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Preface

This book is a revised and considerably expanded version of our book Lya-
punov Exponents and Smooth Ergodic Theory [7]. When the latter was
published, it became the only source of a systematic introduction to the
core of smooth ergodic theory. It included the general theory of Lyapunov
exponents and its applications to the stability theory of differential equa-
tions, nonuniform hyperbolicity theory, stable manifold theory (with em-
phasis on absolute continuity of invariant foliations), and the ergodic theory
of dynamical systems with nonzero Lyapunov exponents, including geodesic
flows. In the absence of other textbooks on the subject it was also used as
a source or as supportive material for special topics courses on nonuniform
hyperbolicity.

In 2007 we published the book Nonuniform Hyperbolicity: Dynamics
of Systems with Nonzero Lyapunov Exponents [9], which contained an up-
to-date exposition of smooth ergodic theory and was meant as a primary
reference source in the field. However, despite an impressive amount of
literature in the field, there has been until now no textbook containing a
comprehensive introduction to the theory.

The present book is intended to cover this gap. It is aimed at gradu-
ate students specializing in dynamical systems and ergodic theory as well as
anyone who wishes to acquire a working knowledge of smooth ergodic theory
and to learn how to use its tools. While maintaining the essentials of most
of the material in [7], we made the book more student-oriented by carefully
selecting the topics, reorganizing the material, and substantially expanding
the proofs of the core results. We also included a detailed description of es-
sentially all known examples of conservative systems with nonzero Lyapunov
exponents and throughout the book we added many exercises.

vii



viii Preface

The book consists of two parts. While the first part introduces the
reader to the basics of smooth ergodic theory, the second part discusses
more advanced topics. This gives the reader a broader view of the theory
and may help stimulate further study. This also provides nonexperts with a
broader perspective of the field.

We emphasize that the new book is self-contained. Namely, we only
assume that the reader has a basic knowledge of real analysis, measure
theory, differential equations, and topology and we provide the reader with
necessary background definitions and state related results.

On the other hand, in view of the considerable size of the theory we
were forced to make a selection of the material. As a result, some inter-
esting topics are barely mentioned or not covered at all. We recommend
the books [9, 15] and the surveys [8, 58] for a description of many other
developments and some recent work. In particular, we do not consider ran-
dom dynamical systems (see the books [5, 51, 56] and the survey [52]),
dynamical systems with singularities, including “chaotic” billiards (see the
book [50]), the theory of nonuniformly expanding maps (see the survey [57]),
and one-dimensional “chaotic” maps (such as the logistic family; see [42]).

Smooth ergodic theory studies the ergodic properties of smooth dynam-
ical systems on Riemannian manifolds with respect to “natural” invariant
measures. Among these measures most important are smooth measures,
i.e., measures that are equivalent to the Riemannian volume. There are
various classes of smooth dynamical systems whose study requires different
techniques. In this book we concentrate on systems whose trajectories are
hyperbolic in some sense. Roughly speaking, this means that the behavior of
trajectories near a given orbit resembles the behavior of trajectories near a
saddle point. In particular, to every hyperbolic trajectory one can associate
two complementary subspaces such that the system acts as a contraction
along one of them (called the stable subspace) and as an expansion along
the other (called the unstable subspace).

A hyperbolic trajectory is unstable—almost every nearby trajectory
moves away from it with time. If the set of hyperbolic trajectories is suffi-
ciently large (for example, has positive or full measure), this instability forces
trajectories to become separated. On the other hand, compactness of the
phase space forces them back together; the consequent unending dispersal
and return of nearby trajectories is one of the hallmarks of chaos.

Indeed, hyperbolic theory provides a mathematical foundation for the
paradigm that is widely known as “deterministic chaos”—the appearance of
irregular chaotic motions in purely deterministic dynamical systems. This



Preface ix

paradigm asserts that conclusions about global properties of a nonlinear dy-
namical system with sufficiently strong hyperbolic behavior can be deduced
from studying the linearized systems along its trajectories.

The study of hyperbolic phenomena originated in the seminal work of
Artin, Morse, Hedlund, and Hopf on the instability and ergodic properties of
geodesic flows on compact surfaces (see the survey [37] for a detailed descrip-
tion of results obtained at that time and for references). Later, hyperbolic
behavior was observed in other situations (for example, Smale horseshoes
and hyperbolic toral automorphisms).

