# The K-book An Introduction to Algebraic K-theory 

## Charles A. Weibel

## Graduate Studies in Mathematics

Volume 145

## The K-Book

An Introduction to Algebraic $K$-theory

# The K-Book 

# An Introduction to Algebraic K-theory 

Charles A. Weibel

Graduate Studies in Mathematics<br>Volume 145

# EDITORIAL COMMITTEE 

David Cox (Chair)<br>Daniel S. Freed<br>Rafe Mazzeo<br>Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 19-00, 19-01.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-145

## Library of Congress Cataloging-in-Publication Data

Weibel, Charles A., 1950-
The K-book : an introduction to algebraic K-theory / Charles A. Weibel. pages cm. - (Graduate studies in mathematics ; volume 145)
Includes bibliographical references and index.
ISBN 978-0-8218-9132-2 (alk. paper)

1. K-theory. I. Title.

QA612.33.W45 2013
512'.66-dc23

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2013 by Charles A. Weibel

Printed in the United States of America.
(@) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

## Contents

Preface ..... ix
Acknowledgements ..... xii
Chapter I. Projective modules and vector bundles ..... 1
§1. Free modules, $G L_{n}$, and stably free modules ..... 1
§2. Projective modules ..... 8
§3. The Picard group of a commutative ring ..... 20
$\S 4$. Topological vector bundles and Chern classes ..... 34
§5. Algebraic vector bundles ..... 49
Chapter II. The Grothendieck group $K_{0}$ ..... 69
§1. The group completion of a monoid ..... 69
§2. $K_{0}$ of a ring ..... 74
§3. $K(X), K O(X)$, and $K U(X)$ of a topological space ..... 89
§4. Lambda and Adams operations ..... 98
§5. $K_{0}$ of a symmetric monoidal category ..... 114
$\S 6 . \quad K_{0}$ of an abelian category ..... 124
§7. $K_{0}$ of an exact category ..... 140
§8. $K_{0}$ of schemes and varieties ..... 157
$\S 9$. $K_{0}$ of a Waldhausen category ..... 172
Appendix. Localizing by calculus of fractions ..... 189
Chapter III. $\quad K_{1}$ and $K_{2}$ of a ring ..... 197
§1. The Whitehead group $K_{1}$ of a ring ..... 197
§2. Relative $K_{1}$ ..... 212
§3. The Fundamental Theorems for $K_{1}$ and $K_{0}$ ..... 217
§4. Negative $K$-theory ..... 229
§5. $K_{2}$ of a ring ..... 236
§6. $K_{2}$ of fields ..... 251
§7. Milnor $K$-theory of fields ..... 266
Chapter IV. Definitions of higher $K$-theory ..... 283
§1. The $B G L^{+}$definition for rings ..... 284
§2. $K$-theory with finite coefficients ..... 304
§3. Geometric realization of a small category ..... 311
§4. Symmetric monoidal categories ..... 326
§5. $\lambda$-operations in higher $K$-theory ..... 341
§6. Quillen's $Q$-construction for exact categories ..... 347
§7. The " $+=Q$ " Theorem ..... 358
§8. Waldhausen's $w S$. construction ..... 364
§9. The Gillet-Grayson construction ..... 377
§10. Nonconnective spectra in $K$-theory ..... 381
§11. Karoubi-Villamayor $K$-theory ..... 385
§12. Homotopy $K$-theory ..... 394
Chapter V. The Fundamental Theorems of higher $K$-theory ..... 401
§1. The Additivity Theorem ..... 401
§2. Waldhausen localization and approximation ..... 413
§3. The Resolution Theorems and transfer maps ..... 423
§4. Devissage ..... 439
§5. The Localization Theorem for abelian categories ..... 442
§6. Applications of the Localization Theorem ..... 445
§7. Localization for $K_{*}(R)$ and $K_{*}(X)$ ..... 462
§8. The Fundamental Theorem for $K_{*}(R)$ and $K_{*}(X)$ ..... 472
$\S 9$. The coniveau spectral sequence of Gersten and Quillen ..... 477
§10. Descent and Mayer-Vietoris properties ..... 486
§11. Chern classes ..... 494
Chapter VI. The higher $K$-theory of fields ..... 509
§1. $K$-theory of algebraically closed fields ..... 509
§2. The $e$-invariant of a field ..... 516
§3. The $K$-theory of $\mathbb{R}$ ..... 523
§4. Relation to motivic cohomology ..... 527
§5. $\quad K_{3}$ of a field ..... 536
§6. Global fields of finite characteristic ..... 552
§7. Local fields ..... 558
§8. Number fields at primes where $c d=2$ ..... 564
§9. Real number fields at the prime 2 ..... 568
$\S 10$. The $K$-theory of $\mathbb{Z}$ ..... 579
Bibliography ..... 589
Index of notation ..... 599
Index ..... 605

## Preface

Algebraic $K$-theory has two components: the classical theory which centers around the Grothendieck group $K_{0}$ of a category and uses explicit algebraic presentations and higher algebraic $K$-theory which requires topological or homological machinery to define.

There are three basic versions of the Grothendieck group $K_{0}$. One involves the group completion construction and is used for projective modules over rings, vector bundles over compact spaces, and other symmetric monoidal categories. Another adds relations for exact sequences and is used for abelian categories as well as exact categories; this is the version first used in algebraic geometry. A third adds relations for weak equivalences and is used for categories of chain complexes and other categories with cofibrations and weak equivalences ("Waldhausen categories").

Similarly, there are four basic constructions for higher algebraic $K$ theory: the + -construction (for rings), the group completion constructions (for symmetric monoidal categories), Quillen's $Q$-construction (for exact categories), and Waldhausen's $w S$. construction (for categories with cofibrations and weak equivalences). All these constructions give the same $K$-theory of a ring but are useful in various distinct settings. These settings fit together as in the table that follows.

All the constructions have one feature in common: some category $C$ is concocted from the given setup, and one defines a $K$-theory space associated to the geometric realization $B C$ of this category. The $K$-theory groups are then the homotopy groups of the $K$-theory space. In the first chapter, we introduce the basic cast of characters: projective modules and vector bundles (over a topological space and over a scheme). Large segments of this chapter will be familiar to many readers, but which segments are familiar will depend

upon the background and interests of the reader. The unfamiliar parts of this material may be skipped at first and referred back to when relevant. We would like to warn the complacent reader that the material on the Picard group and Chern classes for topological vector bundles is in the first chapter.

In the second chapter, we define $K_{0}$ for all the settings in the above table and give the basic definitions appropriate to these settings: group completions for symmetric monoidal categories, $K_{0}$ for rings and topological spaces, $\lambda$-operations, abelian and exact categories, Waldhausen categories. All definitions and manipulations are in terms of generators and relations. Our philosophy is that this algebraic beginning is the most gentle way to become acquainted with the basic ideas of higher $K$-theory. The material on $K$-theory of schemes is isolated in a separate section, so it may be skipped by those not interested in algebraic geometry.

In the third chapter we give a brief overview of the classical $K$-theory for $K_{1}$ and $K_{2}$ of a ring. Via the Fundamental Theorem, this leads to Bass's "negative $K$-theory," meaning groups $K_{-1}, K_{-2}$, etc. We cite Matsumoto's presentation for $K_{2}$ of a field from [131] and "Hilbert's Theorem 90 for $K_{2}$ " (from [125]) in order to get to the main structure results. This chapter ends with a section on Milnor $K$-theory, including the transfer map, Izhboldin's Theorem on the lack of $p$-torsion, the norm residue symbol, and the relation to the Witt ring of a field.

In the fourth chapter we shall describe the four constructions for higher $K$-theory, starting with the original $B G L^{+}$construction. In the case of $\mathbf{P}(R)$, finitely generated projective $R$-modules, we show that all the constructions give the same $K$-groups: the groups $K_{n}(R)$. The $\lambda$-operations
are developed in terms of the $S^{-1} S$ construction. Nonconnective spectra and homotopy $K$-theory are also presented. Very few theorems are present here, in order to keep this chapter short. We do not want to get involved in the technicalities lying just under the surface of each construction, so the key topological results we need are cited from the literature when needed.

The fundamental structural theorems for higher $K$-theory are presented in Chapter V. This includes Additivity, Approximation, Cofinality, Resolution, Devissage, and Localization (including the Thomason-Trobaugh localization theorem for schemes). As applications, we compute the $K$-theory and $G$-theory of projective spaces and Severi-Brauer varieties (§1), construct transfer maps satisfying a projection formula (§3), and prove the Fundamental Theorem for $G$-theory ( $\S 6$ ) and $K$-theory ( $(8)$ ). Several cases of Gersten's DVR (discrete valuation domain) Conjecture are established in $\S 6$ and the Gersten-Quillen Conjecture is established in $\S 9$. This is used to interpret the coniveau spectral sequence in terms of $K$-cohomology and establish Bloch's formula that $C H^{p}(X) \cong H^{p}\left(X, \mathcal{K}_{p}\right)$ for regular varieties.

In Chapter VI we describe the structure of the $K$-theory of fields. First we handle algebraically closed fields (§1) and the real numbers $\mathbb{R}(\S 3)$ following Suslin and Harris-Segal. The group $K_{3}(F)$ can also be handled by comparison to Bloch's group $B(F)$ using these methods (§5). In order to say more, using classical invariants such as étale cohomology, we introduce the spectral sequence from motivic cohomology to $K$-theory in $\S 4$ and use it in $\S \S 6-10$ to describe the $K$-theory of local and global fields.

Text cross-references to definitions, figures, equations, and other items use the following conventions. Within Chapter IV, for example, text crossreferences to Definition 1.1, Figure 4.9.1, and equation (5.3.2) of Chapter IV are referred to as Definition 1.1, Figure 4.9.1, and (5.3.2). Outside of Chapter IV, they are referred to as Definition IV.1.1, Figure IV.4.9.1, and (IV.5.3.2).

## The back story

In 1985, I started hearing a persistent rumor that I was writing a book on algebraic $K$-theory. This was a complete surprise to me! Someone else had started the rumor, and I never knew who. After a few years, I had heard the rumor from at least a dozen people.

It actually took a decade before the rumor had become true-like the character Topsy ${ }^{1}$, the book project was never born, it just grew. In 1988

[^0]I wrote out a brief outline, following Quillen's paper Higher Algebraic Ktheory: $I[\mathbf{1 5 3}]$. It was overwhelming. I talked to Hy Bass, the author of the classic book Algebraic K-theory [15], about what would be involved in writing such a book. It was scary, because (in 1988) I didn't know how to write a book at all.

I needed a warm-up exercise, a practice book if you will. The result, $A n$ Introduction to Homological Algebra [223], took over five years to write.

By this time (1995), the $K$-theory landscape had changed and with it my vision of what my $K$-theory book should be. Was it an obsolete idea? After all, the new developments in motivic cohomology were affecting our knowledge of the $K$-theory of fields and varieties. In addition, there was no easily accessible source for this new material. Nevertheless, I wrote early versions of Chapters I-IV during 1994-1999. The project became known as the " $K$-book" at the time.

In 1999, I was asked to turn a series of lectures by Voevodsky into a book. This project took over six years, in collaboration with Carlo Mazza and Vladimir Voevodsky. The result was the book Lecture Notes on Motivic Cohomology [122], published in 2006.

In 2004-2008, Chapters IV and V were completed. At the same time, the final steps in the proof of the Norm Residue Theorem VI.4.1 were finished. (This settles not just the Bloch-Kato Conjecture, but also the Beilinson-Lichtenbaum Conjectures and Quillen-Lichtenbaum Conjectures.) The proof of this theorem is scattered over a dozen papers and preprints, and writing it spanned over a decade of work, mostly by Rost and Voevodsky. Didn't it make sense to put this house in order? It did. I am currently collaborating with Christian Haesemeyer in writing a self-contained proof of this theorem.

## Acknowledgements

The author is grateful to whoever started the rumor that he was writing this book. He is also grateful to the many people who have made comments on the various versions of this manuscript over the years: R . Thomason, D. Grayson, T. Geisser, C. Haesemeyer, J.-L. Loday, M. Lorenz, J. Csirik, M. Paluch, Paul Smith, P. A. Østvær, A. Heider, J. Hornbostel, B. Calmes, G. Garkusha, P. Landweber, A. Fernandez Boix, C. Mazza, J. Davis, I. Leary, C. Crissman, P. Polo, R. Brasca, O. Braeunling, F. Calegari, K. Kedlaya, D. Grinberg, P. Boavida, R. Reis, J. Levikov, O. Schnuerer, P. Pelaez, Sujatha, J. Spakula, J. Cranch, A. Asok, ....

