Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


The Joys of Haar Measure

About this Title

Joe Diestel, Kent State University, Kent, OH and Angela Spalsbury, Youngstown State University, Youngstown, OH

Publication: Graduate Studies in Mathematics
Publication Year: 2013; Volume 150
ISBNs: 978-1-4704-0935-7 (print); 978-1-4704-1411-5 (online)
DOI: https://doi.org/10.1090/gsm/150
MathSciNet review: MR3186070
MSC: Primary 28-01; Secondary 28C10, 28C15

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • E. M. Alfsen, A simplified constructive proof of the existence and uniqueness of Haar measure, Math. Scand. 12 (1963), 106–116.
  • N. Aronszajn, On the differentiablity of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147–190.
  • Keith Ball, An elementary introduction to modern convex geometry, Flavors of Geometry, Vol. 31, MSRI Publications, Berkeley, CA, 1997.
  • S. Banach, Sur le probleme de la mesure, Fund. Math. 4 (1923), 7–33.
  • —, Sur les fonctionnelle linéaires I, Studia Math. 1 (1929), no. 1, 211–216.
  • —, Sur les fonctionnelle linéaires II, Studia Math 1 (1929), no. 1, 233–239.
  • —, Théorie des opérations linéaires, Monogratje Matematyczne, Warsaw, 1932.
  • Christoph Bandt, Metric invariance of Haar measure, Proc. Amer. Math. Soc. 87 (1983), no. 1, 65–69.
  • Christoph Bandt and Gebreselassie Baraki, Metrically invariant measures on locally homogeneous spaces and hyperspaces, Pacific J. Math. 121 (1986), no. 1, 13–28.
  • F. Bernstein, Zur theorie der trigonomischen Reihe, Sitz. Sachs, Akad. Wiss. Leipzig 60 (1908), 325–238.
  • G. Birkhoff, A note on topological groups, Compositio Math. 3 (1936), 427–430.
  • J. Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl. (N.S.) 27 (1948), 1–5.
  • C Carathéodory, Über das lineare mass von punktmengen eine verallgemeinerung des längenbegriffs, Gött. Nachr. (1914), 404–420.
  • —, Vorlesungen Über reelle Funktionen, Teubner, Berlin and Leipzig, 1918.
  • H. Cartan, Sur la mesure de Haar, C. R. Acad. Sci Paris 211 (1940), 759–762.
  • H. Cartan and R. Godement, Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts, Ann. Sci. École Norm. Sup. (3) 64 (1947), 79–99.
  • C. Chevalley and O. Frink, Bicompactness of cartesian products, Bull. Amer. Math. Soc. 47 (1941), 612–614.
  • Claude Chevalley, Theory of Lie groups I, (third printing, 1957 ed.), Princeton University Press, Princeton, N. J., 1946, 1957.
  • J. P. R. Christensen, On sets of Haar measure zero, Israel J. Math. 13 (1972), 255–260.
  • D. Cohn, Measure theory, Birkhäuser, Boston, 1980.
  • Eusebio Corbacho, Vaja Tarieladze, and Ricardo Vidal, Observations about equicontinuity and related concepts, Topology Appl. 156 (2009), no. 18, 3062–3069.
  • M. Csörnyei, Aronszajn null and Gaussian null sets coincide, Israel J. Math. 111 (1999), 191–201.
  • Harry F. Davis, A note on Haar measure, Proc. Amer. Math. Soc. 6 (1955), 318–321.
  • Andreas Defant and Klaus Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, no. 176, North-Holland Publishing Co, Amsterdam, 1993.
  • J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
  • Joe Diestel, Jan H. Fourie, and Johan Swart, The metric theory of tensor products, Grothendieck’s Résumé revisited, American Mathematical Society, Providence, RI, 2008.
  • Joe Diestel, Hans Jarchow, and Albrecht Pietsch, Operator ideals, Handbook of the Geometry of Banach Spaces, vol. I, North-Holland, Amsterdam, 2001.
  • J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. 9 (1944), no. 23, 65–76.
  • P. Dodos, The Steinhaus property and Haar null set, Israel J. Math. 144 (2004), 15–28.
  • —, Dichotomies of the set of test measures of a Haar null set, Bull. London Math. Soc. 41 (2009), 377–384.
  • J. L. Doob, Measure theory, Graduate Texts in Mathematics, vol. 143, Springer-Verlag, New York, 1994.
  • Robert S. Doran, Calvin C. Moore, and Robert J. Zimmer (eds.), Group representations, ergodic theory, and mathematical physics: A tribute to George W. Mackey, Contemp. Math., vol. 449, 2007.
  • V. Drinfeld, Finitely-additive measures on ${S}^2$ and ${S}^3$, invariant with respect to rotations, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 7. (Russian)
  • Nelson Dunford and Jacob T. Schwartz, Linear operators I: general theory, Pure and Applied Mathematics, vol. 7, Interscience Publishers, Inc., New York, 1958.
  • A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Symp. Linear Spaces (1961), 123–160.
  • P. Erdős and D. R. Mauldin, The nonexistence of certain invariant measures., Proc. Amer. Math. Soc. 59 (1976), no. 2, 321–322.
  • Herbert Federer, Dimension and measures, Trans. Amer. Math. Soc. 62 (1947), 536–547.
  • —, Geometric measure theory, Classics in Mathematics, Springer-Verlag, New York, 1996.
  • T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53–94.
  • H. Freudenthal, Sätze über topologische Gruppen, Ann. of Math. 37 (1936), 46–56.
  • R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405.
  • I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups, Rec. Math. [Mat. Sbornik] (N.S.) 55 (1943), 301–316.