The systematic study of hyperbolic dynamical systems was initiated by
Smale (who mainly considered the problem of structural stability of hy-
perbolic systems; see [83]) and by Anosov and Sinai (who were mainly con-
cerned with ergodic properties of hyperbolic systems with respect to smooth
invariant measures; see [3, 4]). The hyperbolicity conditions describe the
action of the linearized system along the stable and unstable subspaces and
impose quite strong requirements on the system. The dynamical systems
that satisfy these hyperbolicity conditions uniformly over all orbits are called
Anosov systems.

In this book we consider the weakest (hence, most general) form of
hyperbolicity, known as nonuniform hyperbolicity. It was introduced and
studied by Pesin in a series of papers [67, 68, 69, 70, 71]. The nonuniform
hyperbolicity theory (which is sometimes referred to as Pesin theory) is
closely related to the theory of Lyapunov exponents. The latter originated
in works of Lyapunov [59] and Perron [66] and was developed further in [23].
We provide an extended excursion into the theory of Lyapunov exponents
and, in particular, introduce and study the crucial concept of Lyapunov–
Perron regularity. The theory of Lyapunov exponents enables one to obtain
many subtle results on the stability of differential equations.

Using the language of Lyapunov exponents, one can view nonuniformly
hyperbolic dynamical systems as those systems where the set of points for
which all Lyapunov exponents are nonzero is “large”—for example, has
full measure with respect to an invariant Borel measure. In this case the
Multiplicative Ergodic Theorem of Oseledets [65] implies that almost every
point is Lyapunov–Perron regular. The powerful theory of Lyapunov expo-
nents then yields a profound description of the local stability of trajectories,
which, in turn, serves as grounds for studying the ergodic properties of these
systems.

Luis Barreira, Lisboa, Portugal Yakov Pesin, State College, PA USA

February 2013
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[61] R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer.
Math. Soc. 229 (1977), 351–370.
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Lyapunov function, 218

exponentially stable solution, 63
conditionally –, 72

filtration, 34, 35
linear –, 34
set –, 249

first return
map, 102
time, 102

flat strip theorem, 206
flow, 63, 78

Anosov –, 8
Bernoulli –, 31
entropy of a geodesic –, 210
geodesic –, 11, 198, 205

foliation, 6, 177
coordinate chart, 7
nonabsolutely continuous –, 168
with finite volume leaves, 233
with smooth leaves, 6, 177

forward regular, 52, 59
point, 80

function
complete –, 218
Lyapunov –, 218
tempered –, 84, 103

generator, 101
geodesic flow, 11, 198, 205
global

leaf, 7, 177
stable curve, 5
stable manifold, 5, 6, 152, 153
unstable curve, 5
unstable manifold, 5, 152, 153
weakly stable manifold, 153
weakly unstable manifold, 153

graph transform property, 151

Hμ(ξ), 183
Hμ(ξ|ζ), 184
hμ(T ), 185
hμ(T, ξ), 184
Hamiltonian, 15
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Hölder continuous distribution, 95
holonomy map, 157
horocycle, 12, 207
hyperbolic measure, 82

ideal boundary, 10, 206
implicit function theorem, 143
inclination lemma, 150
induced

cocycle, 102
transformation, 102

integrable distribution, 7
invariant family of cones, 217

Jacobian, 158

Katok map, 22

lamination, 152
leaf

global –, 7, 177
local –, 7, 177
volume, 155

level set, 92
limit solution

negative –, 201
positive –, 201

linear
extension, 100, 101
filtration, 34
skew product, 101

local
ergodicity, 176
leaf, 7, 177
smooth submanifold, 73, 134
stable manifold, 6, 153
unstable manifold, 6, 147, 153

