Lecture Notes on Functional Analysis
 With Applications to Linear Partial Differential Equations

Alberto Bressan

Graduate Studies
in Mathematics
Volume 143

Lecture Notes on Functional Analysis

With Applications to
Linear Partial Differential
Equations

Lecture Notes on Functional Analysis

With Applications to
 Linear Partial Differential Equations

Alberto Bressan

Graduate Studies
in Mathematics
Volume 143

EDITORIAL COMMITTEE

David Cox (Chair)
Daniel S. Freed
Rafe Mazzeo
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 46-01; Secondary 35-01.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-143

Library of Congress Cataloging-in-Publication Data

Bressan, Alberto, 1956-
[Lectures. Selections]
Lecture notes on functional analysis with applications to linear partial differential equations /
Alberto Bressan.
pages cm. - (Graduate studies in mathematics ; volume 143)
Includes bibliographical references and index.
ISBN 978-0-8218-8771-4 (alk. paper)

1. Functional analysis. 2. Differential equations, Linear. I. Title.

QA321.B74 2012
$515^{\prime} .7-\mathrm{dc} 23$
2012030200

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2013 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

To Wen, Luisa Mei, and Maria Lan

Contents

Preface xi
Chapter 1. Introduction 1
§1.1. Linear equations 1
§1.2. Evolution equations 4
§1.3. Function spaces 7
§1.4. Compactness 7
Chapter 2. Banach Spaces 11
§2.1. Basic definitions 11
§2.2. Linear operators 16
§2.3. Finite-dimensional spaces 20
§2.4. Seminorms and Fréchet spaces 23
§2.5. Extension theorems 26
§2.6. Separation of convex sets 30
§2.7. Dual spaces and weak convergence 32
§2.8. Problems 35
Chapter 3. Spaces of Continuous Functions 45
$\S 3.1$. Bounded continuous functions 45
§3.2. The Stone-Weierstrass approximation theorem 47
§3.3. Ascoli's compactness theorem 53
§3.4. Spaces of Hölder continuous functions 56
§3.5. Problems 57
Chapter 4. Bounded Linear Operators 61
§4.1. The uniform boundedness principle 61
§4.2. The open mapping theorem 63
§4.3. The closed graph theorem 64
§4.4. Adjoint operators 66
§4.5. Compact operators 68
$\S 4.6$. Problems 71
Chapter 5. Hilbert Spaces 77
§5.1. Spaces with an inner product 78
§5.2. Orthogonal projections 79
§5.3. Linear functionals on a Hilbert space 82
§5.4. Gram-Schmidt orthogonalization 84
§5.5. Orthonormal sets 85
§5.6. Positive definite operators 89
§5.7. Weak convergence 92
§5.8. Problems 95
Chapter 6. Compact Operators on a Hilbert Space 101
§6.1. Fredholm theory 101
§6.2. Spectrum of a compact operator 106
§6.3. Selfadjoint operators 107
§6.4. Problems 111
Chapter 7. Semigroups of Linear Operators 115
§7.1. Ordinary differential equations in a Banach space 115
§7.2. Semigroups of linear operators 120
§7.3. Resolvents 124
§7.4. Generation of a semigroup 128
§7.5. Problems 134
Chapter 8. Sobolev Spaces 139
§8.1. Distributions and weak derivatives 139
§8.2. Mollifications 146
§8.3. Sobolev spaces 151
§8.4. Approximations of Sobolev functions 157
§8.5. Extension operators 161
§8.6. Embedding theorems 163
§8.7. Compact embeddings 175
§8.8. Differentiability properties 179
§8.9. Problems 180
Chapter 9. Linear Partial Differential Equations 185
§9.1. Elliptic equations 185
§9.2. Parabolic equations 200
§9.3. Hyperbolic equations 207
§9.4. Problems 212
Appendix. Background Material 217
§A.1. Partially ordered sets 217
§A.2. Metric and topological spaces 217
§A.3. Review of Lebesgue measure theory 222
§A.4. Integrals of functions taking values in a Banach space 226
§A.5. Mollifications 228
§A.6. Inequalities 233
§A.7. Problems 237
Summary of Notation 241
Bibliography 245
Index 247

Preface

The first version of these lecture notes was drafted in 2010 for a course at the Pennsylvania State University. The book is addressed to graduate students in mathematics or other disciplines, who wish to understand the essential concepts of functional analysis and their application to partial differential equations. Most of its content can be covered in a one-semester course at the first-year graduate level.

