However, the modern theory of higher order Fourier analysis is very recent indeed (and still incomplete to some extent), beginning with the breakthrough work of Gowers \([Go1998],[Go2001]\) and also heavily influenced by parallel work in ergodic theory, in particular, the seminal work of Host and Kra \([HoKr2005]\). This area was also quickly seen to have much in common with areas of theoretical computer science related to polynomiality testing, and in joint work with Ben Green and Tamar Ziegler \([GrTa2010],[GrTa2008c],[GrTaZi2010b]\), applications of this theory were given to asymptotics for various linear patterns in the prime numbers.

There are already several surveys or texts in the literature (e.g. \([Gr2007],[Kr2006],[Kr2007],[Ho2006],[Ta2007],[TaVu2006]\)) that seek to cover some aspects of these developments. In this text (based on a topics graduate course I taught in the spring of 2010), I attempt to give a broad tour of this nascent field. This text is not intended to directly substitute for the core papers on the subject (many of which are quite technical...
and lengthy), but focuses instead on basic foundational and preparatory material, and on the simplest illustrative examples of key results, and should thus hopefully serve as a companion to the existing literature on the subject. In accordance with this complementary intention of this text, we also present certain approaches to the material that is not explicitly present in the literature, such as the abstract approach to Gowers-type norms (Section 2.2) or the ultrafilter approach to equidistribution (Section 1.1.3).

There is, however, one important omission in this text that should be pointed out. In order to keep the material here focused, self-contained, and of a reasonable length (in particular, of a length that can be mostly covered in a single graduate course), I have focused on the combinatorial aspects of higher order Fourier analysis, and only very briefly touched upon the equally significant ergodic theory side of the subject. In particular, the breakthrough work of Host and Kra [HoKr2005], establishing an ergodic-theoretic precursor to the inverse conjecture for the Gowers norms, is not discussed in detail here; nor is the very recent work of Szegedy [Sz2009], [Sz2009b], [Sz2010], [Sz2010b] and Camarena-Szegedy [CaSz2010] in which the Host-Kra machinery is adapted to the combinatorial setting. However, some of the foundational material for these papers, such as the ultralimit approach to equidistribution and structural decomposition, or the analysis of parallelopipeds on nilmanifolds, is covered in this text.

This text presumes a graduate-level familiarity with basic real analysis and measure theory, such as is covered in [Ta2011], [Ta2010], particularly with regard to the “soft” or “qualitative” side of the subject.

The core of the text is Chapter 1, which comprises the main lecture material. The material in Chapter 2 is optional to these lectures, except for the ultrafilter material in Section 2.1 which would be needed to some extent in order to facilitate the ultralimit analysis in Chapter 1. However, it is possible to omit the portions of the text involving ultrafilters and still be able to cover most of the material (though from a narrower set of perspectives).

Acknowledgments

I am greatly indebted to my students of the course on which this text was based, as well as many further commenters on my blog, including Sungjin Kim, William Meyerson, Joel Moreira, Thomas Sauvaget, Siming Tu, and Mads Sørensen. These comments, as well as the original lecture notes for this course, can be viewed online at
terrytao.wordpress.com/category/teaching/254b-higher-order-fourier-analysis/

Thanks also to Ben Green for suggestions. The author is supported by a grant from the MacArthur Foundation, by NSF grant DMS-0649473, and by the NSF Waterman award.
Bibliography