## Bibliography

[1] J. F. Adams, Infinite Loop Spaces, Annals of Math. Studies 190, Princeton University Press, Princeton, 1978.
[2] D. W. Anderson, Relationship among $K$-theories, pp. 57-72 in Lecture Notes in Math. 341, Springer-Verlag, 1973.
[3] S. Araki and H. Toda, Multiplicative structures in mod $q$ cohomology theories I, Osaka J. Math. 2 (1965), 71-115.
[4] V. Artamonov, Projective Modules over Group Rings of Nilpotent Groups, Algebra, Moskov. Gos. Univ. (1982), 7-23 (Russian). English transl. in AMS Translations 154 (1992), 11-24.
[5] M. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307-317.
[6] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452.
[7] M. Atiyah, K-theory, Benjamin, New York, 1967.
[8] M. Atiyah and I. G. McDonald, Introduction to Commutative Algebra, AddisonWesley, 1969.
[9] M. Atiyah and D. Tall, Group representations, $\lambda$-rings and the $J$-homomorphism, Topology 8 (1969), 253-297.
[10] N. Jacobson, Basic Algebra II, Freeman \& Co., 1980.
[11] A. Bak, K-theory of Forms, Annals of Math. Studies 98, Princeton University Press, Princeton, 1981.
[12] G. Banaszak, Algebraic $K$-theory of number fields and rings of integers and the Stickelberger ideal, Annals of Math. 135 (1992), 325-360.
[13] G. Banaszak and W. Gajda, Euler systems for higher $K$-theory of number fields, J. Number Theory 58 (1996), 213-252.
[14] M. Barratt and S. Priddy, On the homology of non-connected monoids and their associated groups, pp. 31-36 in Proc. Symp. Pure Math. 22, 1971.
[15] H. Bass, Algebraic K-theory, Benjamin, 1968.
[16] H. Bass, Euler characteristics and characters of discrete groups, Inv. Math. 35 (1976), 155-196.
[17] H. Bass, Unitary algebraic $K$-theory, in Lecture Notes in Math. 342, SpringerVerlag, 1973.
[18] H. Bass, A. Heller, and R. Swan, The Whitehead group of a polynomial extension, Publ. Math. IHES 22 (1964), 61-79.
[19] H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $S L_{n}(n \geq 3)$ and $S p_{2 n}(n \geq 2)$, Publ. Math. IHES 33 (1967), 59-137.
[20] H. Bass and M. P. Murthy, Grothendieck groups and Picard groups of abelian group rings, Annals Math. 86 (1967), 16-73.
[21] H. Bass and J. Tate, The Milnor ring of a global field, pp. 349-446 in Lecture Notes in Math. 342, Springer-Verlag, 1973.
[22] A. Beilinson, J. Berstein, and P. Deligne, Faisceaux pervers, Asterisque 100, 1982.
[23] J. Berrick, An Approach to Algebraic K-theory, Pitman, 1982.
[24] S. Bloch, $K_{2}$ and algebraic cycles, Annals of Math. 99 (1974), 349-379.
[25] S. Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986), 267304.
[26] S. Bloch and K. Kato, p-adic etale cohomology, Publ. IHES 63 (1986), 107-152.
[27] S. Bloch and S. Lichtenbaum, A spectral sequence for motivic cohomology, unpublished 1995 preprint, available at www.math.uiuc.edu/K-theory/0062.
[28] A. Borel, Cohomologie réelle stable de groupes $S$-arithmétiques classiques, $C$. R. Acad. Sci. (Paris) Sér. A-B (1972), A1700-A1702. Cohomology of Arithmetic Groups, pp. 435-442 in Proc. 1974 ICM, Vancouver, 1975.
[29] A. Borel, Stable real cohomology of arithmetic groups, Ann. Scient. Éc. Norm. Sup. 7 (1974), 235-272.
[30] A. Borel and J.-P. Serre, Le Théorème de Riemann-Roch (d'après Grothendieck), Bull. Soc. Math. de France 86 (1958), 97-136.
[31] Z. Borevich and I. Shafarevich, Number Theory, Benjamin, New York, 1967.
[32] N. Bourbaki, Algèbre commutative, Chap. 1-Chap. 9, Hermann, Paris, 1961-83.
[33] A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, pp. 80-130 in Lecture Notes in Math. 658, Springer-Verlag, 1978.
[34] W. Browder, Algebraic $K$-theory with coefficients $\mathbb{Z} / p$, Lecture Notes in Math. 657, Springer-Verlag, 1978.
[35] J. Browkin and A. Schinzel, On Sylow 2-subgroups of $K_{2}\left(\mathcal{O}_{F}\right)$ for quadratic number fields $F$, J. Reine Angew. Math. 331 (1982), 104-113.
[36] K. Brown and S. Gersten, Algebraic $K$-theory as generalized sheaf cohomology, pp. 266-292 in Lecture Notes in Math. 341, Springer-Verlag, 1973.
[37] J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), 89-96.
[38] J. Buhler and D. Harvey, Irregular primes to 163 million, Math. Comp. 80 (2011), 2435-2444.
[39] D. Carter, Lower $K$-theory of finite groups, Comm. in Alg. 8 (1980), 1927-1937.
[40] J. Caruso, F. Cohen, J. P. May, and L. Taylor, James maps, Segal maps, and the Kahn-Priddy theorem, Trans. Amer. Math. Soc. 281 (1984), 243-283.
[41] K. Choo, T. Lam, and E. Luft, On free products of rings and the coherence property, pp. 135-143 in Lecture Notes in Math. 342, Springer-Verlag, 1973.
[42] H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, Springer-Verlag, 1993.
[43] M. Cohen, A Course in Simple-Homotopy Theory, Springer-Verlag, 1973.
[44] P. M. Cohn, Universal Algebra, Harper\&Row, 1965.
[45] P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215-228.
[46] G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel, Cyclic homology, cdh-cohomology and negative $K$-theory, Annals of Math. 167 (2008), 549-563.
[47] G. Cortiñas, C. Haesemeyer, M. Walker, and C. Weibel, Bass' $N K$ groups and $c d h$-fibrant Hochschild homology, Inventiones Math. 181 (2010), 421-448.
[48] R. K. Dennis and M. Stein, $K_{2}$ of radical ideals and semilocal rings revisited, Lecture Notes in Math. 342, Springer-Verlag, 1973.
[49] V. Drinfeld, Infinite-dimensional vector bundles in algebraic geometry: An introduction, pp. 263-304 in Progress in Math. 244, Birkhäuser, Boston, 2006.
[50] E. Dror, Acyclic spaces, Topology 11 (1972), 339-348.
[51] J. Dupont and C.-H. Sah, Scissors congruences II, J. Pure Applied Algebra 25 (1982), 159-195.
[52] W. Dwyer and S. Mitchell, On the $K$-theory spectrum of a smooth curve over a finite field, Topology 36 (1997), 899-929.
[53] P. Elbaz-Vincent, H. Gangl, and C. Soulé, Quelques calculs de la cohomologie de $G L_{N}(\mathbb{Z})$ et de la $K$-théorie de $\mathbb{Z}, C . R$. Acad. Sci. (Paris) 335 (2002), 321-324.
[54] T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic $K$-theory, $J$. Amer. Math. Soc. 6 (1993), 249-297.
[55] R. Fossum, Vector bundles over spheres are algebraic, Inv. Math. 8 (1969), 222225.
[56] E. Friedlander and A. Suslin, The spectral sequence relating algebraic $K$-theory to motivic cohomology, Ann. Sci. École Norm. Sup. 35 (2002), 773-875.
[57] L. Fuchs, Infinite Abelian Groups II, Academic Press, 1973.
[58] W. Fulton, Intersection Theory, Ergebnisse Math. 2, Springer-Verlag, 1984.
[59] W. Fulton and S. Lang, Riemann-Roch Algebra, Springer-Verlag, 1985.
[60] O. Gabber, $K$-theory of Henselian local rings and Henselian pairs, pp. 59-70 in Contemp. Math. 126 (1992); Letter to Karoubi, May 1983.
[61] P. Gabriel, Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), 323448.
[62] T. Geisser and M. Levine, The $K$-theory of fields in characteristic $p$, Invent. Math. 139 (2000), 459-493.
[63] T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of SuslinVoevodsky, J. Reine Angew. Math. 530 (2001), 55-103.
[64] S. Gersten, Higher $K$-theory of rings, pp. 3-42 in Lecture Notes in Math. 341, Springer-Verlag, 1973.
[65] S. Gersten, $K$-theory of free rings, Comm. Alg. 1 (1974), 39-64.
[66] P. Gille and T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge Univ. Press, 2006.
[67] H. Gillet, Riemann-Roch theorems for higher algebraic $K$-theory, Adv. in Math. 40 (1981), 203-289.
[68] H. Gillet and D. Grayson, The loop space of the $Q$-construction, Ill. J. Math. 11 (1987), 574-597.
[69] H. Gillet and M. Levine, The relative form of Gersten's conjecture over a discrete valuation ring: The smooth case, J. Pure Applied Algebra 46 (1987), 59-71.
[70] H. Gillet and C. Soulé, Filtrations on higher K-theory, pp. 89-148 in Proc. Symp. Pure Math. 67, 1999.
[71] K. Goodearl, Von Neumann regular rings, Pitman, 1979.
[72] K. Goodearl, Torsion in $K_{0}$ of unit-regular rings, Proc. Edinburgh Math. Soc. 38 (1995), 331-341.
[73] H. Grauert and R. Remmert, Theory of Stein Spaces, Springer-Verlag, 1977.
[74] D. Grayson, Higher algebraic K-theory: II (after D. Quillen), Lecture Notes in Math. 551, Springer-Verlag, 1976.
[75] D. Grayson, Finite generation of $K$-groups of a curve over a finite field (after D. Quillen), pp. 69-90 in Lecture Notes in Math. 966, Springer-Verlag, 1982.
[76] D. Grayson, Exact sequences in algebraic K-theory, Illinois J. Math. 31 (1987), 598-617.
[77] D. Grayson, The K-theory of semilinear endomorphisms, J. Algebra 113 (1988), 358-372.
[78] D. Grayson, Weight filtrations via commuting automorphisms, K-Theory 9 (1995), 139-172.
[79] P. Griffiths and J. Adams, Topics in Algebraic and Analytic Geometry, Princeton Univ. Press, 1974.
[80] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphere de Riemann, Amer. J. Math. 79 (1957), 121-138.
[81] A. Grothendieck, Classes de Chern et représentations linéaires des groupes discrets, pp. 215-305 in Dix Exposés sur la Cohomologie des Schémas, NorthHolland, 1968.
[82] C. Haesemeyer and C. Weibel, The Norm Residue Theorem in Motivic Cohomology, book in preparation.
[83] G. Harder, Die Kohomologie $S$-arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 42 (1977), 135-175.
[84] B. Harris and G. Segal, $K_{i}$ groups of rings of algebraic integers, Annals of Math. 101 (1975), 20-33.
[85] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[86] R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, SpringerVerlag, 1966.
[87] J.-C. Hausmann and D. Husemoller, Acyclic maps, Enseign. Math. 25 (1979), 53-75.
[88] L. Hesselholt and I. Madsen, On the K-theory of local fields, Annals of Math. 158 (2003), 1-113.
[89] H. Hiller, $\lambda$-rings and algebraic K-theory, J. Pure Applied Algebra 20 (1981), 241-266.
[90] M. Hovey, Model categories, Math. Surveys Monographs 63, Amer. Math. Soc., 1999.
[91] M. Hovey, B. Shipley, and J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149-208.
[92] A. Huber, Realization of Voevodsky's motives, J. Algebraic Geometry 9 (2000), 755-799.
[93] D. Husemoller, Fibre Bundles (Second Edition), Springer-Verlag, 1974.
[94] K. Igusa, What happens to Hatcher and Wagoner's formulas for $\pi_{0} C(M)$ when the first Postnikov invariant of $M$ is nontrivial?, pp. 104-172 in Lecture Notes in Math. 1046, Springer-Verlag, 1984.
[95] O. Izhboldin, On the torsion subgroup of Milnor's K-groups, Soviet Math. Doklady 35 (1987), 493-495; On $p$-torsion in $K_{*}^{M}$ for fields of characteristic $p$, pp. 129-144 in Algebraic K-theory, Adv. Soviet Math. 4, Amer. Math. Soc., 1991.
[96] N. Jacobson, p-algebras of exponent p, Bull. Amer. Math. Soc. 43 (1937), 667670.
[97] J. F. Jardine, Generalized étale cohomology theories, Birkhäuser, 1997.
[98] I. Kaplansky, Projective modules, Annals of Math. 68 (1958), 372-377.
[99] M. Karoubi, Les isomorphismes de Chern et de Thom-Gysin en $K$-théorie, Exposé 16 in Seminaire H. Cartan (1963/64), Secrétariat mathématique, Paris, 1965.
[100] M. Karoubi and O. Villamayor, $K$-théorie algébrique et $K$-théorie topologique, Math. Scand. 28 (1971), 265-307.
[101] K. Kato, Symmetric bilinear forms, quadratic forms and Milnor $K$-theory in characteristic two, Invent. Math. 66 (1982), 493-510.
[102] B. Keller, Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379-417.
[103] F. Keune, The relativization of $K_{2}$, J. Algebra 54 (1978), 159-177.
[104] E. Kummer, Collected Papers I, ed. A. Weil, Springer-Verlag, 1975.
[105] M. Kurihara, Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbb{Z}$, Compositio Math. 81 (1992), 223-236.
[106] T. Y. Lam, Serre's Conjecture, Lecture Notes in Math. 635, Springer-Verlag, 1978.
[107] S. Landsburg, Patching theorems for projective modules, J. Pure Appl. Alg. 21 (1981), 261-277.
[108] R. Lee and R. Szczarba, The group $K_{3}(\mathbb{Z})$ is cyclic of order forty-eight, Annals Math. 104 (1976), 31-60.
[109] M. Levine, Techniques of localization in the theory of algebraic cycles, J. Alg. Geom. 10 (2001), 299-363.
[110] M. Levine, The homotopy coniveau tower, J. Topology 1 (2008), 217-267.
[111] S. Lichtenbaum, On the values of zeta and L-functions: I, Annals of Math. 96 (1972), 338-360.
[112] S. Lichtenbaum, Values of zeta functions, étale cohomology, and algebraic $K$ theory, pp. 489-501 in Lecture Notes in Math. 342, Springer-Verlag, 1973.
[113] S. Lichtenbaum, Values of zeta functions at non-negative integers, pp. 127-138 in Lecture Notes in Math. 1068, Springer-Verlag, 1984.
[114] J.-L. Loday, $K$-théorie algébrique et représentations de groupes, Annales Sci. ENS 9 (1976), 309-377.
[115] J.-L. Loday, Cohomologie et groupe de Steinberg relatifs, J. Algebra 54 (1978), 178-202.
[116] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.
[117] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
[118] J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand, 1967.
[119] J. P. May, $E_{\infty}$ ring spaces, group completions and permutative categories, pp. 61-93 in London Math. Soc. Lecture Notes 11, Cambridge Univ. Press, 1974.
