Mathematics of Probability

Daniel W. Stroock

Graduate Studies
in Mathematics
Volume 149

Mathematics of Probability

Daniel W. Stroock

Graduate Studies in Mathematics
Volume 149

EDITORIAL COMMITTEE

David Cox (Chair)
Daniel S. Freed
Rafe Mazzeo
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 60A99, 60J10, 60J99, 60G42, 60G44.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-149

Library of Congress Cataloging-in-Publication Data
Stroock, Daniel W.
Mathematics of probability / Daniel W. Stroock.
pages cm. - (Graduate studies in mathematics ; volume 149)
Includes bibliographical references and index.
ISBN 978-1-4704-0907-4 (alk. paper)
1. Stochastic processes. 2. Probabilities. I. Title.

QA274.S854 2013
519.2-dc23

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2013 by the author.

Printed in the United States of America.The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface ix
Chapter 1. Some Background and Preliminaries 1
§1.1. The Language of Probability Theory 2
1.1.1. Sample Spaces and Events 3
1.1.2. Probability Measures 4
Exercises for $\S 1.1$ 6
§1.2. Finite and Countable Sample Spaces 7
1.2.1. Probability Theory on a Countable Space 7
1.2.2. Uniform Probabilities and Coin Tossing 10
1.2.3. Tournaments 13
1.2.4. Symmetric Random Walk 15
1.2.5. De Moivre's Central Limit Theorem 17
1.2.6. Independent Events 20
1.2.7. The Arc Sine Law 24
1.2.8. Conditional Probability 27
Exercises for $\S 1.2$ 29
§1.3. Some Non-Uniform Probability Measures 32
1.3.1. Random Variables and Their Distributions 32
1.3.2. Biased Coins 33
1.3.3. Recurrence and Transience of Random Walks 36
Exercises for $\S 1.3$ 39
§1.4. Expectation Values 40
1.4.1. \quad Some Elementary Examples 45
1.4.2. Independence and Moment Generating Functions 47
1.4.3. Basic Convergence Results 49
Exercises for § 1.4 51
Comments on Chapter 1 52
Chapter 2. Probability Theory on Uncountable Sample Spaces 55
§2.1. A Little Measure Theory 56
2.1.1. Sigma Algebras, Measurable Functions, and Measures 56
2.1.2. Π - and Λ-Systems 58
Exercises for $\S 2.1$ 59
$\S 2.2$. A Construction of \mathbb{P}_{p} on $\{0,1\}^{\mathbb{Z}^{+}}$ 59
2.2.1. The Metric Space $\{0,1\}^{\mathbb{Z}^{+}}$ 59
2.2.2. The Construction 61
Exercises for $\S 2.2$ 65
§2.3. Other Probability Measures 65
2.3.1. The Uniform Probability Measure on $[0,1]$ 66
2.3.2. Lebesgue Measure on \mathbb{R} 68
2.3.3. Distribution Functions and Probability Measures 70
Exercises for $\S 2.3$ 71
§2.4. Lebesgue Integration 71
2.4.1. Integration of Functions 72
2.4.2. \quad Some Properties of the Lebesgue Integral 77
2.4.3. Basic Convergence Theorems 80
2.4.4. Inequalities 84
2.4.5. Fubini's Theorem 88
Exercises for $\S 2.4$ 91
$\S 2.5$. Lebesgue Measure on \mathbb{R}^{N} 95
2.5.1. Polar Coordinates 98
2.5.2. Gaussian Computations and Stirling's Formula 99
Exercises for $\S 2.5$ 102
Comments on Chapter 2 104
Chapter 3. Some Applications to Probability Theory 105
§3.1. Independence and Conditioning 105
3.1.1. Independent σ-Algebras 105
3.1.2. Independent Random Variables 107