Index

2-coboundary, 78
99% inverse theorem for the Gowers norms, 75
W-trick, 124
δ-equidistribution, 12
additive cohomology, 77
additive quadruple, 83
algebraic set, 138
algebraic variety, 142
almost periodicity, 40
analytic rank, 72
arithmetic regularity lemma (strong), 38
arithmetic regularity lemma (weak), 38
asymptotic equidistribution, 3, 10
asymptotic notation, 3
asymptotic notation (ultralimit analysis), 21
atom, 33
Balog-Szemerédi-Gowers-Freiman theorem, 84
Bezout’s theorem, 141
bias, 64
Bogdanov-Viola lemma, 66
Bohr set, 116
bounded (ultralimit analysis), 21
bracket polynomial, 102
Cauchy-Schwarz complexity, 55
Cauchy-Schwarz inequality, 149
Cauchy-Schwarz-Gowers inequality, 58, 157
characteristic, 55
Chevalley-Warning theorem, 63
classical polynomial, 61
cocycle, 77
complex conjugation, 151
complexity of a nilmanifold, 101
complexity of a nilsequence, 102
complexity of an algebraic set, 139
conditional expectation, 33
continuity of dimension, 140
continuity of irreducibility, 143
converse inverse theorem for the Gowers norms, 75
correlation condition, 121
correspondence principle, 175
de Broglie’s law, 176
degree, 94
dense model theorem, 111, 121
density increment argument, 28
differentiation of nilsequences, 104
dimension, 140
Dirac measure, 3
energy increment argument, 33
equidistribution, 62
Equidistribution (abelian linear sequences), 7
Equidistribution (abelian multidimensional polynomial sequences), 11
Equidistribution (abelian polynomial sequences), 9, 17, 24
equidistribution (ultralimit analysis), 22  
equidistribution theorem, 6  
error correction of polynomials, 67  
exponential sum, 2  
factor, 33  
Fejér summation, 13  
filtered group, 94  
filtration, 94  
Fourier measurability, 35  
Fourier pseudorandomness, 48  
fragmentation, 31  
generalised von Neumann inequality, 59  
generalised von Neumann theorem, 118  
Gowers box space, 154  
Gowers inner product, 57, 154  
Gowers triangle inequality, 157  
Gowers uniformity norm, 47, 57, 154  
Gowers’ Cauchy-Schwarz argument, 83  
Gowers-Host-Kra semi-norm, 155  
Gowers-Wolf theorem, 92  
Gromov’s theorem, 145  
growth spurt, 19  
Haar measure, 5  
Hall-Petresco formula, 98  
Hamilton’s equation of motion, 176  
Hardy-Littlewood maximal inequality, 36  
Heisenberg group, 98  
Heisenberg nilmanifold, 100  
Higher order inner product space, 153  
Hilbert cube lemma, 46  
Hilbert space, 150  
horizontal character, 108  
horizontal torus, 108  
Host-Kra group, 93, 94  
Host-Kra measure, 155  
hyperreel, 135  
indicator function, 2  
inﬁnitesimal, 21, 138  
inner product space, 149  
inverse conjecture for the Gowers norm, 58, 106  
inverse conjecture for the Gowers uniformity norms, 75  
irrational, 6  
join, 34  
Kronecker factor, 42  
Kronecker measurability, 42  
Lazard-Leibman theorem, 96  
Liebmam equidistribution criterion, 108  
limit ﬁnite set, 20  
limit function, 21  
limit number, 20  
limit object, 134  
limit set, 20  
linear phase, 2  
linear forms conditions, 118  
Lipschitz norm, 11  
Littlewood-Paley theory, 171  
lower central series, 94  
lower face, 95  
Lucas’ theorem, 80  
Mal’cev basis, 99  
multiple recurrence, 19  
Newton’s second law, 176  
nilpotent, 98  
Noetherian condition, 142  
norm, 150  
non-principal ultraﬁlter, 133  
phase heuristic, 167  
polyar body, 168  
polynomial, 54, 60  
polynomial orbit, 101  
polynomial phase invariance, 59  
polynomial recurrence, 9  
polynomial sequence, 98  
Pontryagin dual, 57  
Ramsey’s theorem, 80  
recurrence, 19  
refinement, 34  
regularity lemma for polynomials, 71  
relative van der Corput lemma, 107  
reproducing formula, 170  
restriction estimate, 114  
rigidity, 67  
Roth’s theorem, 26, 33, 112  
Roth’s theorem in the primes, 110  
Roth-pseudorandom, 112  
Schrödinger equation, 172, 175
Index

semi-norm, 150
splitting axiom, 153
standard, 20
standard part, 21, 138
standard universe, 131
strong arithmetic regularity lemma, 91
structure and randomness, 34
superstructure, 131
symmetric polynomial, 80
syndeticity, 19