In writing this textbook, I followed a number of guidelines:

- Keep it short, presenting all the fundamental concepts and results, but not more than that.
- Explain clearly the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra.
- Cover enough of the theory of Sobolev spaces and semigroups of linear operators as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs.
- Include a large number of homework problems and illustrate the main ideas with figures, whenever possible.

In functional analysis one finds a wealth of beautiful results that could be included in a monograph. However, for a textbook of this nature one should resist such a temptation.

After the Introduction, Chapters 2 to 6 cover classical topics in linear functional analysis: Banach spaces, Hilbert spaces, and linear operators. Chapter 4 is devoted to spaces of continuous functions, including the StoneWeierstrass approximation theorem and Ascoli's compactness theorem. In
view of applications to linear PDEs, in Chapter 6 we prove some basic results on Fredholm operators and the Hilbert-Schmidt theorem on compact symmetric operators in a Hilbert space.

Chapter 7 provides an introduction to the theory of semigroups, extending the definition of the exponential function $e^{t A}$ to a suitable class of (possibly unbounded) linear operators. We stress the connection with finite-dimensional ODEs and the close relation between the resolvent operators and backward Euler approximations.

After an introduction explaining the concepts of distribution and weak derivative, Chapter 8 develops the theory of Sobolev spaces. These spaces provide the most convenient abstract framework where techniques of functional analysis can be applied toward the solution of ordinary and partial differential equations.

The first three sections in Chapter 9 describe applications of the previous theory to elliptic, parabolic, and hyperbolic PDEs. Since differential operators are unbounded, it is often convenient to recast a linear PDE in a "weak form", involving only bounded operators on a Hilbert-Sobolev space. This new equation can then be studied using techniques of abstract functional analysis, such as the Lax-Milgram theorem, Fredholm's theory, or the representation of the solution in terms of a series of eigenfunctions.

The last chapter consists of an Appendix, collecting background material. This includes: definition and properties of metric spaces, the contraction mapping theorem, the Baire category theorem, a review of Lebesgue measure theory, mollification techniques and partitions of unity, integrals of functions taking values in a Banach space, a collection of inequalities, and a version of Gronwall's lemma.

These notes are illustrated by 41 figures. Nearly 180 homework problems are collected at the end of the various chapters. A complete set of solutions to the exercises is available to instructors. To obtain a PDF file of the solutions, please contact the author, including a link to your department's web page listing you as an instructor or professor.

It is a pleasure to acknowledge the help I received from colleagues, students, and friends, while preparing these notes. To L. Berlyand, G. Crasta, D. Wei, and others, who spotted a large number of misprints and provided many useful suggestions, I wish to express my gratitude.