3.1.3. Conditioning 109
3.1.4. Some Properties of Conditional Expectations 113
Exercises for $\S 3.1$ 114
§3.2. Distributions that Admit a Density 117
3.2.1. Densities 117
3.2.2. Densities and Conditioning 119
Exercises for $\S 3.2$ 120
§3.3. Summing Independent Random Variables 121
3.3.1. Convolution of Distributions 121
3.3.2. Some Important Examples 122
3.3.3. Kolmogorov's Inequality and the Strong Law 124
Exercises for § 3.3 130
Comments on Chapter 3 134
Chapter 4. The Central Limit Theorem and Gaussian Distributions 135
§4.1. The Central Limit Theorem 135
4.1.1. Lindeberg's Theorem 137
Exercises for § 4.1 142
§4.2. Families of Normal Random Variables 143
4.2.1. Multidimensional Gaussian Distributions 143
4.2.2. Standard Normal Random Variables 144
4.2.3. More General Normal Random Variables 146
4.2.4. A Concentration Property of Gaussian Distributions 147
4.2.5. Linear Transformations of Normal Random Variables 150
4.2.6. Gaussian Families 152
Exercises for § 4.2 155
Comments on Chapter 4 158
Chapter 5. Discrete Parameter Stochastic Processes 159
§5.1. Random Walks Revisited 159
5.1.1. Immediate Rewards 159
5.1.2. Computations via Conditioning 162
Exercises for § 5.1 167
§5.2. Processes with the Markov Property 168
5.2.1. Sequences of Dependent Random Variables 168
5.2.2. Markov Chains 171
5.2.3. Long-Time Behavior 171
5.2.4. An Extension 174
Exercises for $\S 5.2$ 178
§5.3. Markov Chains on a Countable State Space 179
5.3.1. The Markov Property 181
5.3.2. Return Times and the Renewal Equation 182
5.3.3. A Little Ergodic Theory 185
Exercises for $\S 5.3$ 188
Comments on Chapter 5 190
Chapter 6. Some Continuous-Time Processes 193
§6.1. Transition Probability Functions and Markov Processes 193
6.1.1. Transition Probability Functions 194
Exercises for $\S 6.1$ 196
§6.2. Markov Chains Run with a Poisson Clock 196
6.2.1. The Simple Poisson Process 197
6.2.2. A Generalization 199
6.2.3. Stationary Measures 200
Exercises for $\S 6.2$ 203
§6.3. Brownian Motion 204
6.3.1. Some Preliminaries 205
6.3.2. Lévy's Construction 206
6.3.3. Some Elementary Properties of Brownian Motion 209
6.3.4. Path Properties 216
6.3.5. The Ornstein-Uhlenbeck Process 219
Exercises for $\S 6.3$ 222
Comments on Chapter 6 224
Chapter 7. Martingales 225
§7.1. Discrete Parameter Martingales 225
7.1.1. Doob's Inequality 226
Exercises for $\S 7.1$ 232
§7.2. The Martingale Convergence Theorem 233
7.2.1. The Convergence Theorem 234
7.2.2. Application to the Radon-Nikodym Theorem 237
Exercises for $\S 7.2$ 241
§7.3. Stopping Times 242
7.3.1. Stopping Time Theorems 242
7.3.2. Reversed Martingales 247
7.3.3. Exchangeable Sequences 249
Exercises for $\S 7.3$ 252
§7.4. Continuous Parameter Martingales 254
7.4.1. Progressively Measurable Functions 254
7.4.2. Martingales and Submartingales 255
7.4.3. Stopping Times Again 257
7.4.4. Continuous Martingales and Brownian Motion 259
7.4.5. Brownian Motion and Differential Equations 266
Exercises for § 7.4 271
Comments on Chapter 7 274
Notation 275
Bibliography 279
Index 281