[120] J. P. May, Pairings of categories and spectra, J. Pure Applied Algebra (1980), 299-346.
[121] J. P. May and R. Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978), 205-224.
[122] C. Mazza, V. Voevodsky, and C. Weibel, Lecture Notes in Motivic Cohomology, Clay Math. Monographs 4, Amer. Math. Soc., 2006.
[123] P. Menal and J. Moncasi, On regular rings with stable range 2, J. Pure Applied Algebra 22 (1982), 25-40.
[124] A. Merkurjev, On the torsion in $K_{2}$ of local fields, Annals of Math. 118 (1983), 375-381.
[125] A. Merkurjev and A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izvestiya 21 (1983), 307-340.
[126] A. Merkurjev and A. Suslin, On the norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 339-356.
[127] J. Milne, Étale Cohomology, Princeton Univ. Press, 1980.
[128] J. Milne, Arithmetic Duality Theorems, Academic Press, 1986.
[129] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341.
[130] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318344.
[131] J. Milnor, Introduction to Algebraic K-theory, Annals of Math. Studies 72, Princeton Univ. Press, 1971.
[132] J. Milnor, On the homology of Lie groups made discrete, Comment. Math. Helv. 58 (1983), 72-85.
[133] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer-Verlag, 1973.
[134] J. Milnor and J. Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965), 211-264.
[135] J. Milnor and J. Stasheff, Characteristic Classes, Annals of Math. Studies 76, Princeton Univ. Press, 1974.
[136] M. Mimura and H. Toda, Topology of Lie Groups, Amer. Math. Soc. Translations of Math. Monographs 91, 1991.
[137] S. Mitchell, Hypercohomology spectra and Thomason's descent theorem, pp. 221-277 in Algebraic K-theory (Toronto, ON, 1996), Fields Inst. Commun. vol. 16, Amer. Math. Soc., Providence, 1997.
[138] F. Morel and V. Voevodsky, $\mathbb{A}^{1}$-homotopy theory of schemes, Publ. IHES 90 (2001), 45-143.
[139] D. Mumford, Lectures on Curves on an Algebraic Surface, Annals of Math. Studies 59, Princeton University Press, Princeton, 1966.
[140] D. Mumford, Abelian Varieties, Oxford Univ. Press, 1970.
[141] M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Annals of Math. 71 (1960), 16-42.
[142] J. Neisendorfer, Primary Homotopy Theory, Memoirs Amer. Math. Soc. 232, 1980.
[143] A. Nenashev, $K_{1}$ by generators and relations, J. Pure Appl. Alg. 131 (1998), 195-212.
[144] Y. Nesterenko and A. Suslin, Homology of the general linear group over a local ring, and Milnor's K-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 121-146.
[145] J. Neukirch, Algebraic number theory, Springer-Verlag, 1999. Translated from the 1992 German original.
[146] R. Oliver, Whitehead Groups of Finite Groups, Cambridge Univ. Press, 1988.
[147] T. O'Meara, Introduction to Quadratic Forms, Springer, 1963. Reprinted in 1971 and 2000.
[148] D. Orlov, A. Vishik, and V. Voevodsky, An exact sequence for $K_{*}^{M} / 2$ with applications to quadratic forms, Annals Math. 165 (2007), 1-13.
[149] I. Panin, On a theorem of Hurewicz and $K$-theory of complete discrete valuation rings, Math. USSR Izvestiya 29 (1987), 119-131.
[150] D. Puppe, A theorem on semi-simplicial monoid complexes, Annals Math. 70 (1959), 379-394.
[151] D. Quillen, Spectral sequences of a double semi-simplicial group, Topology 5 (1966), 155-157.
[152] D. Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Annals of Math. 96 (1972), 552-586. Revised version of 1970 preprint "The $K$-theory associated to a finite field."
[153] D. Quillen, Higher algebraic K-theory: I, pp. 85-147 in Lecture Notes in Math. 341, Springer-Verlag, 1973.
[154] D. Quillen, Finite generation of the groups $K_{i}$ of rings of algebraic integers, pp. 195-214 in Lecture Notes in Math. 341, Springer-Verlag, 1973.
[155] D. Quillen, Letter from Quillen to Milnor on $\operatorname{Im}\left(\pi_{i} O \rightarrow \pi_{i}^{S} \rightarrow K_{i} \mathbb{Z}\right)$, pp. 182-188 in Lecture Notes in Math. 551, Springer-Verlag, 1976.
[156] D. Quillen, Characteristic classes of representations, pp. 189-216 in Lecture Notes in Math. 551, Springer-Verlag, 1976.
[157] L. Reid, $N$-dimensional rings with an isolated singular point having nonzero $K_{-N}, K_{-T h e o r y} 1$ (1987), 197-205.
[158] J. Rognes, Algebraic $K$-theory of the two-adic integers, J. Pure Appl. Algebra 134 (1999), 287-326.
[159] J. Rognes, $K_{4}(\mathbb{Z})$ is the trivial group, Topology 39 (2000), 267-281.
[160] J. Rognes and P. A. Østvaer, Two-primary algebraic $K$-theory of two-regular number fields, Math. Zeit. 233 (2000), 251-263.
[161] J. Rognes and C. Weibel, Two-primary algebraic $K$-theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000), 1-54.
[162] J. Rosenberg, The algebraic $K$-theory of operator algebras, K-theory 12 (1997), 75-99.
[163] J. Rosenberg, Algebraic K-theory and Its Applications, Graduate Texts in Mathematics, 147, Springer-Verlag, 1994.
[164] M. Schlichting, Delooping the $K$-theory of exact categories, Topology 43 (2004), 1089-1103.
[165] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
[166] J.-P. Serre, Faisceaux algébriques cohérents, Annals of Math. 61 (1955), 197-278.
[167] J.-P. Serre, Local Fields, Springer-Verlag, 1979.
[168] S. Shatz, Profinite Groups, Arithmetic, and Geometry, Annals of Math. Studies 67, Princeton Univ. Press, 1972.
[169] I. Sivitskii, Torsion in Milnor $K$-groups for a local field, Mat. Sb. 126 (168) (1985), 576-583.
[170] N. Sloan, ed., On-Line Encyclopedia of Integer Sequences, http://www. research.att.com/~njas/sequences/, 2003.
[171] C. Soulé, $K$-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295.
[172] C. Soulé, Addendum to the article "On the torsion in $K_{*}(\mathbb{Z})$ " by R. Lee and R. Szczarba, Duke Math. J. 45 (1978), 131-132.
[173] C. Soulé, On higher p-adic regulators, pp. 372-401 in Lecture Notes in Math. 854, Springer-Verlag, 1981.
[174] C. Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), 488550.
[175] R. Staffeldt, On fundamental theorems of algebraic $K$-theory, $K$-theory 1 (1989), 511-532.
[176] J. Stienstra, Operations in the higher $K$-theory of endomorphisms, pp. 59-115 in CMS Conf. Series 2, Amer. Math. Soc., 1982.
[177] J. Stienstra, Correction to Cartier-Dieudonné theory for Chow groups, J. Reine Angew. Math. 365 (1985), 218-220.
[178] A. Suslin, On a theorem of Cohn, Zap. Nauk LOMI (1976), 127-130. English transl. in J. Soviet Math. 17 (1981), 1801-1803.
[179] A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11 (1977), 221-238.
[180] A. Suslin, On the equivalence of $K$-theories, Comm. in Alg. 9 (1981), 1559-1565.
[181] A. Suslin, Stability in algebraic $K$-theory, pp. 304-333 in Lecture Notes in Math. 966, Springer-Verlag, 1982.
[182] A. Suslin, On the $K$-theory of algebraically closed fields, Invent. Math. 73 (1983), 241-245.
[183] A. Suslin, Homology of $G L_{n}$, characteristic classes and Milnor $K$-theory, pp. 357-375 in Lecture Notes in Math. 1046, Springer-Verlag, 1984.
[184] A. Suslin, On the $K$-theory of local fields, J. Pure Appl. Alg. 34 (1984), 319-330.
[185] A. Suslin, Algebraic $K$-theory of fields, pp. 222-244 in Proc. Berkeley ICM Vol. 1, Amer. Math. Soc., Providence, 1987.
[186] A. Suslin, Torsion in $K_{2}$ of fields, $K$-theory 1 (1987), 5-29.
[187] A. Suslin, $K_{3}$ of a field, and the Bloch group (Russian), Trudy Mat. Inst. Steklov 183 (1990), 180-199. English transl. in Proc. Steklov Inst. Math. (1991), 217-239.
[188] A. Suslin, Excision in integer algebraic $K$-theory (Russian), Trudy Mat. Inst. Steklov 208 (1995), Teor. Chisel, Algebra i Algebr. Geom., 290-317.
[189] A. Suslin, On the Grayson spectral sequence, Trudy Mat. Inst. Steklova 241 (2003), 218-253. English transl. in Proc. Steklov Inst. Math. 241 (2003), 202237.
[190] A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, pp. 117-189 in NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer, 2000.
[191] A. Suslin and M. Wodzicki, Excision in algebraic K-theory, Annals of Math. 136 (1992), 51-122.
[192] M. Suzuki, Group Theory I, Springer-Verlag, 1982.
[193] R. Swan, Algebraic K-theory, Lecture Notes in Math. 76, Springer, 1968.
[194] R. Swan, A splitting principle in algebraic K-theory, pp.155-159 in Proc. Sympos. Pure Math. XXI, Amer. Math. Soc., 1971.
[195] R. Swan, Excision in algebraic K-theory, J. Pure Applied Algebra 1 (1971), 221252.
[196] R. Swan, Some relations between higher K-functors, J. Algebra 21 (1972), 113136.
[197] R. Swan, On seminormality, J. Algebra 67 (1980), 210-229.
[198] J. Tate, On the torsion in $K_{2}$ of fields, Algebraic Number Theory (1976 Kyoto Internat. Sympos.), Japan Soc. Promotion Sci., Tokyo, 1977.
[199] R. W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. Éc. Norm. Sup. (Paris) 118 (1985), 437-552.
[200] R. W. Thomason and T. Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, pp. 247-435 in The Grothendieck Festschrift III, Progress in Math. 88, Birkhäuser, 1990.
[201] B. Totaro, Milnor $K$-theory is the simplest part of algebraic $K$-theory, $K$-Theory 6 (1992), 177-189.
[202] H. Vandiver, On Fermat's Last Theorem, Trans. Amer. Math. Soc. 31 (1929), 613-642.
[203] H. Vandiver, Fermat's Last Theorem and the second factor in the cyclotomic class number, Bull. Amer. Math. Soc. 40 (1934), 118-126.
[204] H. Vandiver, Fermat's Last Theorem: Its history and the nature of the known results concerning it, Amer. Math. Monthly 53 (1946), 555-578.
[205] L. Vaserstein, On the stabilization of the general linear group over a ring, Math USSR Sb. 8 (1969), 383-400.
[206] L. Vaserstein, Foundations of algebraic K-theory (Russian), Uspehi Mat. Nauk 31:4 (1976), 87-149. English transl. in Russian Math. Surveys 31:4 (1976), 89156.
[207] L. Vaserstein, On the Whitehead determinant for semi-local rings, J. Algebra 283 (2005), 690-699.
[208] J.-L. Verdier, Catégories dérivées, pp. 262-311 in Cohomologie Étale (SGA41/2), Lecture Notes in Math. 569, Springer-Verlag, 1977.
[209] V. Voevodsky, Open problems in the motivic stable homotopy theory I, pp. 3-34 in Motives, Polylogarithms and Hodge Theory I, Int. Press, Somerville, 2002.
[210] V. Voevodsky, A possible new approach to the motivic spectral sequence for algebraic $K$-theory, pp. 371-379 in Contemp. Math. 293, Amer. Math. Soc., 2002.
[211] V. Voevodsky, Motivic cohomology with $\mathbb{Z} / 2$-coefficients, Publ. Math. IHES 98 (2003), 59-104.
[212] A. Vorst, Localization of the $K$-theory of polynomial extensions, Math. Ann. 244 (1979), 33-53.
[213] J. B. Wagoner, Continuous cohomology and $p$-adic $K$-theory, pp. 241-248 in Lecture Notes in Math. 551, Springer-Verlag, 1976.
[214] F. Waldhausen, Algebraic $K$-theory of generalized free products, Annals of Math. 108 (1978), 135-256.
[215] F. Waldhausen, Algebraic K-theory of spaces, Lecture Notes in Math. 1126, Springer-Verlag, 1985.
[216] L. Washington, Introduction to Cyclotomic Fields, Springer, 1982.
[217] C. Weibel, K-theory and analytic isomorphisms, Invent. Math. 61(1980), 177197.
[218] C. Weibel, A survey of products in algebraic $K$-theory, pp. 494-517 in Lecture Notes in Math. 854, Springer-Verlag, 1981.
[219] C. Weibel, K-theory of Azumaya algebras, Proc. Amer. Math. Soc. 81 (1981), 1-7.
[220] C. Weibel, Homotopy algebraic $K$-theory, pp. 461-488 in Contemporary Math. 83, Amer. Math. Soc., 1989.
[221] C. Weibel, Pic is a contracted functor, Invent. Math. 103 (1991), 351-377.
[222] C. Weibel, Étale Chern classes at the prime 2, pp. 249-286 in NATO Sci. Ser. C Math. Phys. Sci. 407, Kluwer, 1993.
[223] C. Weibel, An Introduction to Homological Algebra, Cambridge Univ. Press, 1994.
[224] C. Weibel, The 2-torsion in the $K$-theory of the integers, C. R. Acad. Sci. Paris 324 (1997), 615-620.
[225] C. Weibel, Higher wild kernels and divisibility in the $K$-theory of number fields, J. Pure Appl. Alg. 206 (2006), 222-244.
[226] C. Weibel, $K_{4}$ of number fields, in preparation.
[227] J. H. C. Whitehead, Simple homotopy types, Amer. J. Math 72 (1950), 1-57.
[228] G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978.
[229] A. Wiles, The Iwasawa conjecture for totally real fields, Annals of Math. 131 (1990), 493-540.
[EGA] A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Publ. Math. IHES I 4 (1960); II 8 (1961); III 11 (1961), 17 (1963); IV 20 (1964), 24 (1965), 28 (1966), 32 (1967). Part I (revised), Springer-Verlag, 1971.
[GAGA] J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42.
[SGA1] A. Grothendieck, Revêtements et groups fondamental, Séminaire de Géometrie Algébrique, 1960/61. Lecture Notes in Math. 224, Springer, 1971.
[SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schemas, Séminaire de Géométrie Algébrique, 1963/64. Lecture Notes in Math. 269, 270, and 305, Springer, 1972-1973.
[SGA6] P. Berthelot, A. Grothendieck, and L. Illusie, Théorie des intersections et théorème de Riemann-Roch, Séminaire de Géométrie Algébrique, 1966/67. Lecture Notes in Math. 225, Springer, 1971.