Alberto Bressan
State College, July 2012

Summary of Notation

\mathbb{R}, the field of real numbers.
\mathbb{C}, the field of complex numbers.
\mathbb{K}, a field of numbers, either \mathbb{R} or \mathbb{C}.
$\operatorname{Re} z$ and $\operatorname{Im} z$, the real and imaginary parts of a complex number z.
$\bar{z}=a-i b$, the complex conjugate of the number $z=a+i b \in \mathbb{C}$.
$[a, b]$, a closed interval; $] a, b[$, an open interval; $] a, b],[a, b[$ half-open intervals. \mathbb{R}^{n}, the n-dimensional Euclidean space.
$\langle\cdot, \cdot\rangle$, scalar product on the Euclidean space \mathbb{R}^{n}.
$|v| \doteq \sqrt{\langle v, v\rangle}$, the Euclidean length of a vector $v \in \mathbb{R}^{n}$.
$A \backslash B \doteq\{x \in A, x \notin B\}$, a set-theoretic difference.
\bar{A}, the closure of a set A.
∂A, the boundary of a set A.
$\Omega^{\prime} \subset \subset \Omega$, the closure of Ω^{\prime} is a compact subset of Ω.
χ_{A}, the indicator function of a set $A . \chi_{A}(x)= \begin{cases}1 & \text { if } x \in A, \\ 0 & \text { if } x \notin A .\end{cases}$
$f: A \mapsto B$, a mapping from a set A into a set B.
$a \mapsto b=f(a)$, the function f maps the element $a \in A$ to the element $b \in B$.
\doteq, equal by definition.
\Longleftrightarrow, if and only if.
$\mathcal{C}(E)=\mathcal{C}(E, \mathbb{R})$, the vector space of all continuous, real-valued functions on the metric space E.
$\mathcal{C}(E, \mathbb{C})$, the vector space of all continuous, complex-valued functions on the metric space E.
$\mathcal{B} C(E)$, the space of all bounded, continuous, real-valued functions $f: E \mapsto$ \mathbb{R}, with norm $\|f\|=\sup _{x \in E}|f(x)|$.
$\ell^{1}, \ell^{p}, \ell^{\infty}$, spaces of sequences of real (or complex) numbers.
$\mathbf{L}^{1}(\Omega), \mathbf{L}^{p}(\Omega), \mathbf{L}^{\infty}(\Omega)$, Lebesgue spaces.
$W^{k, p}(\Omega)$, the Sobolev space of functions whose weak partial derivatives up to order k lie in $\mathbf{L}^{p}(\Omega)$, for some open set $\Omega \subseteq \mathbb{R}^{n}$.
$H^{k}(\Omega)=W^{k, 2}(\Omega)$, Hilbert-Sobolev space.
$\mathcal{C}^{k, \gamma}(\Omega)$, the Hölder space of functions $u: \Omega \mapsto \mathbb{R}$ whose derivatives up to order k are Hölder continuous with exponent $\gamma \in] 0,1]$.
$\|\cdot\|=\|\cdot\|_{X}$, the norm on a vector space X.
$(\cdot, \cdot)=(\cdot, \cdot)_{H}$, the inner product on a Hilbert space H.
X^{*}, the dual space of X, i.e., the space of all continuous linear functionals $x^{*}: X \mapsto \mathbb{K}$.
$\left\langle x^{*}, x\right\rangle=x^{*}(x)$, the duality product of $x^{*} \in X^{*}$ and $x \in X$.
$x_{n} \rightarrow x$, strong convergence in norm; this means $\left\|x_{n}-x\right\| \rightarrow 0$.
$x_{n} \rightharpoonup x$, weak convergence.
$\varphi_{n} \stackrel{*}{\rightharpoonup} \varphi$, weak-star convergence.
$f * g$, the convolution of two functions $f, g: \mathbb{R}^{n} \mapsto \mathbb{R}$.
$\nabla u=\left(u_{x_{1}}, u_{x_{2}}, \ldots, u_{x_{n}}\right)$, the gradient of a function $u: \mathbb{R}^{n} \mapsto \mathbb{R}$.
$D^{\alpha}=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{\alpha_{2}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}=\partial_{x_{1}}^{\alpha_{1}} \partial_{x_{2}}^{\alpha_{2}} \cdots \partial_{x_{n}}^{\alpha_{n}}$, a partial differential operator of order $|\alpha| \doteq \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$.
meas (Ω), the Lebesgue measure of a set $\Omega \subset \mathbb{R}^{n}$.
$f_{\Omega} f d x=\frac{1}{\operatorname{meas}(\Omega)} \int_{\Omega} f d x$, the average value of f over the set Ω.