Taylor coefficient, 98
tensor product, 151
total asymptotic equidistribution, 4, 10
total equidistribution (ultralimit analysis), 22
transference, 110
triangle inequality, 149
ultralimit, 20, 21, 134
ultrapower, 20, 134
ultraproduct, 20, 134

van der Corput inequality, 7
van der Corput lemma, 8, 11, 24, 65
vertical character, 103
vertical frequency, 103
Vinogradov lemma, 15, 24
von Mangoldt function, 124

weight function, 112
Weyl criterion, 13
Weyl equidistribution criterion, 5, 10, 13, 23, 64
Weyl equidistribution theorem, 9
Weyl law, 173
Selected Published Titles in This Series

142 Terence Tao, Higher Order Fourier Analysis, 2012
141 John B. Conway, A Course in Abstract Analysis, 2012
140 Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, 2012
139 John B. Walsh, Knowing the Odds, 2012
138 Maciej Zworski, Semiclassical Analysis, 2012
137 Luis Barreira and Claudia Valls, Ordinary Differential Equations, 2012
136 Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, 2012
135 Pascal Cherrier and Albert Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, 2012
134 Jean-Marie De Koninck and Florian Luca, Analytic Number Theory, 2012
132 Terence Tao, Topics in Random Matrix Theory, 2012
131 Ian M. Musson, Lie Superalgebras and Enveloping Algebras, 2012
130 Viviana Ene and Jürgen Herzog, Gröbner Bases in Commutative Algebra, 2011
127 Jeffrey Strom, Modern Classical Homotopy Theory, 2011
126 Terence Tao, An Introduction to Measure Theory, 2011
125 Dror Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, 2011
123 Gregory Eskin, Lectures on Linear Partial Differential Equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic Groups and Differential Galois Theory, 2011
121 Tobias Holck Colding and William P. Minicozzi II, A Course in Minimal Surfaces, 2011
120 Qing Han, A Basic Course in Partial Differential Equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical Statistics, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical Systems and Population Persistence, 2011
117 Terence Tao, An Epsilon of Room, I: Real Analysis, 2010
116 Joan Cerdà, Linear Functional Analysis, 2010
113 Thomas M. Liggett, Continuous Time Markov Processes, 2010
112 Fredi Tröltzsch, Optimal Control of Partial Differential Equations, 2010
111 Simon Brendle, Ricci Flow and the Sphere Theorem, 2010
110 Matthias Kreck, Differential Algebraic Topology, 2010
109 John C. Neu, Training Manual on Transport and Fluids, 2010
108 Enrique Outerelo and Jesús M. Ruiz, Mapping Degree Theory, 2009
107 Jeffrey M. Lee, Manifolds and Differential Geometry, 2009
106 Robert J. Daverman and Gerard A. Venema, Embeddings in Manifolds, 2009
105 Giovanni Leoni, A First Course in Sobolev Spaces, 2009
104 Paolo Aluffi, Algebra: Chapter 0, 2009

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.
Traditional Fourier analysis, which has been remarkably effective in many contexts, uses linear phase functions to study functions. Some questions, such as problems involving arithmetic progressions, naturally lead to the use of quadratic or higher order phases. Higher order Fourier analysis is a subject that has become very active only recently. Gowers, in groundbreaking work, developed many of the basic concepts of this theory in order to give a new, quantitative proof of Szemerédi’s theorem on arithmetic progressions. However, there are also precursors to this theory in Weyl’s classical theory of equidistribution, as well as in Furstenberg’s structural theory of dynamical systems.

This book, which is the first monograph in this area, aims to cover all of these topics in a unified manner, as well as to survey some of the most recent developments, such as the application of the theory to count linear patterns in primes. The book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature on the subject. There are numerous exercises with which to test one’s knowledge.