## Index of notation

$\alpha_{S}^{n}(i)$ signature map on $H^{n}\left(\mathcal{O}_{S}\right), 570$
$A(G)$ Burnside ring of $G, 71$
$A(X), A_{n}(X) K$-theory of spaces, $K\left(\mathcal{R}_{f}(X)\right), \mathbf{3 6 9}$
$A^{f d}(X) K$-theory of finitely dominated spaces, $\mathbf{3 7 0}$
$\mathbf{A z}(R)$ category of Azumaya algebras, 116
$B(F)$ Bloch's group for a field, 536
$B C$ geometric realization of a category, $\mathbf{3 1 3}$
$B C^{\text {top }}$ geometric realization of a topological category, 321
$B G^{\delta} \quad$ classifying space of a discrete group, $\mathbf{5 2 4}$
$B G_{\varepsilon} \quad$ subcomplex of $B G^{\delta}, \mathbf{5 2 4}$
$B G L(R)^{+}$connected $K$-theory space of $R, \mathbf{2 8 5}$
$B_{k} \quad$ Bernoulli numbers, 519
$B O$ classifying space for real vector bundles, $\mathbf{9 2}$
$B O_{n} \quad$ classifying space for real vector bundles, 42
$B S p$ classifying space for symplectic vector bundles, $\mathbf{9 2}$
$B S p_{n}$ classifying space for symplectic vector bundles, 42
$B U$ classifying space for complex vector bundles, $\mathbf{9 2}$
$B U_{n}$ classifying space for complex vector bundles, 42
$C(R)$ cone ring of $R, \mathbf{6}$
$C / d$ or $d \backslash C$ comma category, $\mathbf{3 1 4}$
Cart $(R)$ Cartier divisor group, 22
$\operatorname{Cart}(X)$ Cartier divisors on $X, 61$
$\operatorname{Ch}(\mathcal{A})$ chain complexes in $\mathcal{A}, \mathbf{1 7 6}$
$\mathbf{C h}^{h b}(\mathcal{A})$ homologically bounded complexes, 420
$\mathbf{C h}_{\text {pcoh }}^{h b}$ pseudo-coherent complexes, 421
$\mathbf{C h}_{\text {perf }}(R), \mathbf{C h}_{\text {perf }}(X)$ perfect chain complexes, $\mathbf{4 2 0}$
$\mathbf{C h}_{S}^{b} \mathbf{P}(R)$ bounded $S$-torsion complexes, $\mathbf{1 8 5}$
$C H^{i}(R)$ generalized Weil divisor class group, 133
$\mathrm{Cl}(\mathrm{R})$ Weil divisor class group of $R, 26$
$c_{n} \quad$ Chern classes, 107
$D(R)$ Weil divisor group, 25
$E(R)$ elementary group, generated by elementary matrices, 198
$\mathcal{E} \mathcal{A}$ extension category, 359
$\operatorname{End}_{*}(k) K$-theory of endomorphisms, $\mathbf{3 5 4}$
$\operatorname{End}(R)$ category of endomorphisms, 144
$F_{-1} \quad$ contraction of $F, \mathbf{2 3 0}$
FP $(R)$ faithfully projective $R$-modules, 116
$\mathbf{F}(R)$ category of based free modules, 327
Free $(R)$ category of free modules, 144
$G(R), G(X) K$-theory of finitely generated/coherent modules, $\mathbf{3 5 0}$
$G(R$ on $S)$ relative $G$-theory for $R \rightarrow S^{-1} R, 419$
$G(X$ on $Z)$ relative $G$-theory for $X \backslash Z \rightarrow X, 419$
$G$-Sets category of $G$-sets, 115
G. $\mathcal{A}$ Gillet-Grayson construction, $\mathbf{3 7 7}$
$G_{0}(R), G_{0}(X) K_{0}$ of $\mathbf{M}(R)$, of $\mathbf{M}(X), 126$
$G_{0}^{\operatorname{der}}(X) G_{0}$ of pseudo-coherent modules, $\mathbf{1 8 7}$
$G L_{n}(I)$ linear group of a nonunital ring $I, \mathbf{6}$
$G L_{n}(R)$ group of invertible $n \times n$ matrices, $\mathbf{2}$
$G L(R)$ linear group of a unital ring, 197
Grass $_{n}$ Grassmann manifold, 41
$G W(F)$ Grothendieck-Witt ring, 118
$\mathbb{H} \quad$ quaternion algebra over $\mathbb{R}, 523$
$\mathbb{H}_{\text {zar }}(-, A)$ Zariski descent spectrum, 489
$\mathbf{H}(R) \quad R$-modules with finite resolutions, 148
$\mathbf{H}_{S}(R) S$-torsion modules in $\mathbf{H}(R), \mathbf{1 4 9}$
$\mathbf{H}(X) \mathcal{O}_{X}$-modules with finite resolutions, 160
$H_{0} \quad$ ring of continuous maps $X \rightarrow \mathbb{Z}, 77$
$\widetilde{H}^{2}\left(R ; \mathbb{Z}_{2}(i)\right)$ subgroup of $\widetilde{H}^{2}\left(R ; \mathbb{Z}_{2}(i)\right), 577$
$H C_{*}$ cyclic homology, 440
$\mathbf{H}_{Z}(X)$ modules in $\mathbf{K}(X)$ supported on $Z, \mathbf{1 7 0}$
$I \int X$ translation category, 315
IBP invariant basis property, 2
iso $S$ category of isomorphisms in $S, \mathbf{3 2 7}$
$j(R) \quad$ signature defect of $R, \mathbf{5 7 3}$
$\mathbf{K}^{B}(R), \mathbf{K}^{B}(X)$ Bass $K$-theory spectrum, $\mathbf{3 8 3}$
$K(\mathcal{A})=\Omega B Q \mathcal{A}$ Quillen $K$-theory space, 350
$K(\mathcal{C})=\Omega B w S_{.} \mathcal{C}$ Waldhausen $K$-theory space, 368
$\hat{\mathbf{K}}(R)_{\ell} \ell$-adic completion of $\mathbf{K}, 309$
$K(R$ on $S)$ relative $K$-theory for $R \rightarrow S^{-1} R, 420$
$K(X$ on $Z)$ relative $K$-theory for $X \backslash Z \rightarrow X, 439$
$K H(R), K H(X)$ homotopy $K$-theory of $R$ or $X, \mathbf{3 9 4}$
$K_{0}(\mathcal{A}) K_{0}$ of an abelian category, 124
$K_{0}(\mathcal{C}) K_{0}$ of an exact category, 141
$K_{0}(w \mathcal{C}) K_{0}$ of a Waldhausen category, 173
$\widetilde{K}_{0}(R)$ ideal of $K_{0}(R), 78$
$K_{0}(R) K_{0}$ of a ring, 74
$K_{0}(R$ on $S) K_{0}$ of $S$-torsion homology complexes, $\mathbf{1 8 5}$
$K_{0}^{\square}(S) K_{0}$ of a symmertic monoidal category, 114
$\widetilde{K}_{0}(X)$ ideal of $K_{0}(X), 159$
$K_{0}(X) K_{0}$ of a scheme, 142
$K_{0}^{\text {der }}(X) K_{0}$ of perfect modules, 188
$K_{G}^{0}(X) K_{0}$ of topological $G$-bundles, 117
$K_{1}(R) K_{1}$ of a ring, 198
$K_{2}(R) K_{2}$ of a ring, 237
$K_{3}^{\text {ind }}(F) K_{3}(F) / K_{3}^{M}(F)\left(K_{3}\right.$-indecomposable $), 536$
$K_{n}(\mathcal{A}) K_{n}$ of an exact category, $\mathbf{3 5 0}$
$K_{\mathbb{Q}}^{(i)} \quad$ eigenspace in $\lambda$-ring $K, 107$
$K_{n}^{(i)}(R)$ eigenspace in $K_{n}(R)$ for $\psi^{k}, \mathbf{3 4 6}$
$K_{n}(R) K_{n}$ of a ring, 285
$K_{-n}(R)$ negative $K$-groups of $R, \mathbf{2 2 9}$
$K_{n}(R, I)$ relative $K$-groups of an ideal, 293
$K_{n}(R ; \mathbb{Z} / \ell) K_{n}$ with coefficients, 306
$K_{n}^{\square}(S) K_{n}$ of a symmetric monoidal category, 329
$K_{n}(X) K_{n}$ of a scheme, 351
$\widetilde{K O}(X)$ reduced $K$-theory, 90
$K O(X) K$-theory of real vector bundles, 89
$K O^{0}(X), K O^{n}(X)$ representable $K O$-theory, 92
$K S p(X) K$-theory of symplectic vector bundles, $\mathbf{8 9}$
$K S p^{0}(X), K S p^{n}(X)$ representable $K S p$-theory, 92
$K U(X) K$-theory of complex vector bundles, $\mathbf{8 9}$
$K U^{0}(X), K U^{n}(X)$ representable $K U$-theory, 92
$K V_{n}$ Karoubi-Villamayor groups, $\mathbf{3 8 6}$
$L F \quad$ contraction of $F, \mathbf{2 3 0}$
$\mathbf{M}(R)$ finitely generated $R$-modules, 126
$\mathbf{M}^{i}(R)$ modules supported in codimension $\geq i, 478$
$\mathbf{M}_{S}(R) S$-torsion $R$-modules, 128
$\mathbf{M}_{g r}(S)$ category of graded $S$-modules, 138
$\mathbf{M}(X)$ category of coherent modules, 127
$\mathbf{M}_{Z}(X)$ coherent modules supported on $Z, \mathbf{1 3 0}$
$M^{-1} M$ group completion of a monoid, 69
$M_{n} \quad$ monomial matrices in $G L_{n}(F), \mathbf{5 4 5}$
$M_{n}(R)$ ring of $n \times n$ matrices, $\mathbf{2}$
$\bmod _{S}(R)$ category of $S$-torsion modules, 132
MR Mumford-regular vector bundles, 163
$\mu^{\otimes i} \quad$ twisted Galois representation, 303
$\operatorname{Nil}(k) K$-theory of nilpotent endomorphisms, $\mathbf{3 5 4}$
$\operatorname{Nil}(R)$ category of nilpotent endomorphisms, 145
$N K_{n}(R)$ the quotient $K_{n}(R[t]) / K_{i}(R), 222$
$N S(X)$ Néron-Severi group, 68
$\nu(n)_{F}$ logarithmic de Rham group, 273
$\Omega G \quad$ loop space of $G, \mathbf{9 0}$
$\Omega(B G)$ loop space of $B G, 42$
$\Omega_{F}^{n} \quad$ Kähler differentials, 266
$\Omega R \quad$ algebraic loop ring of ring $R, 391$
$\mathcal{P}(F)$ scissors congruence group, 536
$\mathbf{P}(R)$ category of projective modules, $\mathbf{9}$
$\pi_{1}(B C)$ fundamental group of a category, 316
$\pi_{3}^{\text {ind }}\left(B M^{+}\right)$indecomposables of $\pi_{3}\left(B M^{+}\right), \mathbf{5 4 7}$
$\pi_{n}(X ; \mathbb{Z} / \ell)$ homotopy with coefficients, 304
$\operatorname{Pic}(R)$ Picard category (line bundles), 115
$\operatorname{Pic}(R)$ Picard group of $R, 20$
$\operatorname{Pic}(X)$ Picard group of $X, 55$
$\mathrm{Pic}_{+}(R)$ narrow Picard group, 573
$\mathbb{P}^{n} \quad$ projective $n$-space, 55
$Q \mathcal{A}$ Quillen's $Q$-construction, 348
Quad $^{\epsilon}(A)$ category of quadratic modules, 328
Quad $(F)$ category of quadratic spaces, 120
$\rho \quad$ rank of $K_{4}^{M}(F) \rightarrow K_{4}(F), \mathbf{5 7 6}$
$R(G)$ representation ring of $G, \mathbf{7 2}$
$r_{1}, r_{2}$ number of real (complex) embeddings, 297
$R\left[\Delta^{\bullet}\right]$ simplicial ring of standard simplices, $\mathbf{3 8 6}$
$\boldsymbol{R e p}_{\mathbb{C}}(G)$ category of complex representations of $G, \mathbf{1 1 5}$
$\mathcal{R}_{f}(X)$ finite spaces over $X, \mathbf{1 7 4}$
$\mathcal{R}_{\mathrm{fd}}(X)$ finitely dominated spaces over $X, \mathbf{1 8 6}$
$R^{n} \quad$ free $R$-module of rank $n, \mathbf{1}$
$\sigma(M)$ shift automorphism on graded modules, 138
$\Sigma_{n} \quad$ symmetric group of permutations, 287
$S^{-1} S$ group completion category, $\mathbf{3 2 8}$
$\operatorname{Seq}(F, R)$ sequence for contracted functors, 230
Sets $_{\text {fin }}$ category of finite sets, 115
$S K_{0}(R)$ ideal of $K_{0}(R), \mathbf{8 1}$
$S K_{0}(X)$ ideal of $K_{0}(X), \mathbf{1 5 9}$
$S K_{1}(A)$ subgroup of $K_{1}(A), A$ semisimple, 200
$S K_{1}(R)$ subgroup of $K_{1}(R), 198$
$S L_{n}(R)$ special linear group of a ring, 198
$\left(S_{n}\right)$ stable range condition, $\mathbf{5}$
$S_{n} \mathcal{C}$ category of $n$-fold extensions, $\mathbf{3 6 6}$
$\operatorname{sr}(R)$ stable range, $\mathbf{5}$
$S t(R)$ Steinberg group, 237
$\star \quad$ star operation on $S t(R), \mathbf{2 4 5}$
$\langle S, X\rangle, S^{-1} X$ localization categories, 333
$U(R)$ group of units in $R, \mathbf{2}$
$\operatorname{Unip}(R)$ group of unipotent matrices, 385
$v_{1}^{4} \quad$ generator of $\pi_{8}^{s}\left(S^{0} ; \mathbb{Z} / 16\right), \quad 534$
$\mathbf{V B}(X)$ category of algebraic vector bundles, 50
$\mathbf{V B}_{\mathbb{C}}(X)$ category of complex vector bundles, $\mathbf{3 5}$
$\mathbf{V B}_{\mathbb{R}}(X)$ category of real vector bundles, $\mathbf{3 5}$
$\mathbf{V B}_{n}(X)$ vector bundles of rank $n, 42$
$w_{i j}(r)$ special element of $S t(R), \mathbf{2 4 6}$
$W(F)$ Witt ring of quadratic forms, 118
$W(R)$ a subgroup of units, 202
$W(R)$ ring of big Witt vectors, 101
$W h_{0}(G) 0^{\text {th }}$ Whitehead group, 79
$W h_{1}(G) 1^{\text {st }}$ Whitehead group, 207
$W h_{n}(G) n^{\text {th }}$ Whitehead group, 292
$w_{i} \quad$ Stiefel-Whitney classes, 44
$w_{i}(F)$ exponent of the $e$-invariant, 516
$W Q(F) K_{0}$ of split quadratic forms, 121
$w S . \mathcal{C}$ Waldhausen construction, 367
$[X, \mathbb{N}]$ continuous maps from $X$ to $\mathbb{N}, \mathbf{3 6}$
$\zeta_{F}(s)$ Riemann zeta function, 520