Bibliography

[B] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag, New York, 2011.
[Ba] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Nordhoff, 1976.
[C] J. B. Conway, A Course in Functional Analysis, second edition, Springer-Verlag, 1990.
[D] K. Deimling, Nonlinear Functional Analysis, Dover, 2010.
[E] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.
[EG] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
[F] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, second edition, Wiley, New York, 1999.
[GT] D. Gilbarg and S. N. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.
[H] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer-Verlag, 1981.
[HPC] V. Hutson, J. S. Pym, and M. J. Cloud, Applications of Functional Analysis and Operator Theory, second edition, Elsevier, Amsterdam, 2005.
[K] S. Kesavan, Topics in Functional Analysis and Applications, Wiley, New York, 1989.
[L] P. Lax, Functional Analysis, Wiley-Interscience, New York, 2002.
[Lu] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
[Ma] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976.
[McO] R. McOwen, Partial Differential Equations: Methods and Applications, Prentice Hall, 2001.
[Mi] M. Miklavcic, Applied Functional Analysis and Partial Differential Equations, World Scientific, River Edge, NJ, 1998.
[MU] D. Mitrovic and D. Ubrini, Fundamentals of Applied Functional Analysis, Pitman, Longman, Harlow, 1998.
[P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
[PW] M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, 1967.
[RN] F. Riesz and B. Sz.-Nagy, Functional Analysis, F. Unger, New York, 1955.
[RR] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, second edition, Springer, 2004,
[R] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
[S] J. Smoller, Shock Waves and Reaction-Diffusion Equations, second edition, Springer-Verlag, 1994.
[T] M. E. Taylor, Partial Differential Equations I. Basic Theory, second edition, Springer-Verlag, New York, 2011.
[Y] K. Yosida, Functional Analysis, reprint of the sixth (1980) edition, Springer-Verlag, Berlin, 1995.

Index

adjoint operator, 66, 69, 198
advection, 186
algebra of functions, 47
approximation, 48
backward Euler, 117, 125, 128, 135
by polynomials, 51
by trigonometric polynomials, 52, 58
forward Euler, 117
of Sobolev functions, 157
with smooth functions, 157
Ascoli, 54

Baire, 62, 221
ball
closed, 13
open, 13
Banach space, 13
Banach-Alaoglu, 34
Banach-Steinhaus, 61
basis
orthonormal, 85, 88
Bessel, 87
biharmonic equation, 216
Bochner, 227
boundary condition, 189

Cantor, 141
Cartesian product, 36
Cauchy, 78, 234
Cauchy problem, 115
closed graph theorem, 64
closure, 218
contraction mapping theorem, 115, 219
convergence
of weak derivatives, 146
pointwise, 46
strong, 33
uniform, 46
weak, 33,92
weak star, 33
convex hull, 37
derivative
distributional, 140
of a distribution, 144
pointwise, 140
strong, 159
weak, $140,144,156,159$
diffusion, 186
Dini, 46
Dirac, 141
Dirichlet's boundary condition, 186
distance, 11, 217
induced by seminorms, 24
distribution, 143
order of, 143
domain of an operator, 16

Egoroff, 223
eigenfunction, 192
eigenvalue, 106
eigenvector, 106
elliptic equation, 185
embedding, 163
compact, 175,178
Gagliardo-Nirenberg, 172

Morrey, 168
Sobolev, 172
energy, 209
epigraph, 233
equicontinuity, 53
essential spectrum, 106
essential supremum, 223
Euler, 117
exponential
of a linear operator, 118
of a matrix, 118
extension
of a linear functional, 27
of a Sobolev function, 161
extreme point, 97
Fatou, 224
fixed point, 219
Fourier, 88
Fréchet, 25
Fredholm, 101
alternative, 105, 196
Fubini, 226
function
absolutely continuous, 148, 225
almost separably valued, 227
Banach space valued, 227
Cantor, 141
constant, 147
continuous, 219
Heaviside, 140
Hölder continuous, 56, 219
integrable, 224
Lipschitz continuous, 115, 181, 219
locally summable, 139, 142, 224
measurable, 222
simple, 223, 227
strongly measurable, 227
summable, 224
test, 142
uniformly convex, 233
weakly differentiable, 149
weakly measurable, 227
Gagliardo-Nirenberg, 163
generator of a semigroup, 122
Gram determinant, 98
Gram-Schmidt orthogonalization, 85
graph, 64
Gronwall, 237
Hahn-Banach, 27

