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Preface

The first version of these lecture notes was drafted in 2010 for a course at the
Pennsylvania State University. The book is addressed to graduate students
in mathematics or other disciplines, who wish to understand the essential
concepts of functional analysis and their application to partial differential
equations. Most of its content can be covered in a one-semester course at
the first-year graduate level.

In writing this textbook, I followed a number of guidelines:

- Keep it short, presenting all the fundamental concepts and results,
but not more than that.

- Explain clearly the connections between theorems in functional
analysis and familiar results of finite-dimensional linear algebra.

- Cover enough of the theory of Sobolev spaces and semigroups of
linear operators as needed to develop significant applications to
elliptic, parabolic, and hyperbolic PDEs.

- Include a large number of homework problems and illustrate the
main ideas with figures, whenever possible.

In functional analysis one finds a wealth of beautiful results that could
be included in a monograph. However, for a textbook of this nature one
should resist such a temptation.

After the Introduction, Chapters 2 to 6 cover classical topics in linear
functional analysis: Banach spaces, Hilbert spaces, and linear operators.
Chapter 4 is devoted to spaces of continuous functions, including the Stone-
Weierstrass approximation theorem and Ascoli’s compactness theorem. In
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xii Preface

view of applications to linear PDEs, in Chapter 6 we prove some basic
results on Fredholm operators and the Hilbert-Schmidt theorem on compact
symmetric operators in a Hilbert space.

Chapter 7 provides an introduction to the theory of semigroups, ex-
tending the definition of the exponential function etA to a suitable class
of (possibly unbounded) linear operators. We stress the connection with
finite-dimensional ODEs and the close relation between the resolvent oper-
ators and backward Euler approximations.

After an introduction explaining the concepts of distribution and weak
derivative, Chapter 8 develops the theory of Sobolev spaces. These spaces
provide the most convenient abstract framework where techniques of func-
tional analysis can be applied toward the solution of ordinary and partial
differential equations.

The first three sections in Chapter 9 describe applications of the pre-
vious theory to elliptic, parabolic, and hyperbolic PDEs. Since differential
operators are unbounded, it is often convenient to recast a linear PDE in a
“weak form”, involving only bounded operators on a Hilbert-Sobolev space.
This new equation can then be studied using techniques of abstract func-
tional analysis, such as the Lax-Milgram theorem, Fredholm’s theory, or the
representation of the solution in terms of a series of eigenfunctions.

The last chapter consists of an Appendix, collecting background mate-
rial. This includes: definition and properties of metric spaces, the contrac-
tion mapping theorem, the Baire category theorem, a review of Lebesgue
measure theory, mollification techniques and partitions of unity, integrals of
functions taking values in a Banach space, a collection of inequalities, and
a version of Gronwall’s lemma.

These notes are illustrated by 41 figures. Nearly 180 homework problems
are collected at the end of the various chapters. A complete set of solutions
to the exercises is available to instructors. To obtain a PDF file of the
solutions, please contact the author, including a link to your department’s
web page listing you as an instructor or professor.

It is a pleasure to acknowledge the help I received from colleagues, stu-
dents, and friends, while preparing these notes. To L. Berlyand, G. Crasta,
D. Wei, and others, who spotted a large number of misprints and provided
many useful suggestions, I wish to express my gratitude.

Alberto Bressan
State College, July 2012





Summary of Notation

R, the field of real numbers.

C, the field of complex numbers.

K, a field of numbers, either R or C.

Re z and Im z, the real and imaginary parts of a complex number z.

z̄ = a− ib, the complex conjugate of the number z = a+ ib ∈ C.

[a, b], a closed interval; ]a, b[, an open interval; ]a, b], [a, b[ half-open intervals.

R
n, the n-dimensional Euclidean space.

〈·, ·〉, scalar product on the Euclidean space R
n.

|v| .
=
√

〈v, v〉, the Euclidean length of a vector v ∈ R
n.

A \B .
= {x ∈ A , x /∈ B}, a set-theoretic difference.

A, the closure of a set A.

∂A, the boundary of a set A.
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242 Summary of Notation

Ω′ ⊂⊂ Ω, the closure of Ω′ is a compact subset of Ω.

χ
A
, the indicator function of a set A. χ

A
(x) =

{
1 if x ∈ A ,
0 if x /∈ A .

f : A �→ B, a mapping from a set A into a set B.

a �→ b = f(a), the function f maps the element a ∈ A to the element b ∈ B.

.
=, equal by definition.

⇐⇒ , if and only if.

C(E) = C(E,R), the vector space of all continuous, real-valued functions
on the metric space E.

C(E,C), the vector space of all continuous, complex-valued functions on the
metric space E.

BC(E), the space of all bounded, continuous, real-valued functions f : E �→
R, with norm ‖f‖ = supx∈E |f(x)|.

	1, 	p, 	∞, spaces of sequences of real (or complex) numbers.

L1(Ω), Lp(Ω), L∞(Ω), Lebesgue spaces.

W k,p(Ω), the Sobolev space of functions whose weak partial derivatives up
to order k lie in Lp(Ω), for some open set Ω ⊆ R

n.

Hk(Ω) = W k,2(Ω), Hilbert-Sobolev space.

Ck,γ(Ω), the Hölder space of functions u : Ω �→ R whose derivatives up to
order k are Hölder continuous with exponent γ ∈ ]0, 1].

‖ · ‖ = ‖ · ‖X , the norm on a vector space X.

(·, ·) = (·, ·)H , the inner product on a Hilbert space H.



Summary of Notation 243

X∗, the dual space of X, i.e., the space of all continuous linear functionals
x∗ : X �→ K.

〈x∗, x〉 = x∗(x), the duality product of x∗ ∈ X∗ and x ∈ X.

xn → x, strong convergence in norm; this means ‖xn − x‖ → 0.

xn ⇀ x, weak convergence.

ϕn
∗
⇀ϕ, weak-star convergence.

f ∗ g, the convolution of two functions f, g : Rn �→ R.

∇u = (ux1 , ux2 , . . . , uxn), the gradient of a function u : Rn �→ R.

Dα =
(

∂
∂x1

)α1
(

∂
∂x2

)α2

· · ·
(

∂
∂xn

)αn

= ∂α1
x1
∂α2
x2

· · · ∂αn
xn

, a partial differential

operator of order |α| .
= α1 + α2 + · · ·+ αn.

meas(Ω), the Lebesgue measure of a set Ω ⊂ R
n.

−
∫

Ω
f dx =

1

meas(Ω)

∫
Ω
f dx, the average value of f over the set Ω.
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Hölder, 56, 235
hyperbolic equation, 207
hyperplane

supporting, 234

inequality
Bessel, 87
Cauchy, 234
Cauchy-Schwarz, 78
discrete Hölder, 236
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