## Index

+-construction, ix, x, 288, 283-304, 330-341, 350, 359, 506, 512-516, 546-552
$+=Q$ Theorem, 284, 290, 359, 358-364, 412
$F$-regular ring, 385
$K$-theory space
of $R, 300$
$\Omega$-spectrum, see also spectrum
$\delta$-functors, 154
$\gamma$-dimension, 104, 347
$\gamma$-filtration, 105, 105-113, 159, 168, 345-347
$\gamma$-operations, 103, 103-113, 343-347
$\lambda$-operations, x, xi, 69, 98, 98-113, 167, 294, 341-347
$\lambda$-ring, 98, 98-113, 167, 496, 499, 506
$\lambda$-semiring, 98
free $\lambda$-ring, 102, 107, 111
line element, 100, 100-113, 167, 168
positive structure, 99, 99-114, 167
special, $98,99,101,102,155,167$, 341-345
$\psi^{k}$, see also Adams operations
(App), see also Approximation Theorem
$A(G)$, see also Burnside ring
$A(X)$ (K-theory of spaces), 369, 370, 413
$A^{f d}(X), 370$
abelian category, 124
exact subcategory, 126
absolute excision, 294
absolutely flat ring, 8
$f_{*}$-acyclic module, 162
acyclic functor, $\mathbf{2 2 9}$
acyclic map, 288, 288
acyclic space, $\mathbf{2 8 7}$
Adams e-invariant, 112, 517, 523
Adams Conjecture, 294
Adams operations, 102, 102, 294, 343-347, 528, 534, 563
Adams's element $\mu_{n}, 523,581$
Adams, J. F., 102, 112, 294, 517, 523
additive category, $\mathbf{1 2 4}$
additive function, 125, 147, 158, 178
Additivity Theorem, xi, 371, 401-412, $426,428,459,465,473,474,482$
admissible filtration, 410
Almkvist, G., 144, 354
ample line element, 111
analytic isomorphism, 229, 236
analytic space, $52,54,67$
analytic vector bundle, 52, 54
Anderson, D., 291, 388, 393, 449
Approximation Theorem, xi, 182, 183-188, 417, 417-422, 430, 432, 439, 467, 468
Approximation Theorem for units, 570, 572
Araki, S., 308
Arf invariant, 121, 123
Arf, C., 123
Artamanov, V., 10
Artin-Schrier extension, 259, 260, 274

Artin-Schrier operator, 273
Artin-Wedderburn Theorem, 2, 75, 262
artinian ring, 5, 77, 79, 107, 234, 296, 397, 440
simple, 2, 79
Asok, A., xii
assembly map, 292, 292, 336
Atiyah, M., 57, 58, 98, 117
Auslander-Buchsbaum equality, 170
Azumaya algebra, 116, 409, 410
Bak, A., 338
Banach algebra, 202-210, 244-245
Banaszak, G., 587
Barratt-Priddy Theorem, 336, 376, 513, 548
base change, $83,85,126,150-172,193$, 425-438, 446-483
flat, 126-139, 350, 426, 446
based free module, 1, 327, 332, 334
Bass's Finiteness Conjecture, 355
Bass, H., x, xii, 4, 13, 16, 39, 78, 81, 87, 122, 201, 205, 214, 227, 229-234, 241, 252, 256, 265, 267, 268, 279, 280, 284, 334, 355, 381, 394, 470, 475, 553
Bass-Milnor-Serre Theorem, 201, 214, 310, 453, 558
Beilinson, A., 346, 502, 531
Beilinson-Lichtenbaum Conjectures, xii, 531
Bernoulli numbers, 509, 519, 519-520, 579-586
Bernoulli, J., 519
Berthelot, P., 163
Bertini's Theorem, 67
bicategory, 322, 322-326, 352-357, 374, 414
biexact, see also exact functor
bifibrations, see also biWaldhausen category
big vector bundles, 383, 487
binary icosohedral group, 299
binomial ring, 98, 98-103
Birch, B., 567
Birch-Tate Conjecture, 567, 567
bisimplicial sets, 317, 317-326, 368-377, 388, 403, 417
bivariant $K$-theory, 88
biWaldhausen category, 175, 174-184
Bloch's formula, xi, 485, 500
Bloch's group, xi, 536, 536-552

Bloch, S., 274-275, 485, 501, 528-536
Bloch-Kato Conjecture, xii, 528, 531
Boavida, P., xii
Bockstein, 295, 501, 511, 549, 588
Borel's Theorem, 297, 509, 537, 563, 579
Borel, A., 296, 297, 509, 553, 579
Borel-Moore homology, 529
Bott element, 295, 307, 307-310, 453, 456, 501, 511-515, 532-535, 566
Bott periodicity, 91, 92, 96, 322, 524, 527, 534, 574, 575, 578
Bourbaki, N., 8
Bousfield-Kan integral completion, 290, 497
Braeunling, O., xii
Brasca, R., xii
Brauer group, 116, 116-117, 200, 262-265, 564, 566, 579
Brauer lifting, 294, 345
Browder, W., 295, 308, 535, 581
Browkin, J., 576
Brown, K., 479, 487, 489, 492
BSp, 42, 90-95, 523
Burnside ring, 71, 72, 73, 115, 122, 340
calculus of fractions, 191, 431, 442, 488
Calegari, F., xii
Calkin category, 233
Calmes, B., xii
Campbell-Hausdorff formula, 217
Cancellation Theorem
Bass, 4, 5
Bass-Serre, 13, 22, 39, 57, 67, 78, 87, 104
vector bundles, 39-41, 43, 104
Witt, 118, 123
cap product, 505
Cartan homomorphism, 126, 126, 127, $137,142,159$
Cartan, H., 296
Cartan-Eilenberg resolution, 498
Carter, D., 235
Cartier divisor, see also divisor
Cartier operator, 273, 279
Castelnuovo, G., 65, 163, 164
category with cofibrations, 172, 172-181, 186, 364
and weak equivalences, see also Waldhausen category
Čech cohomology, 60, 110
cellular approximation, 90
cellular chain complex, $\mathbf{3 1 7}$
central simple algebra, 116, 200, 211, 262, 296, 297, 408
characteristic exact sequence, 402,435
Chase, S., 222
Chern character, 97, 109, 110, 113, 169
Chern class, x, 43-48, 64, 95, 100-114, 494-507
K-cohomology, 500, 507
$\ell$-adic, 502
axioms, 45, 108, 495, 498
Betti, 54, 58, 67, 502
Chow, 168, 169, 500, 501
deRham, 502
Deligne-Beilinson, 502, 507
étale, $310,500,500-507,530,549$, 564
motivic, 501-503
on a $\lambda$-ring, 107
theory of, 495, 495-507
total, 45, 95-96, 108, 172, 495-499
Chern roots, 108, 108-113
Chern, S.-S., 46
Chevalley groups, 236
Chow groups, 134, 168, 168-172, 480-501
Claborn, L., 133, 157
classifying bundle, 42
classifying space, $42,287, \mathbf{3 1 6}, 321-323$, $327,328,338,524$
closed under kernels, 141-154, 161, 177, $178,186,188,189,415,416$, 421-426
clutching map, 40, 37-41
coconut, 4
coend, 318
cofibered functor, see also fibered functor
cofibration sequence, 173, 219, 364-375, 402-405
cofibrations, see also category with cofibrations
cofinal functor, 235, 337-340
cofinal monoid, 71-74, 78, 85, 89-91, $101-110,210,331,338$
cofinal subcategory, 115, 115-117, 143, 144, 157, 161, 180-189, 205-207, 241, 327, 336, 351, 356, 357, 372-377, 416-422, 469

Cofinality Theorem, xi, 116, 143, 161, 180, 182, 189, 337, 337-339, 351, 372, 401, 416, 416-420, 462, 468
Cohen-Macaulay ring, 170, 484
coherent module, 14, 52, 51-66, 127, $128,130,132,133,139,144$, 159-171
analytic, 52,54
big, 384
over $X, 427-461$
coherent ring, 424, 449, 461
Cohn, P. M., 4, 209
comma category, 314, see also Quillen's Theorem A, 314-326, 356, 432
commutator subgroup, 198, 385
complete ideal, 76, 236, 309
completion, $\ell$-adic, 309, 520, 561-563
conductor ideal, 15, 29, 32
conductor square, see also Milnor square
cone ring, $3,6,75,88,211,293$
configuration complex, 538, 538-551
coniveau filtration, 133, 479, 481
coniveau spectral sequence, see also spectral sequence
contracted functor, 229, 229-235
covering space, 323
Cranch, J., xii
Crissman, C., xii
crossed product algebra, 262
Csirik, J., xii
cusp, 29, 84
cyclic abelian group, 541, 542, 551
cyclic algebra, 262-263, 408, 409
cyclic homology, 440, 541
topological (TC), 440
cyclotomic representation, 514
cyclotomic units, 215
cylinder axiom, 371, 413
cylinder functor, 370, 370-377, 403-419, 432