Hausdorff Maximality Principle, 28, 217
Heaviside, 140
Hilbert, 79, 109
Hölder, 56, 235
hyperbolic equation, 207
hyperplane
supporting, 234
inequality
Bessel, 87
Cauchy, 234
Cauchy-Schwarz, 78
discrete Hölder, 236
discrete Minkowski, 236
Gagliardo-Nirenberg, 169
Gronwall, 237
Hölder, 235
interpolation, 236
Jensen, 234
Minkowski, 78, 235
Morrey, 164
Poincaré, 156, 178
Young, 234
inner product, 78
Jensen, 234
kernel of an operator, 17
Lax-Milgram, 91
Lebesgue, 222, 224
Lebesgue point, 225
limit
pointwise, 62
weak, 33
linear combination, 15
linear semigroup, 118
Lipschitz, 115, 219
map
bilinear, 73
continuous, 13
open, 63
matrix, 18
positive definite, 2
measure, 222
Dirac, 141
metric space, 218
mild solution, 136
Minkowski, 78, 235
mollification, 146, 228
monotone convergence, 224
Morrey, 163
multi-index, 143, 149
net smoothness, 172
Neumann's boundary condition, 216
norm, 11
equivalent, 20
Hölder, 56
open covering, 219
operator
adjoint, 66, 69, 198
backward Euler, 124, 126
bounded, 17
closed, 64, 123
compact, 68, 69, 93, 102, 106, 109
continuous, 17
diagonal, 18, 38
differential, 19
elliptic, 196
elliptic homogeneous, 190
integral, 20, 70
linear, 16
multiplication, 20
partial differential, 143
Picard, 116
positive definite, 89
resolvent, 126
shift, 19
symmetric, 107, 109
uniformly elliptic, 186
ordinary differential equation, 115
in a Banach space, 115
linear, 118
orthogonal projection, 80
orthogonality, 80
orthonormal basis, 85,88
orthonormal set, 84
parabolic equation, 200
partial differential equation
elliptic, 185
hyperbolic, 207
parabolic, 200
partial differential operator, 143
partition of unity, 232
perpendicular projection, 80, 99
Pettis, 227
Picard, 116
Poincaré, 156, 178
point spectrum, 106
positively invariant set, 136
product space, 64

Rademacher, 181
range of an operator, 16
Rellich-Kondrachov, 175
resolvent identities, 126
resolvent integral formula, 127
resolvent operator, 126
resolvent set, 106, 126
Riesz, 82
Schmidt, 109
Schwarz, 78
semigroup, 201, 205
contractive, 122
generation of, 128
of linear operators, 120
of type $\omega, 121$
strongly continuous, 121
semigroup property, 121
semilinear equation, 136
seminorm, 24
separable space, 218
separation of convex sets, 31
sequence, 13
Cauchy, 13, 218
convergent, 218
weakly convergent, 67
series, 13
Fourier, 88
orthogonal, 87
set
closed, 218
compact, 219
compactly contained, 152
connected, 218
convex, 233
dense, 218
measurable, 222
open, 218
orthonormal, 84
partially ordered, 217
positively invariant, 136
precompact, 219
relatively compact, 219
sigma-algebra, 222
Sobolev, 151
Sobolev conjugate exponent, 169
solution
classical, 187
weak, 188
space
complete, 13, 26, 218
dual, 32,66

Euclidean, 14
finite-dimensional, 14, 20
Fréchet, 25
Hilbert, 79
Hilbert-Sobolev, 152
Hölder, 56
Lebesgue, 225
locally compact, 22
metric, 26, 218
normed, 12, 13
of bounded continuous functions, 45
of bounded linear operators, 17
of continuous functions, 14,45
of sequences, 15
orthogonal, 80
reflexive, 33
separable, 218
Sobolev, 151
spectrum, 106
of a compact operator, 106
of a symmetric operator, 108
Stone-Weierstrass, 48
strong convergence, 33
subalgebra, 47
support, 139
theorem
a.e. differentiability, 179