LP-regular
Lyapunov exponent, 53, 59
point, 80, 107

Lyapunov
change of coordinates, 125
chart, 132
exponent, 33, 41, 78, 105
function, 218

eventually strict –, 218
inner product, 125, 136
norm, 125, 136
spectrum, 35, 79, 82
stability

theorem, 68
theory, 61

Lyapunov–Perron regular

Lyapunov exponent, 53, 59
point, 80, 107

manifold of nonpositive curvature, 198
measurable

lamination, 152
partition, 183
vector bundle, 101

measure
ergodic –, 7, 10
hyperbolic –, 82
smooth –, viii, 171

metric
canonical –, 196
entropy, 185

multiplicative ergodic theorem, 78, 81,
113, 120

negative
cone, 217
limit solution, 201
rank, 217, 218

nonabsolutely continuous foliation, 168
nonautonomous differential equation, 68
nonpositive curvature, 198, 200
nonuniform

hyperbolicity, ix, 88
hyperbolicity theory, 72, 77, 133

nonuniformly
hyperbolic

dynamical system, 3, 91
set, 88, 90
system, 3

partially hyperbolic cocycle in the
broad sense, 94

nonzero Lyapunov exponents, 78, 82
diffeomorphism with –, 13, 23
flow with –, 27

normal basis, 36

ordered basis, 36
Oseledets

decomposition, 53, 81, 107
subspace, 107

Oseledets–Pesin Reduction Theorem,
126

partition
entropy, 183
measurable –, 183

Perron coefficient, 39
Pesin

set, 92
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tempering kernel, 125
point

at infinity, 206
backward regular –, 80
forward regular –, 80
LP-regular –, 80, 107
Lyapunov–Perron regular –, 80, 107

positive
cone, 217
limit solution, 201
rank, 217, 218

power cocycle, 102
property

accessibility –, 225
essential accessibility –, 225

rank
negative –, 217, 218
positive –, 217, 218

recurrent Diophantine condition, 111
reducible cocycle, 109
refinement, 183

common –, 183
regular

backward –, 53, 59
forward –, 52, 59
neighborhood, 128, 132
pair of Lyapunov exponents, 41
point

backward –, 106
forward –, 106

set, 92
regularity coefficient, 39
return

map, 102
time, 102

Spχ(ν), 82
Spχ+(x), 79
Spχ−(x), 79
set

filtration, 249
level –, 92
nonuniformly hyperbolic –, 88, 90
Pesin –, 92
regular –, 92

smooth
ergodic theory, viii, 171, 172, 183
measure, viii, 171

solution
asymptotically stable –, 63
conditionally stable –, 72

exponentially stable –, 63
stable –, 63
unstable –, 63

space
central –, 224
stable –, 224
unstable –, 224

spectral decomposition theorem, 175
stability theory, 61, 68
stable

cone, 17
curve, 5
manifold

global –, 5, 6, 152, 153
global weakly –, 153
local –, 6, 153
theorem, 134
theorem for flows, 152

solution, 63
conditionally –, 72

subspace, 4, 83, 224
strict family of cones, 221
structurally stable diffeomorphism, 8
subordinate basis, 35, 37
subspace

Oseledets –, 107
stable –, 4, 83
unstable –, 4, 83

symplectic
group, 221

tempered
cocycle, 103
equivalence, 103
function, 84, 103

tempering kernel, 125, 129
lemma, 129

theorem
absolute continuity –, 158
flat strip –, 206
implicit function –, 143
Lyapunov stability –, 68
multiplicative ergodic –, 78, 81, 113,

120
reduction –, 124, 126
spectral decomposition –, 175
stable manifold –, 134

for flows, 152
theory

Lyapunov stability –, 61
nonuniform hyperbolicity –, 72, 77,

133
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stability –, 61, 68
topologically

mixing, 10
transitive, 10, 180

total measure, 255
transverse subspaces, 96
triangular cocycle, 120, 121

uniformly
hyperbolic cocycle, 90
partially hyperbolic diffeomorphism,

224
unstable

cone, 17
curve, 5
manifold

global –, 5, 152, 153
global weakly –, 153
local –, 6, 147, 153

solution, 63
subspace, 4, 83, 224

V +
i , 42

V +
i (x), 79

V −
i , 52

V −
i (x), 79

V+, 42
V+
x , 79

V−, 52
V−
x , 79

variational equations, 62, 64
vector bundle, 101

W -dissipative diffeomorphism, 233
W s(x), 152
Wu(x), 152
W s0(x), 153
Wu0(x), 153
weakly

stable foliation, 9
unstable foliation, 9
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