Davis, J., xii
Dayton, B., 232
Dedekind domain, 23, 23, 24, 25, 131, 132, 200, 210, 213, 257, 310, 355, 441, 449-460, 478-482, 531
degree of divisor, see also divisor, 64
Deitmar, A., 358
Deligne, P., 156, 170, 502
Deligne-Beilinson cohomology, 502, 507
Dennis trace map, see also trace, 495

Dennis, R. K., 238, 241, 246, 495
Dennis-Stein symbols, 246, 246-251
denominator set, 190, 228
derived category, 178, 193, 195, 423, 430-438, 468, 505
descent, 489
étale, 489, 569
Nisnevich, 492, 489-494
Zariski, 489, 486-494, 500
determinant
line bundle, see also line bundle
of a projective module, $\mathbf{2 1}, 21-22,81$, 122, 330
of a vector bundle, $38,43,58,158$, 171
of an endomorphism, 21
on $K_{0}, 81, \mathbf{8 1}, 100,122,158,159$, 330, 500
on $K_{1}, 199,330$
determinant line bundle, see also line bundle
devissage, xi, 129, 128-140, 226, 401, 439, 439-442, 446, 447, 456, 457, 459, 478, 480, 492
Dickson, L. E. J., 198
Dieudonné, J., 199, 201
dimension function, 87
direct sum ring, 6, 75, 88
Dirichlet Unit Theorem, 202, 215
discrete valuation domain (DVR), 24, $25,26,63,253-265,268,271,272$, 280, 450-461, 481, 483, 484, 509, 558
discriminant, 119, 119, 297
division ring, 1-5, 7-9, 11, 12, 74-75, 199-211, 242, 246, 441
divisor
Cartier, 22, 22-27, 62, 61-65, 510
Weil, 25, 63, 63, 64, 65, 68, 133, 467, 469
divisor class group, 26, 26, 27, 32, 63, $63-68,133,159$
relative, 32
Weil, 133, 138, 478, 480
divisorial ideal, 25
divisorial scheme, 161
dlog symbol, 273-282, 393
Dold-Kan correspondence, 497, 541, 551
double s.e.s., $\mathbf{3 7 9}$
Drinfeld, V., 233, 309
dual bundle, 43, 46, 55
dual module, 17, 20, 55, 82
dual numbers, 250
Dupont, J., 536, 551
$e$-invariant, $516, \mathbf{5 1 6}, 523,529,532$, $534,549,554,561,569$
Eilenberg swindle, $6,16,74,88,125$, $157,174,177,209,411$
Eilenberg, S., 16
Eilenberg-Mac Lane homology, 316
Eilenberg-Mac Lane space, 492, 497
Eilenberg-Mac Lane spectrum, 489
Elbaz-Vincent, P., 581
elementary expansion, 208
elementary group, 198, 386
elementary matrix, 198, 198-209, 212, 214, 236, 237, 244, 284, 303, 385, 389
elementary row operations, $7,199,202$, 203
elementary symmetric function, 47,108 , 278
elliptic curve, 58, 554
$\operatorname{End}_{*}(R), 144,145,155,354$
equivariant cohomology, 498
étale cohomology, 230, 528-535, 560, 564-579
étale descent, 489
Euclidean algorithm, 238
Euclidean domain, 201, 209
Euler characteristic, 136, 136, 146-169, 177, 416
Euler class, 43
Euler, L., 520
exact category, ix, 140, 140-171, 173-189, 193, 283, 306, 347-358, 369-381
quasi-exact, $358, \mathbf{3 5 8}, 363$
split exact, 141, 153, 189, 359-362, 381
exact couple, 479, 492
exact functor, 125-139, 141-155, 166, 175, 175-182, 365-377
biexact, 144, 180, 352-457
exact subcategory, 141, 189
exceptional field, 518, 518-522, 566
excision
absolute, 293
for $G L, 6$
for $K_{*}, 469$
for $K_{0}, 85,213$
for $K_{1}, 215,216,250$
for $K H_{*}, 396-397$
for $K V_{*}, 389$
for Pic, 31
exotic spheres, 520
extension axiom, 366-377, 413-419
extension category, $\mathbf{1 7 8}, 376,402,410$
$\mathcal{E}_{n}, 179,186,366,372,463$
$S_{n}, 365-377$
Extension Theorem, 403, 404, 405, 412
exterior algebra, 297
exterior power
bundle, 46, 55, 58, 99
module, 21, 98-110, 266, 273, 341, 536
family of vector spaces, 34
Farrell, T., 355, 472
Farrell-Jones Conjecture, 292
Fermat's Last Theorem, 520
Fernandez Boix, A., xii
fibered functor, 320, 318-326, 339, 340, 361-363, 463
fibrant replacement, 486-494
fibration, 305, see also model category homotopy, 286, 286-306, 318-325, 339, 357, 360-361, 368, 377, 390-397, 410-420, 442-493
filtered objects, 129, 156
filtered ring, 448, 461
finitely dominated complexes, 188
finitely dominated spaces, 186, 370
flabby group, 302
flag bundle, 47, 48, 60, 167-172
flasque category, 411
flasque module, 438
flasque resolution, 428, 485
flasque ring, $75,83,207,233-236,293$, 302, 411
flasque sheaves, 434, 437
Fossum, R., 133, 157
fractional ideal, 22-24, 61
free module, $1-6,8-19,50,51,116,144$, 337, 503
Friedlander, E., 531
Frobenius map, 111, 275, 294, 344, 511, 515, 554, 555
Frobenius operator, 155
Frobenius reciprocity, 74
Fundamental Theorem
for $G$-theory, xi, 423-428, 446, 448, 458
for $G_{0}, 134-139,160$
for $K$-theory, xi, $382-398,401,470$, 472, 474, 476
for $K_{0}, \mathrm{x}, 149,226,229,310,347$, 381, 382
for $K_{1}, 217,225-227,229,382$
for $K_{-n}, 230$
$G_{0}^{R}, 156$
$G(R$ on $S), 419,446$
$G(X$ on $Z), 187,419,434$
Gabber rigidity, see also Rigidity Theorem, 512
Gabber, O., 274, 309
Gabriel, P., 190, 442, 456
Gabriel-Zisman Theorem, 191, 432
GAGA, 52
Galois cohomology, 263, 279
Galois symbol, see also norm residue symbol, 264
Gangl, H., 581
Garkusha, G., xii
Garland, H., 296
Gauss, C.F., 266
Geisser, T., xii, 455, 533, 553
Geisser-Levine Theorem, 533, 553, 559
Geller, S., 346
generated by global sections, see also global sections
geometric realization, ix, 284, 313, 311-324, 326, 329, 347, 349-364, 396, 398, 488
bicategory, 322, 353
bisimplicial set, 318, 388
simplicial space, $321,367,387$
simplicial spectrum, 387, 394, 396, 398, 470
topological category, 321, 331
Gersten's DVR Conjecture, xi, 454, 455, 461, 484
Gersten, S., 152, 291, 294, 356, 383, 385, 412, 449, 454-481, 487, 489, 492, 495
Gersten-Quillen Conjecture, xi, 479, 479-485, 493
ghost map, see also Witt vectors
Gillet, H., 284, 371, 377, 379, 415, 454, 457, 483-486, 493, 494, 500, 504
GL-fibration, 389, 389-396
$G L_{n}$ of a nonunital ring $I, 6,6-61$
global field, $267,452,453,552-558$
ring of integers, 552-558
global sections, $37,46-47, \mathbf{5 0}, 56,62$, $66,67,158-168,408,436$
glueing axiom (W3), 173, 365
Godement resolution, 434, 438, 469
Goodearl, K., 8
Goodwillie, T., 440, 531
graded modules $\mathbf{M}_{g r}(S), 138,154$
Grassmannian, 41, 42, 90, 92, 321, 322
Grayson's Trick, 189, 372
Grayson, D., xii, 155, 284, 372, 377, 379, 472-483, 531
Great Enlightenment, 489
Grinberg, D., xii
Grothendieck group, ix, 69, 114, 116, $117,124,125,157,159,172,189$, 233, 277, 342
of monoids, 74
Grothendieck topology, 489
Grothendieck, A., 57, 65, 98, 101, 134, $147,159,169,172,315,500-506$, 557
Grothendieck-Witt ring, 118, 118-123
group completion
of a space, ix, x, 284, 290, 330, 328-340, 359, 363
of monoids, ix, 69, 69-74, 88-94, 98-100, 110, 114-115, 316, 329
group-like $H$-space, 330
$h$-cobordism, 208
$H$-unital ring, 293, 294, 302
Haesemeyer, C., xii
Handelman, D., 8
Harder's Theorem, 553
Harder, G., 553
Harris, B., xi, 512, 516, 580
Harris-Segal summand, 520, 521-523, $554,560,581-584$
Hasse invariant, 262, 277, 278
Hasse-Witt invariant, 278
Hasse-Schilling-Maass norm theorem, 200
Hattori's formula, 81
Hattori, A., 80, 81
Hattori-Stallings trace, see also trace
Hauptvermutung, 208
Heider, A., xii
Heller, A., 129, 131, 138
Heller-Reiner sequence, 138, 460
hensel local ring, 233, 236, 309, 492, 494
hensel pair, 309, see also hensel local ring
henselization, 454, 524
Herbrand-Ribet Theorem, 585
Hermitian metric, 35, 36
Hesselholt, L., 563
higher Chow group, 386, 529, 531
Higman's Trick, 222-225, 386
Higman, G., 223
Hilbert symbol, 253, 255, 265
Hilbert's Theorem 90
for $K_{*}^{M}, 276$
for $K_{2}$, x, 258-261
for units, 258-264
Hilbert's Third Problem, 536
Hilbert, D., 258
Hilton-Milnor Theorem, 298
Hinich, V., 419
Hirzebruch character, 113, 169
Hochschild homology, 495
Hodge structure, 502
homological stability, 295, 544
homologically bounded complexes, 136, 183
homology isomorphism, 330, 331, 335, 342
homology sphere, 299
homotopization, see also homotopy invariant, 387
strict $[F], \mathbf{3 8 5}$
homotopy $K$-theory, 394-399, 492
homotopy cartesian, 457, 463, 466, 470, 486, 492, 494
homotopy category, see also model category
homotopy fibration, see also fibration
homotopy invariant, $39,40,89, \mathbf{3 8 5}$, 385-392, 394, 504
Hopf element $\eta, 298,301,517,523$, 546-549, 569-570
Hopf invariant, 112
Hopf, H., 239
Hornbostel, J., xii
Hsiang, W.-C., 472
Huber, A., 502
Hurewicz map, 296-310, 495, 497, 498, 513, 549
Hutchinson, K., 550
hyperbolic plane, see also Witt ring
hyperbolic space, 338, 536
ideal class group, see also Picard group idempotent completion, 143, 144, 152, $154,189,340,377,416$
idempotent lifting, 16, 17, 28, 76
image of $J, 112,509,517-522,574,581$
indecomposable, see also vector bundle
infinite loop space, 94, 290-310, 329, $331-338,351,352,369,387,410$, 412
machines, 331, 338
map, 357, 387
infinite sum ring, 75, 88
inner product space, see also Witt ring
invariant basis property (IBP), 2, 2-5, $50,75,76,87,144,327$
invertible ideal, 22, 23, 61-65, 467
invertible sheaf, see also line bundle
involution
canonical, 364, 568
on $K U, 96,97$
on rings, 328,338
irregular prime, 519, 519, 579-587
Isomorphism Conjecture, 292
Iwasawa theory, 567,568
Iwasawa, K., 519
Izhboldin's Theorem, x, 274, 530, 533, 558
Izhboldin, O., 274, 282
Jacobian variety, 25, 65, 510, 553-556
Jacobson radical, 7, 11, 202
Jardine, J. F., 494
Jordan-Hölder Theorem, 4, 127, 137, 441
Jouanolou's Trick, 460
$K$-cohomology, xi, 485, 493, 500
$K$-theory of spaces, see also $A(X)$
$K$-theory space, ix, 283-284
exact category, 306, $\mathbf{3 5 0}$
monoidal category, 306, 329, 331
of a ring, 284, 291
relative, 293, 368, 410
Waldhausen, 306, 368, 369
$K$-theory spectrum, $306,331,369,374$, 383
Bass, 381-385, 394, 462, 470, 474, 475, 487, 492, 493
$K$-theory with coefficients, 207, 235, 295, 306, 304-311, 395, 445, 452-461, 507, 510-535, 549, 552-588
$K(R$ on $S), 185,186,189,420,421$, 422, 423, 438, 462
$K(X$ on $Z), 439,467-469,471$