Ascoli, 54, 59
Baire category, 62, 221
Banach-Alaoglu, 34
Banach-Steinhaus, 61
Bochner, 227
closed graph, 64
contraction mapping, 115, 219
Dini, 46
dominated convergence, 224
Egoroff, 223
Fredholm, 101
Fubini, 226
Gagliardo-Nirenberg embedding, 172
Hahn-Banach, 27
Hilbert-Schmidt, 109
Lax-Milgram, 91
Lebesgue, 225
monotone convergence, 224
Morrey embedding, 168
open mapping, 63
Pettis, 227
Rademacher, 181
Rellich-Kondrachov compactness, 175
Riesz representation, 82

Sobolev embedding, 172
Stone-Weierstrass, 48, 111
uniform boundedness principle, 61
weak convergence, 33,92
weak derivative, $140,144,156$
weak limit, 33
weak solution, 198
weak star convergence, 33
Young, 234

Selected Published Titles in This Series

143 Alberto Bressan, Lecture Notes on Functional Analysis, 2013
140 Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, 2012
139 John B. Walsh, Knowing the Odds, 2012
138 Maciej Zworski, Semiclassical Analysis, 2012
137 Luis Barreira and Claudia Valls, Ordinary Differential Equations, 2012
136 Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, 2012
135 Pascal Cherrier and Albert Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, 2012
134 Jean-Marie De Koninck and Florian Luca, Analytic Number Theory, 2012
133 Jeffrey Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, 2012
132 Terence Tao, Topics in Random Matrix Theory, 2012
131 Ian M. Musson, Lie Superalgebras and Enveloping Algebras, 2012
130 Viviana Ene and Jürgen Herzog, Gröbner Bases in Commutative Algebra, 2011
129 Stuart P. Hastings and J. Bryce McLeod, Classical Methods in Ordinary Differential Equations, 2012
128 J. M. Landsberg, Tensors: Geometry and Applications, 2012
127 Jeffrey Strom, Modern Classical Homotopy Theory, 2011
126 Terence Tao, An Introduction to Measure Theory, 2011
125 Dror Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, 2011
123 Gregory Eskin, Lectures on Linear Partial Differential Equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic Groups and Differential Galois Theory, 2011
121 Tobias Holck Colding and William P. Minicozzi II, A Course in Minimal Surfaces, 2011

120 Qing Han, A Basic Course in Partial Differential Equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical Statistics, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical Systems and Population Persistence, 2011
117 Terence Tao, An Epsilon of Room, I: Real Analysis, 2010
116 Joan Cerdà, Linear Functional Analysis, 2010
115 Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro, An Introductory Course on Mathematical Game Theory, 2010
114 Joseph J. Rotman, Advanced Modern Algebra, Second Edition, 2010
113 Thomas M. Liggett, Continuous Time Markov Processes, 2010
112 Fredi Tröltzsch, Optimal Control of Partial Differential Equations, 2010
111 Simon Brendle, Ricci Flow and the Sphere Theorem, 2010
110 Matthias Kreck, Differential Algebraic Topology, 2010
109 John C. Neu, Training Manual on Transport and Fluids, 2010
108 Enrique Outerelo and Jesús M. Ruiz, Mapping Degree Theory, 2009
107 Jeffrey M. Lee, Manifolds and Differential Geometry, 2009
106 Robert J. Daverman and Gerard A. Venema, Embeddings in Manifolds, 2009
105 Giovanni Leoni, A First Course in Sobolev Spaces, 2009
104 Paolo Aluffi, Algebra: Chapter 0, 2009
103 Branko Grünbaum, Configurations of Points and Lines, 2009

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.

This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations.

The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra.
The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.