Preface

There are a myriad of books about probability theory already on the market. Nonetheless, a few years ago Sergei Gelfand asked if I would write a probability theory book for advanced undergraduate and beginning graduate students who are interested in mathematics. He had in mind an updated version of the first volume of William Feller's renowned An Introduction to Probability Theory and Its Applications [3]. Had I been capable of doing so, I would have loved to oblige, but, unfortunately, I am neither the mathematician that Feller was nor have I his vast reservoir of experience with applications. Thus, shortly after I started the project, I realized that I would not be able to produce the book that Gelfand wanted. In addition, I learned that there already exists a superb replacement for Feller's book. Namely, for those who enjoy combinatorics and want to see how probability theory can be used to obtain combinatorial results, it is hard to imagine a better book than N. Alon and J. H. Spencer's The Probabilistic Method [1]. For these reasons, I have written instead a book that is a much more conventional introduction to the ideas and techniques of modern probability theory. I have already authored such a book, Probability Theory, An Analytic View [9], but that book makes demands on the reader that this one does not. In particular, that book assumes a solid grounding in analysis, especially Lebesgue's theory of integration. In the hope that it will be appropriate for students who lack that background, I have made this one much more self-contained and developed the measure theory that it uses.

Chapter 1 contains my attempt to explain the basic concepts in probability theory unencumbered by measure-theoretic technicalities. After introducing the terminology, I devote the rest of the chapter to probability theory on finite and countable sample spaces. In large part because I am such a
poor combinatorialist myself, I have emphasized computations that do not require a mastery of counting techniques. Most of the examples involve Bernoulli trials. I have not shied away from making the same computations several times, each time employing a different line of reasoning. My hope is that in this way I will have made it clear to the reader why concepts like independence and conditioning have been developed.

Many of the results in Chapter 1 are begging for the existence of a probability measure on an uncountable sample space. For example, when discussing random walks in Chapter 1, only computations involving a finite number of steps can be discussed. Thus, answers to questions about recurrence were deficient. Using this deficiency as motivation, in Chapter 2 I first introduce the fundamental ideas of measure theory and then construct the Bernoulli measures on $\{0,1\}^{\mathbb{Z}^{+}}$. Once I have the Bernoulli measures, I obtain Lebesgue measure as the image of the symmetric Bernoulli measure and spend some time discussing its translation invariance properties. The remainder of Chapter 2 gives a brief introduction to Lebesgue's theory of integration.

With the tools developed in Chapter 2 at hand, Chapter 3 explains how Kolmogorov fashioned those tools into what has become the standard mathematical model of probability theory. Specifically, Kolmogorov's formulations of independence and conditioning are given, and the chapter concludes with his strong law of large numbers.

Chapter 4 is devoted to Gaussian distributions and normal random variables. It begins with Lindeberg's derivation of the central limit theorem and then moves on to explain some of the transformation properties of multi-dimensional normal random variables. The final topic here is centered Gaussian families.

In the first section of Chapter 5 I revisit the topic that I used to motivate the contents of Chapter 2. That is, I do several computations of quantities that require the Bernoulli measures constructed in $\S 2.2$. I then turn to a somewhat cursory treatment of Markov chains, concluding with a discussion of their ergodic properties when the state space is finite or countable.

Chapter 6 begins with Markov processes that are the continuous parameter analog of Markov chains. Here I also introduce transition probability functions and discuss some properties of general continuous parameter Markov processes. The second part of this chapter contains Lévy's construction of Brownian motion and proves a few of its elementary path properties. The chapter concludes with a brief discussion of the Ornstein-Uhlenbeck process.

Martingale theory is the subject of Chapter 7. The first three sections give the discrete parameter theory, and the continuous parameter theory
is given in the final section. In both settings, I try to emphasize the contributions that martingale theory can make to topics treated earlier. In particular, in the final section, I discuss the relationship between continuous martingales and Brownian motion and give some examples that indicate how martingales provide a bridge between differential equations and probability theory.

In conclusion, it is clear that I have not written the book that Gelfand asked for, but, if I had written that book, it undoubtedly would have looked pale by comparison to Feller's. Nonetheless, I hope that, for those who read it, the book that I have written will have some value. I will be posting an errata file on www.ams.org/bookpages/gsm-149. I expect that this file will grow over time.

Daniel W. Stroock
Nederland, CO

Notation

General

Notation	Description	See		
$a \wedge b \& a \vee b$	The minimum and the maximum of a and b			
$a^{+} \& a^{-}$	The non-negative part, $a \vee 0$, and non-positive part, $-(a \wedge 0)$ of $a \in \mathbb{R}$			
$\delta_{i, j}$	Kronecker delta: $\delta_{i, j}=0$ if $i \neq j$ and $\delta_{i, j}=1$ if $i=j$			
$(x, y)_{\mathbb{R}^{N}}$	The inner product of $x, y \in \mathbb{R}^{N}$			
$f \upharpoonright S$	The restriction of the function f to the set S			
$\\|\cdot\\|_{\mathrm{u}}$	The uniform (supremum) norm	$(2.5 .6)$		
$\Gamma(t)$	Euler's Gamma function			
$\lfloor t\rfloor$	$\max \{n \in \mathbb{Z}: n \leq t\}$			
$\lceil t\rceil$	$\min \{n \in \mathbb{Z}: n \geq t\}$			