Kähler differentials, 216, 266, 273, 495
Kahn, B., 520
Kaplansky, I., 11, 16, 19, 76, 77
Karoubi, M., 75, 110, 229, 233, 236, 338, 391, 411, 412, 466
Karoubi-Villamayor $K$-theory, 284, 386, 385-394
Kato, K., 124, 271-279
Kedlaya, K., xii
Keller, B., 153, 157
Kervaire, M., 240, 299
Keune, F., 243, 293
$K H_{*}$, see also homotopy $K$-theory
Kleisli rectification, 19, 351, 356, 385
$K_{n}$-regular ring, 222, 395-399, 475-476
Knebusch, M., 118
Kolster, M., 567, 587
Koszul sequence, 56, 139, 166, 406-408, 459
Kratzer, C., 346
Kronecker, L., 586
Krull domain, see also Cartier divisor
Krull-Schmidt Theorem, 57, 75, 117, 121, 141
Kuku, A., 296
Kummer theory, 254, 264, 279, 280, $500,507,532,573,579,585,586$
Kummer's congruences, 519
Kummer, E., 519, 583, 586
Kurihara, M., 581, 586
L-theory, 338
Lam, T-Y, 73, 156
Landweber, P., xii
lax functor, 324, 356, 385
Leary, I., xii
Lee, R., 517, 579, 581
Leibniz rule, 216
Leopoldt's Conjecture, 563
Levikov, J., xii
Levine, M., 455, 483, 531-533, 553
Lichtenbaum, S., 531, 557, 567, 578, 581
Lie algebra, 449
Lie group, 42, 524
line bundle, 20, 20-32, $35,50,51,55$, $57-62,67,68,100,115,159,167$, 171, 471, 503, 504
$G$-bundle, 500
ample, 66, 161, 168, 434
classification, 43, 44, 500
degree, see also vector bundle
determinant, 158, 159, 167
topological, 20, 36, 37, 40-48, 57, 64, 96, 97, 100
twisting, 56, 56, 57, 163
line element, see also $\lambda$-ring
local coefficient system, 317
local field, 253-266, 277-282, 455-456, 513-520, 558-563
localization
G-theory, 419-422, 478-484
$K_{0}, 130-138$
category, 130, 189-195, 430
cohomology, 533
Quillen, xi, 257-265, 442-472, 553-556, 565, 582
Waldhausen, 181, 181-185, 413-423
locally factorial, see also unique
factorization domain (UFD)
locally free module, $47,50,51,59,66$
locally small, see also set theory
Loday symbols, 303, 346
Loday, J.-L., xii, 291-293
Lorenz, M., xii
Lück, W., 152
Maazen, H., 247
Madsen, I., 563
$\mathrm{Mal}^{\prime}$ cev, A. I., 73
mapping telescope, 324, 334-339, 497
Maschke's Theorem, 72, 81, 583
Matsumoto's Theorem, 251, 251-263, 267, 530, 546
Matsumoto, H., x, 251
May, J. P., 332
Mayer-Vietoris property, see also descent, 492
Mayer-Vietoris sequence, 61, 73, 214, 232-236, 244-250, 393, 398-399, 423, 457-470
$K V$-theory, 390
Mazza, C., xii
McCarthy, R., 440
McGibbon, C., 93
Mennicke symbol, 210, 204-210, 213-216
Merkurjev, A., 242, 254-263, 528
Merkurjev-Suslin Theorem, 263-265, 528-530
Milnor $K$-theory, x, 267, 266-282, 292, 301, 509, 528
Milnor Conjecture, 277, 280
Milnor patching, see also patching modules

Milnor square, 15, 14-18, 28-34, 87, 214-215, 233, 243
Milnor, J., 15, 93, 201, 214, 236, 238, 267-280
Mitchell, S., 581
Möbius bundle, 35, 36, 41
model category, 487-494
local injective, 488, 488-494
monomial matrices, 304, 512, 539-552
Moore complex, 388
Moore space/spectrum, 304, 306
Moore's Theorem, 254, 266, 280, 456, 558, 562
Moore, C., 254
Moore, J., 392
Morita equivalence, 82, 82-88, 198, 248, 412
Morita invariant functor
$H H_{*}, 495$
$K_{n}, 83,205,233,241,247,303,351$
motivic cohomology, 346, 386, 501-504, $527-535,558,581$
multiplicative system, 190, 433, 446, 460
Mumford, D., 163
Mumford-regular, 163, 163-172, 406-409
Murthy, M.P., 234
$\nu(n)_{F}, \mathbf{2 7 3}, 273-282$
Nakaoka, M., 301, 544
narrow Picard group, see also Picard group
negative $K$-theory, x, 229-236, 284, 462, 474
theory of, 233
Neisendorfer, J., 305
Nenashev, A., 380
Néron-Severi group, 68
nerve of a category, $\mathbf{3 1 3}$
Nesterenko, Y., 503, 528
Newton, I., 109
$\mathrm{Nil}_{*}(R), 145,146$, see also $N K_{*}, 155$, 156, 222-228, 354, 472-477
$\mathbf{N i l}(R)$, see also $\operatorname{Nil}_{*}(R)$
nilpotent ideal, 7, 16, 61
$K_{*}$ of, $76,129,216,229,302$, 389-393, 397, 440
$\widetilde{K}_{0}$ is, $78, \mathbf{1 0 4}, 104-106,122,168$
Nisnevich sheaves, 527-528
Nisnevich topology, 491
Nisnevich, Y., 491
$N K_{*}, 222-229,251,354-355,393,399$, 472-477
node, $29,30,33,67,84,461$
non-noetherian, see also pseudo-coherent
nonexceptional, see also exceptional field
norm, see also transfer map
on $K_{*}^{M}, \mathbf{2 7 0}, 272-276$
reduced, 200, 200-211, 242
norm residue symbol, x, 254, 254-280, 528
Norm Residue Theorem, xii, 276, 280, 528, 581
number field
$K_{3}, 537$
2-regular, 576
rank of $K_{n}, 296,297$
real, 518, 521, 568-579
real embeddings, $265,268,297$
ring of integers, $24,201,214,310$, $355,453,531,564-579$
totally imaginary, $214,238,518,521$, 537, 563-568, 572
totally real, $563,567,578$
OEIS (online encyclopedia of integer sequences), 582
Ojanguren, M., 5
Oliver, R., 207
open patching, see also patching modules
order, 298
Ore condition, 190
Ore, $\varnothing, 190$
Orlov, D., 277
orthogonal group, 203, 338
Østvær, P. A., xii, 576
$\mathcal{P}(F), 536-551$
Paluch, M., xii
paracompact space, 36, 38-40, 42, 47, 89-97
parallelizable manifolds, 520
Parshin's Conjecture, 553
Parshin, A., 553
partially ordered abelian group, 72, 73, 87, 100
patching bundles, 37-39, 55, 59-61
patching modules, 14-18, 28-31, 38, 39, 51, 62, 84
Pedrini, C., 66

Pelaez, P., xii
perfect complex, 184, 184-188, 407, 420, 428-439, 467-470
perfect group, 201, 212, 239, 284-304, $336,340,546,547$
perfect map, 434
perfect module, 420, 437
perfect radical, 288, 300
periodicity, see also Bott periodicity
periodicity map, 534, 569
permutation matrices, 199, 250, 287, 301, 338, 393, 544
permutation representation, 301, 544
Peterson, F., 305
Pfister, A., 119
phantom map, 330
Picard category, 115, 122, 327, 330, 337
Picard group, x, 20, 20-34, 55, 60, 61, $63,64,81-105,158-171,223,230$, $234,310,327,330,355,398,453$, 500-507, 510, 519, 533, 535, 552, $553,555,556,564-579,582,583$, 585-587
narrow, 573, 572-579
relative, 32
Picard variety, 65, 68
Picard, E., 66
Pierce's Theorem, 77, 78
Platonov, V., 200
Poincaré Conjecture, 208
Poincaré duality, 555
Poincaré, H., 208, 299
Polo, P., xii
Pontrjagin class, 46, 48
Pontrjagin, L., 46
positive homotopy $K$-theory, 391
positive structure, see also $\lambda$-ring
Postnikov tower, 492
power norm residue, see also norm residue symbol, 263
pre-fibered functor, see also fibered functor
primitive elements, 296, 297
principal ideal domain (PID), 10, 24, 74, 127, 568
product
in $\pi_{*}^{s}, 301$
in $K_{*}, 204-205,235,247-249$, 291-303, 308-311, 352, 332-358, 362, 374, 382, 427, 473, 475, 497, 529, 569
in $K_{0}, 74,75,85,144-156,180$
in $K U^{*}, 96$
$K_{*}(R ; \mathbb{Z} / \ell), 307,310,453$
motivic cohomology, 529
projection formula, xi, $66,85,154,163$, 171, 171, 249, 252, 259, 260, 264, 271, 272, 274, 354, 425-429, 434-439, 446, 504, 505
projective bundle, see also projective space bundle
Projective Bundle Theorem, 139, 163, 166-168, 405, 409, 413, 459, 461, $473,474,503$
projective module, ix, x, 1-6, 8, 8-47, 50-69, 74-89, 98, 104, 110, 115-122, 124, 141-157, 162, 187, 197, 204-206, 219, 224, 226, 227, 241, 242, 249, 283, 327, 337, 341, 342, 347, 350, 407, 411, 420-421, 424-438, 462-472, 477, 496
big projective, 19
classification, 22, 82
faithfully, 116, 117, 122
graded, 411, 413
infinitely generated, $10,11,16,19$, 121
lifting property, $8,24,56,57,184$, 186, 219
projective object, 153
projective space bundle, $58,59,68,163$, $167,168,172,405,461,503$
pseudo-coherent
complex, 184-188, 421, 431-439
module, 142, 152, 185, 350, 421, 422, 424, 433, 437, 449
strictly -, 187
punctured spectrum, 471
pure exact sequence, 483-486
$Q$-construction, ix, 347-359, 363
quadratic forms, 120, 120-123, 408
quadratic module, 328,338
quadratic reciprocity, 266
quadratic space, see also quadratic forms
quasi-coherent module, 51, 51, 52, 56, $66,161-164,469$
quasi-exact category, see also exact category
quasi-separated scheme, $384,407,413$, 421, 467, 470
quaternion algebra, see also cyclic algebra
quaternionic bundle, see also vector bundle
Quillen's Theorem A, 319, 319-357, $377,379,404,418,424,440,443$, 464
Quillen's Theorem B, 320, 320-325, 356, 361, 363, 379, 442, 463, 465
Quillen, D., ix, xii, 10, 153, 163-165, 284-294, 307, 318, 319, 328-339, 342, 347-363, 371, 383, 403-413, 424, 436, 439-443, 449, 461-469, 477-486, 497, 509, 517, 523, 531, $553,559,580,581$
Quillen-Lichtenbaum Conjectures, xii, 531, 557, 567, 578
Quinn, F., 292
radical ideal, $7,16,86,199-208$, 213-216, 247, 250, 309
nilradical, 27-33, 78, 104, 216, 397
ramification index, 255-256, 281, 456, 510
rank, 1-5, 12, 12-24, 28, 31, 32, 36-47, $50-67,77,78,80-82,85,87,92$, $100,104,116,120,122,158-171$
rank function of a ring, 8,87
rational equivalence, 478,480
rational ruled surface, 64
ray class group $C l_{F}^{S}, 573$
reduced norm, see also norm
regular prime, 519, 565, 583
regular scheme, $63,159,425,437,459$, 461
regulators, 297
Reid, L., 236, 309
Reiner, I., 138
Reis, R., xii
relative tangent sheaf, 170
Relative Whitehead Lemma, 212
replete category, 156
representation ring $R(G), \mathbf{7 2}, 72, \mathbf{9 9}$, 99-110, 115, 117, 342-347
Resolution Theorem, xi, 147, 137-162, 423, 423-439, 463, 465
Quillen's, 165, 166, 409
$\mathcal{R}_{f}(X), 174,183,186,369-371,413$
Rickard, J., 193
Riemann hypothesis for curves, 257, 555, 557
Riemann surface, 25, 43, 57, 58

Riemann zeta, see also zeta function
Riemann-Roch Theorem, 25, 43, 58, 68, 159, 169, 175
Riemannian metric, 35, 36, 38, 524
Rigidity Conjecture, 537, 551
Rigidity Theorem, 269, 509, 515
Gabber rigidity, 309, 454-456, 525, 559, 561
Rim squares, 87, 215
ring spectrum, see also spectrum
ringed space, 49, 50-55, 60, 61, 66, 67, 99
Roberts, L., 461
Rogers $L$-function, 537
Rognes, J., 562, 576, 580, 581
Rost, M., xii, 528, 581
rumor, xi, xii
$s$-Cobordism Theorem, 208
Sah, H., 123, 536, 551
saturated, see also Waldhausen category
Schinzel, P., 576
Schlichting, M., 193
Schnuerer, O., xii
Schreier refinement, 137
Schur index, 199, 235
Schur's Lemma, 75, 441
scissors congruence group, see also $\mathcal{P}(F)$
Segal subdivision, 325, 363, 375, 464, 471
Segal, G., xi, 290, 331, 335, 512, 516, 580
semilocal ring, 86, 202, 449, 454, 479-485
seminormal ring, 29-34, 222, 223, 230, 398
seminormalization, 33, 33, 399, 460
semiring, 71, 71-78, 89-94, 98, 118
$\lambda$-semiring, see also $\lambda$-ring
semisimple object, 441
semisimple ring, $4,72,75,86,211,235$, 296-298, 300, 467
Serre subcategory, 130, 131-133, 137-139, 154, 186, 190, 431-447, 457, 459, 478
Serre's formula, 126, 134, 137, 151
Serre's Theorem A, 66
Serre's Theorem B, 53, 128, 428
Serre, J.-P., 13, 39, 52, 65-67, 87, 134, 139, 201, 214, 268, 296
set theory, 130, 141, 173, 174, 191, 311, 314, 348, 434
Severi-Brauer scheme, 409
Severi-Brauer variety, xi, 275, 408-410
Shapiro's Lemma, 539
Shektman, V., 419
Siegel, C.L., 519
signature, 120
signature defect, 573, 572-577
simple homotopy type, 207
simple module, 4, 75, 127, 211
simple object, 137
simple ring, $8,75,76,79,81,207,583$
Sivitskii, I., 281
$S K_{1}(R), 198,198-216,227,231,244$, 257, 300, 310, 346, 449-450, 553, 554
skeletally small category, 125
$S K_{n}(X), 557$
slice filtration, 531
Smale, S., 208
small category, see also set theory
Smith, Paul, xii
Snaith splitting, 337
Soulé, C., 346, 453, 493, 500, 534, 563, 580, 581
$S p_{n}, 90-92$, see also $B S p$
Spakula, J., xii
special $\lambda$-ring, see also $\lambda$-ring
specialization, 265, 268, 280, 451, 461, 509, 516
Specker group, 71
spectral sequence, 287, 289, 303, 324, 333, 340, 388, 389, 393-396, 526, $531,540,541,552,556$
Atiyah-Hirzebruch, 548
Brown-Gersten, 481, 493
coniveau, xi, 477-486, 493
descent, 492, 492, 493
morphism, 486, 534, 571
motivic-to- $K$-theory, xi, 529, 531-535, 555-576
pairing, 529, 534, 569
spectrum, 292, 306-309, 353, 374, 387, 486-494, 513
$\Omega$-spectrum, 332, 352, 369
nonconnective, xi, 381-385, 412
ring, $308,332,353,374$
Splitting Principal, 44, 48, 60, 99-113, 167, 500, 504
filtered, 105, 106, 107, 167, 169

Sridharan, R., 5
stable homotopy groups, $336,338,534$, $546,548,579,580$
stable range, 5, 4-8, 76-78, 200, 209, 295, 296, 346
stably free
line bundle, 27
module, 3, 1-10, 22, 74, 75, 116, 149
vector bundles, 38, 41
stably isomorphic
line bundles, 21
modules, $13,74,220$
vector bundles, 41, 90
Stallings, J., 80
Stein spaces, 53
Stein, M., 246
Steinberg group, 237, 236-250, 289, 290, 300
relative, 243, 248, 250
Steinberg identity, 251, 251-265, 280
Steinberg relations, 237
Steinberg symbols, 245, 245-282, 292, 301, 345, 576
Steinberg, R., 120, 123, 236, 237, 240
Stiefel, E., 45
Stiefel-Whitney class, 44, 43-46, 54, 95-97, 100, 108
axioms (SW1)-(SW4), 44
Stiefel-Whitney invariant, 119, 278-282
Stienstra, J., 228, 247, 354
strictly cofinal subcategory, 372, 377
Strooker, J., 393
structure group, 38, 42, 48
Subbundle Theorem, 36, 37, 47, 48, 90, 141
subintegral extension, 33, 399
Sujatha, xii
supersingular curve, 554
Suslin, A., xi, 10, 200, 209, 241, 242, 258-266, 293, 295, 296, 298, 500, 503, 507, 509-516, 523-524, 528-531, 536-550, 569
suspension ring, 211, 236, 383
Swallowing Lemma, 326
Swan's Theorem, 10, 19, 20, 47, 47, 81
Swan, R., 30, 79, 111, 152, 210-216, 291, 413, 449
Sylvester, J., 238
symmetric algebra, 58, 449, 460
symmetric bilinear form, see also Witt ring
symmetric monoidal category, ix, $x$, 114, 114-125, 141, 180, 283, 306, 326-341, 357, 358, 360, 362, 513
acts on $X, 332-340$
symmetric spectra, 488
syzygy, 151
Szczarba, R., 517, 579, 581
tame symbol, 255, 255-265, 268-269, 449
tangent bundle, see also vector bundle
Tate module, 309, 561
Tate twist, 515, 516, 532, 554
Tate, J., 238, 252, 254, 256, 265, 267, 268, 279, 280, 454, 509, 553, 567, 570
Tate-Poitou duality, 560, 570, 571, 573
Teichmüller units, 560
thick subcategory, 193
Thomason, R., xi, xii, 339, 373, 383, 384, 407-439, 467-468, 489, 492, 557
Thurston, W., 536
Toda, H., 308
Todd class, 169
topological category, 321, 338
Topsy, xi
torsor, 460
totally positive units, 572
Totaro, B., 503, 528
trace
Dennis trace map, 506
Hattori-Stallings, 79-81
of an endomorphism, 80
trace ideal of a module, 17, 19
transfer argument, 482, 512, 521, 568, 582, 582, 584, 585
transfer map, 83-85, 126-140, 150-154, 160-172, 206-211, 241-249, 252, 257-259, 270-282, 286, 295, 309, 347, 350, 353, 357, 423-439, 446-460, 473, 484-486, 512, 527, 534, 551, 557, 558
proper, 128, 140, 160, 162, 406, 428-438, 458, 557
transition function, see also patching bundles
translation category, 205-206, 241, 249, 315-323, 333-339
translations are faithful, $\mathbf{3 2 8}$
Traverso's Theorem, 29-31, 222, 398
Traverso, C., 29
triangulated category, 178, 189, 193-195, 430, 468
$t$-structure, 189
trivial cofibration, 488
trivial fibration, 488
Trobaugh, T., see also Thomason, R.
Tsygan's double complex, 541
Tulenbaev, M., 241
twisted duality theory, 504, 505
twisted polynomial ring, 460, 471, 477
twisted projective line, 472, 473
Uncle Tom's Cabin, xi
unimodular row, $3-5,14,28,31,209$, 210, 295
unipotent matrix, 385, 386
unique factorization domain (UFD), 26, 27, 63
unit-regular, 8
unit-regular ring, 7, 76
Units-Pic sequence, 61, 84, 215, 552
universal central extension, 239, 238-249, 289, 300
universal coefficient sequence, 305, 305-311, 395, 455, 514, 530, 532, $534,535,548,555,561,562,577$
unperforated group, 76,87
upper distinguished square, 491
van der Kallen, W., 241, 247, 250, 475
Van Kampen's Theorem, 316
Vandiver's Conjecture, 585, 580-587
Vandiver, H., 586
Vanishing Conjecture, 346, 535
Vaserstein, L., 5, 200-215, 241
vector bundle
G-, 117, 122, 500
algebraic, ix, 1, 20, 49-68, 412-504
analytic, 53,67
classification, 42, 42-43, 48, 57-60, 90, 92, 321, 322
complex conjugate, 46, 96
complexification, 46, 92
degree, 43, 57-65, 169, 510
indecomposable, 57, 58
normal bundle, 37
not projective, 57
on spheres, $40,41,91$
quaternionic, 35-49, 97
tangent bundle, 35, 37, 41-45, 169
topological, ix, 9-20, 34-36, 38-43, $45-48,50,51,57,69,89-97,99$
vector fields, 4,102
Veldkamp, F., 5
Verdier, J.-L., 193
Verschiebung operator, 155
Villamayor, O., 233, 391
Vishik, A., 277
Voevodsky, V., xii, 276-280, 527-581
Volodin space, 287, 287-300
Volodin, I.A., 287, 291, 295, 346
von Neumann regular ring, 7, 76-87
Vorst, A., 216, 223, 475
Wagoner, J., 88, 294, 302, 383, 412, 562
Waldhausen category, ix, 173, 172-189, 217, 283, 284, 306, 364-377, 401-422, 434, 467-470
extensional, 365, 418
saturated, 173, 181-183, 413-438
Waldhausen subcategory, 175, 175-189, 365-377, 405, 415-420, 431, 469
Waldhausen, F., ix, 172, 325, 326, 352-358, 362, 368-375, 415-423, 517
Wall's finiteness obstruction, 292
Wall, C. T. C., 79
Wang, S., 200
warm-up execise, xii
weak equivalence, see also Waldhausen category, see also model category
global, 488-494
local, 488-491
weakly homotopic maps, 331
Weber, M., 573
Weil divisor, see also divisor
Weil divisor class group, see also divisor class group
Weil Reciprocity Formula, 257, 271, 281, 457, 553, 556
Weil, A., 65, 257, 555, 557
Whitehead group, 207, 292
$W h_{0}, 79$
higher $W h_{n}, 292$
Whitehead products, 298
Whitehead Theorem, 183
Whitehead torsion, 208
Whitehead's Lemma, 201
Whitehead, J. H. C., 7, 201, 207
Whitney sum, 35-46, 89, 97, 115
Whitney sum formula, 44-48, 117, 278, 498-504
Whitney, H., 45
Wigner, D., 536
wild kernel, 454
Wiles, A., 567
Witt ring, x, 118, 123, 117-124, 277, 279
Witt vectors, $98, \mathbf{1 0 1}, 145,155,228$, 354, 496, 499, 559
Witt, E., 118
Wodzicki, M., 293
$w S$. construction, ix, 367
Yoneda embedding, 153, 416
Zariski descent, see also descent
Zassenhaus's Lemma, 137
zeta function, 297, 531, 566-568, 578, 580
of a curve, 557-558

## Selected Published Titles in This Series

145 Charles A. Weibel, The K-book, 2013
144 Shun-Jen Cheng and Weiqiang Wang, Dualities and Representations of Lie Superalgebras, 2012
143 Alberto Bressan, Lecture Notes on Functional Analysis, 2013
142 Terence Tao, Higher Order Fourier Analysis, 2012
141 John B. Conway, A Course in Abstract Analysis, 2012
140 Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, 2012
139 John B. Walsh, Knowing the Odds, 2012
138 Maciej Zworski, Semiclassical Analysis, 2012
137 Luis Barreira and Claudia Valls, Ordinary Differential Equations, 2012
136 Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, 2012
135 Pascal Cherrier and Albert Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, 2012
134 Jean-Marie De Koninck and Florian Luca, Analytic Number Theory, 2012
133 Jeffrey Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, 2012
132 Terence Tao, Topics in Random Matrix Theory, 2012
131 Ian M. Musson, Lie Superalgebras and Enveloping Algebras, 2012
130 Viviana Ene and Jürgen Herzog, Gröbner Bases in Commutative Algebra, 2011
129 Stuart P. Hastings and J. Bryce McLeod, Classical Methods in Ordinary Differential Equations, 2012
128 J. M. Landsberg, Tensors: Geometry and Applications, 2012
127 Jeffrey Strom, Modern Classical Homotopy Theory, 2011
126 Terence Tao, An Introduction to Measure Theory, 2011
125 Dror Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, 2011
123 Gregory Eskin, Lectures on Linear Partial Differential Equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic Groups and Differential Galois Theory, 2011
121 Tobias Holck Colding and William P. Minicozzi II, A Course in Minimal Surfaces, 2011

120 Qing Han, A Basic Course in Partial Differential Equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical Statistics, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical Systems and Population Persistence, 2011
117 Terence Tao, An Epsilon of Room, I: Real Analysis, 2010
116 Joan Cerdà, Linear Functional Analysis, 2010
115 Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro, An Introductory Course on Mathematical Game Theory, 2010
114 Joseph J. Rotman, Advanced Modern Algebra, Second Edition, 2010
113 Thomas M. Liggett, Continuous Time Markov Processes, 2010
112 Fredi Tröltzsch, Optimal Control of Partial Differential Equations, 2010
111 Simon Brendle, Ricci Flow and the Sphere Theorem, 2010
110 Matthias Kreck, Differential Algebraic Topology, 2010
109 John C. Neu, Training Manual on Transport and Fluids, 2010
108 Enrique Outerelo and Jesús M. Ruiz, Mapping Degree Theory, 2009

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.

Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebraic and geometric questions. Algebraic $K$-theory, which is the main character of this book, deals mainly with studying the structure of rings. However, it turns out that even working in a purely algebraic context, one requires techniques from homotopy theory to construct the higher $K$-groups and to perform computations. The resulting interplay of algebra, geometry, and topology in $K$-theory provides a fascinating glimpse of the unity of mathematics.

This book is a comprehensive introduction to the subject of algebraic $K$-theory. It blends classical algebraic techniques for $K_{0}$ and $K_{1}$ with newer topological techniques for higher $K$-theory such as homotopy theory, spectra, and cohomological descent. The book takes the reader from the basics of the subject to the state of the art, including the calculation of the higher $K$-theory of number fields and the relation to the Riemann zeta function.


[^0]:    ${ }^{1}$ Topsy is a character in Harriet B. Stowe's 1852 book Uncle Tom's Cabin, who claimed to have never been born: "Never was born! I spect I grow'd. Don't think nobody never made me [sic]."