Sets and Spaces

$A \complement$	The complement of the set A	
$\mathbf{1}_{A}$	The indicator function of the set $A: \mathbf{1}_{A}(\omega)=1$ if $\omega \in A$ and $\mathbf{1}_{A}(\omega)=0$ if $\omega \notin A$	$\S 1.2 .7$
$B(a, r)$	The ball of radius r around a	
$B(E ; \mathbb{R})$	Space of bounded, Borel measurable functions from E into \mathbb{R}	

$K \subset \subset E$	To be read: K is a compact subset of E	
\mathbb{N}	The non-negative integers: $\mathbb{N}=\{0\} \cup \mathbb{Z}^{+}$	
\mathbb{S}^{N-1}	The unit sphere in \mathbb{R}^{N}	
\mathbb{Q}	The set of rational numbers	
$\mathbb{Z} \& \mathbb{Z}^{+}$	Set of all integers and the subset of positive inte- gers	Space of bounded continuous functions from E into \mathbb{R}

Measure-Theoretic

$L^{1}(\mu ; \mathbb{R})$	The space of \mathbb{R}-valued functions, μ-integrable functions	
$\mathbf{M}_{1}(E)$	The space of Borel probability measures on E	
\mathcal{B}_{E}	The Borel σ-algebra over a topological space E	
$B(E ; \mathbb{R})$	The space of bounded, measurable functions on E	
$\mathbb{E}^{\mathbb{P}}[X, A]$	To be read: the expectation value of X with re- spect to μ on A; equivalent to $\int_{A} X d \mu$; when A is unspecified, it is assumed to be the whole space	
$\int_{\Gamma} f d \mu$	Integral of f on A with respect to μ	$\S 2.4 .1$
$\mathbb{E}^{\mathbb{P}}[X \mid \Sigma]$	To be read: the conditional expectation value of X given the σ-algebra Σ	$\S 5.1 .1$
δ_{a}	The unit point mass at a	
$F_{*} \mu$	The image (pushforward) of μ under F	
$\sigma\left(\left\{X_{i}: i \in \mathcal{I}\right\}\right)$	The σ-algebra generated by the set of random variables $\left\{X_{i}: i \in \mathcal{I}\right\}$	
λ_{A}	Lebesgue measure on the set $A ;$ usually $A=\mathbb{R}^{N}$ or some interval	

$\gamma_{m, C}$	The Gaussian distribution with mean m and co- variance C	$\S 4.2 .3$
$N(m, C)$	Class of normal (a.k.a. Gaussian) random vari- ables with distribution $\gamma_{m, C}$	$\S 4.2 .3$
$\mu \star \nu$	The convolution of measures μ with ν	
$\mu \ll \nu$	The measure μ is absolutely continuous with re- spect to ν	$\S 7.2 .2$
$\mu \perp \nu$	The measure μ is singular to ν	$\S 7.2 .2$
\mathcal{W}	Wiener measure, the distribution of Brownian mo- tion	$\S 6.3$

Bibliography

[1] Alon, N. and Spencer, J. H., The Probabilistic Method, 2nd. ed., J. Wiley, New York, 2000.
[2] Diaconis, P., Group Representations in Probability and Statistics, Institute of Mathematical Statistics Lecture Notes-Monograph Series, 11, Institute of Mathematical Statistics, Hayward, CA, 1988.
[3] Feller, Wm., An Introduction to Probability Theory and Its Applications, Vol. I, J. Wiley, New York, 1968.
[4] Kolmogorov, A. N., Foundations of Probability, Chelsea, New York, 1956.
[5] Mörters, P. and Peres, Y., Brownian Motion, with an appendix by Oded Schramm and Wendelin Werner, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ. Press, Cambridge, 2010.
[6] Neveu, J., Discrete-Parameter Martingales, translated from the French by T. P. Speed, revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
[7] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, Grunlehren, 293, Springer-Verlag, Heidelberg, 1999.
[8] Stirzaker, D., Elementary Probability, Oxford Univ. Press, Oxford, 1994.
[9] Stroock, D., Probability Theory, An Analytic View, 2nd. ed., Cambridge Univ. Press, New York, 2011.
[10] , Essentials of Integration Theory for Analysis, Springer-Verlag, Heidelberg, 2010.
[11] _ Markov Processes from K. Itô's Perspective, Annals of Mathematics Studies, 155, Princeton Univer. Press, Princeton, NJ, 2003.
[12] , An Introducion to Markov Processes, Graduate Texts in Mathematics, 230, Springer-Verlag, Heidelberg, 2005.
[13] Stroock, D. W. and Varadhan, S. R. S., Multidimensional Diffusion Processes, reprint of the 1997 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2006.
[14] Wax, N., editor, Selected Papers on Noise and Stochastic Processes, Dover Press, N.Y., 1954.
[15] Williams, D., Probability and Martingales, Cambridge Univ. Press, Cambridge, 2001.

Index

absolutely continuous, 237
almost everywhere, 77
convergence, 78
almost surely, 110
arc sine law, 26
Azuma's inequality, 232

Bayes's formula, 28
Bernoulli measure, 33
Bernstein polynomial, 132
Berry-Esseen theorem, 142
biased random walk, 35
binomial, 11
coefficient, 11
N choose $m, 11$
distribution
parameters $(n, p), 34$
Borel
measurable function, 56
measurable set, 56
measure, 57
Borel-Cantelli lemma, 32, 244
branching process, 178
extinction, 178
Brownian motion, 206
Feynman-Kac formula, 269
Lévy's characterization, 263
relative to $\left\{\mathcal{F}_{t}: t \geq 0\right\}, 210$
scaling property, 209
strong law, 213
time inversion invariance, 213
centered Gaussian family, 152
central limit theorem, 140
De Moivre's, 18
Lindeberg's, 137
Chapman-Kolmogorov equation, 194
Chebychev's inequality, 44
complement, 4
concave function, 85
conditional expectation, 110
conditional probability, 27
contraction, 171
convergence
μ-almost everywhere, 78
in μ-measure, 79
convex
function, 85
set, 84
convolution, 121
countably additive, 57
covariance, 143
cumulant of a random variable, 51

De Morgan's law, 6
decreasing events, 5
density of a distribution, 117
difference, 4
discrete arcsine measure, 33
disjoint sets, 4
distribution, 59
having density, 117
of a random variable, 32
of a stochastic process, 193
distribution function, 70
Doeblin's
condition, 174
theorem, 173
Doob's decomposition lemma, 234
Doob's stopping time theorem
continuous parameter, 259
discrete parameter, 243
doubly stochastic, 188
empirical
mean, 145,155
variance, 145,155
empty set, 4
ergodic, 177
theory, 185
error function, 118
Euler's
Beta function, 103
Gamma function, 100
event, 3
exchangeable random variables, 249
expected value, 42, 105
exists, 42
non-negative discrete, 42
of \mathbb{R}^{N}-valued random variable, 143
exponential distribution, 117
Fatou's lemma, 50
Feynman-Kac formula, 269
finite measure, 57
Fubini's theorem, 90
gambler's ruin problem, 163
Gauss density, 100
Gaussian distribution, 117
concentration property, 150
Maury-Pisier estimate, 147
parameters m and $\sigma^{2}, 117$
standard, 144
tail estimate, 157
with mean m and covariance $C, 146$
Gaussian family, 152
centered, 152
graph, 13
complete, 13
two-colorings, 30
edges, 13
vertices, 13
Hardy-Littlewood maximal function, 229
inequality, 229
Hewitt-Savage 0-1 law, 251
Hölder's inequality, 88

Hunt's stopping time theorem
continuous parameter, 259
discrete parameter, 245
identically distributed random variables, 129
image of a measure, 59
increasing events, 5
independent
σ-algebras, 105
events, 21
random variables, 48
existence of, 109
indicator function, 24
inequality
Chebychev's, 44
Hölder's, 88
Jensen's, 85
Markov's, 43
Minkowski's, 88
Schwarz's, 92
integer part, 22
integrable, 42, 77
integral
exists, 76
of a function, 73
intersection, 3
Itô's formula, 263
Jensen's inequality, 85
for conditional expectations, 116
Kolmogorov's
0-1 law, 107
backward equation, 204
forward equation, 204
inequality, 126
strong law, 129
$L^{1}(\mu ; \mathbb{R}), 77$
Λ-system, 58
Laplace transform, 132
law of large numbers
Kolmogorov's strong law, 129
weak, 125
law of the iterated logarithm, 133
Lebesgue decomposition, 239
Lebesgue measure
on [01], 67
on $\mathbb{R}, 68$
on $\mathbb{R}^{N}, 95$
alternative construction, 103
scaling property, 70
under linear transformations, 96
Lebesgue's dominated convergence theorem, 50
limits of sets, 6
marginal distribution, 119
Markov chain, 171
renewal equation, 182
state space, 179
time-homogeneous, 171
Markov process, 194
time-homogeneous, 194
Markov property, 171
Markov's inequality, 43, 77
martingales, 225
Azuma's inequality, 232
continuous, 259
continuous parameter, 255
convergence theorem, 236, 246
discrete parameter, 225
Doob's decomposition lemma, 234
reversed, 248
upcrossing inequality, 246
mean value, $43,105,143$
measurable function, 56, 72
Borel measurable, 56
measurable space, 56
measure, 57
Borel, 57
finite, 57
non-atomic, 65
probability, 57
measure space, 57
finite, 57
probability, 57
median, 45
variational characterization, 52
vs. expectation value, 52
minimum principle, 166
Minkowski's inequality, 88
moment generating function, 47, 120
moment of a random variable, 47
monotone class, 59
monotone convergence theorem, 50
negative part, 7
nested partitions, 230
non-atomic measure, 65
normal random variable, 118
conditioning, 154
standard, 118, 144
with mean m and covariance $C, 146$
optional stopping time, 271
Ornstein-Uhlenbeck process, 222
Π-system, 58
Paley-Wiener integral, 222
point mass, 174
Poisson
approximation, 36
measure, 36
process
compound, 203
simple, 199
random variable, 39,51
polar coordinates, 99
positive part, 7
probability function, 10
probability measure, 6,57
determined by $p, 10$
probability space, 57
progressively measurable, 225
continuous parameter, 254
discrete parameter, 225
Radon-Nikodym
derivative, 237
theorem, 237, 238
random variable, 32,105
k th moment of, 47
exchangeable, 249
integrable, 42
mean value, 43
normal, 118
standard, 118, 144
variance of, 44
random variables
mutually independent, 107
sums of independent, 39
random walk
biased, 35
transience, 37
symmetric, 15
recurrence, 23
reflection principle
for Brownian motion, 216
for symmetric random walks, 16
renewal equation, 23,182
return time
symmetric random walk, 22
reversed
martingale, 248
submartingale, 248
right-continuous, 70
paths, 255
σ-algebra
Borel, 56
countably generated, 110
generated by, 56
generated by a random variable, 107
over $\Omega, 56$
σ-finite, 89
sample
point, 3
space, 3
Schwarz's inequality, 92
simple function, 73
simple Poisson process, 199
singular measures, 239
square integrable, 129
standard normal random variable, 144
state space, 179,193
stationary distribution, 174
for transition probability function, 200
non-existence of, 190
Stirling's formula, 101, 142
stochastic process, 159
homogeneous, independent increments, 199
stopping time, 242
continuous parameter, 257
discrete parameter, 242
old definition, 271
optional, 271
stopping time theorem
Doob's, 243, 259
Hunt's, 245, 259
strong law of large numbers, 125
sub-Gaussian, 121
submartingale, 226
continuous parameter, 255
discrete parameter, 226
reversed, 248
supermartingale, 235
surface measure on $\mathbb{S}^{N-1}, 98$
tail σ-algebra, 106
time shift map, 181, 211
time-homogeneous, 171
tournament, 14
transient, 37
transition probability, 169
doubly stochastic, 188
transition probability function, 194
backward equation, 204
forward equation, 204
translation invariant, 69, 95
translation map
on $[01), 67$
on $\mathbb{R}, 68$
triangle inequality, 92
uniform distribution, 117
uniform probability measure
on [01], 67
characterization, 68
on finite set, 10
uniformly integrable, 93
union of sets, 3
upcrossing inequality, 246
variance, 44
variation distance, 172
weak law of large numbers, 125
Weierstrass approximation theorem, 131
Wiener measure, 205

This book covers the basics of modern probability theory. It begins with probability theory on finite and countable sample spaces and then passes from there to a concise course on measure theory, which is followed by some initial applications to probability theory, including independence and conditional expectations. The second half of the book deals with Gaussian random variables, with Markov chains, with a few continuous parameter processes, including Brownian motion, and, finally, with martingales, both discrete and continuous parameter ones.

The book is a self-contained introduction to probability theory and the measure theory required to study it.

GSM/I49