  • R. Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63 (1948), 1–84.
  • —, Sur la théorie des représentations unitaires, Ann. of Math. (2) 53 (1951), 68–124.
  • A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques. [Summary of the metric theory of topological tensor products], Reprint of Bol. Soc. Mat. Sao Paulo 8 (1953), 1–79. (French)
  • A. Gurevič, Unitary representations in Hilbert space of a compact topological group, Mat. Sb. (N.S.) 13 (1943), 79–86.
  • Alfred Haar, Der massbegriff in der Theorie der kontinuierichen Gruppe, Ann. of Math. (2) 34 (1933), 147–169.
  • H. Hadwiger and D. Ohmann, Brunn-Minkowskischer satz und isoperimetrie, Math. Z. 66 (1956), 1–8.
  • H. Hahn, Über linearer gleichungssysteme in linearer Räumen, J. Reine Angew. Math. 157 (1927), 214–229.
  • P. Halmos, Measure theory, Graduate Texts in Mathematics, vol. 18, Springer-Verlag, New York, 1980.
  • Paul R. Halmos and Herbert E. Vaughan, The marriage problem, Amer. J. Math. 72 (1950), 214–215.
  • F. Hausdorff, Bemerkung über dan Inhalt von Punktmengen, Math. Ann. 75 (1914), 428–433.
  • —, Dimension und ausseres Mass, Math. Ann. 79 (1919), 157–179.
  • —, Set theory, Chelsea Publishing, New York, 1957 (translated from the third edition of his Mengenlehre).
  • E. Hewitt and K. Ross, Abstract harmonic analysis, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, vol. 1, Springer-Verlag, Van Nostrand, Princeton, 1963.
  • P. J. Higgins, An introduction to topological groups, Vol. 15, London Math Soc. Lecture Note Series, 1974.
  • K. H. Hoffman and S. A. Morris, The structure of compact groups, 2nd ed., vol. 25, de Grupter Studies in Mathematics, 2006.
  • W. Hurewicz and H. Wallman, Dimension theory, 4, Princeton Mathematical Series, 1941, revised edition (1948).
  • Shizuo Kakutani, On the uniqueness of Haar’s measure, Proc. Imp. Acad. 14 (1938), no. 2, 27–31.
  • —, Über die Metrisation der topologischen Gruppen, Proc. Imp. Acad. 12 (1938), 82–84.
  • —, Concrete representation of abstract (M)-spaces. (a characterization of the space of continuous functions), Ann. of Math. 42 (1941), 999–1024.
  • —, A proof of the uniqueness of Haar’s measure, Ann. of Math. (2) 49 (1948), 225–226.
  • Shizuo Kakutani and Kunihiko Kodaira, Uber das Haarsche mass in der lokal bikompakten gruppe, Proc. Imp. Acad. Tokyo 20 (1944), 444–450.
  • Shizuo Kakutani and John C. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space, Ann. of Math. (2) 52 (1950), 580–590.
  • D. A. Kaz̆dan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priloz̆en. 1 (1967), 71–74. (Russian)
  • J. Kelley, General topology, Graduate Texts in Mathematics, Vol. 27, Springer-Verlag, New York, 1955.
  • V. Klee, Invariant extensions of linear functionals, Pacific J. Math. 4 (1954), 37–46.
  • Paul Koosis, An irreducible unitary representation of a compact group is finite dimensional, Proc. Amer. Math. Soc. 8 (1957), 712–715.
  • F. Leja, Sur la notion du groupe abstrait topologique, Fund. Math. 9 (1927), 37–44.
  • J. Lindenstrauss, Almost spherical sections: their existence and their applications, Jber. de Dt. Math. Verein (1992), 39–61.
  • J. Lindenstrauss and A. Pelczyński, Absolutely summing operators in $L_p$-spaces and their applications, Studia Math. 29 (1968), 275–326.
  • L. A. Lyusternik, Die Brunn-Minkowskische Unglenichung für beliebige messbare Mengen, C. R. Acad. Sci. USSR 8 (1935), 55–58.
  • G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165.
  • P. Mankiewicz, On the differentiablity of Lipschitz maps on Banach spaces, Studia Math. 45 (1973), 15–29.
  • P. Mankiewicz, Compact groups on proportional quotients of $l_1^n$, Israel J. Math. 109 (1999), 75–91.
  • P. Mankiewicz and N. Tomczak-Jaegermann, A solution of the finite-dimensional homogeneous Banach space problem, Israel J. Math. 75 (1991), 129–159.
  • G. A. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), no. 3, 233–235.
  • —, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 383–396.
  • É. Matheron and M. Zelený, Descriptive set theory of families of small sets, Bull. Symbolic Logic 13 (2007), 482–537.
  • Pertti Mattila, Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.
  • B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^p$, Astérisque 11 (1974), 1–163.
  • V. Milman, Dvoretzky’s theorem—thirty years later, Geometric and Functional Analysis 4 (1992), 455–479.
  • V. Milman and G. Schechtman, Aymptotic theory of finite dimensional normed spaces, Lecture Notes in Mathematics, Vol. 1200, Springer, 2001.
  • D. Montogomery and L. Zippin, Topological transformation groups, no. 1, Interscience Tracts in Pure and Applied Mathematics, 1955.
  • K. Morita, Star-finite coverings and the star-finite property, Math. Japonicæ. 1 (1948), 60–68.
  • S. A. Morris, Pontrjagin Duality and the Stucture of Locally Compact Abelian Groups, Vol. 29, London Math Soc. Lecture Note Series, 1977.
  • M. E. Munroe, Introduction to measure and integration theory, Addison-Wesley, Cambridge, MA, 1953.
  • L. Nachbin, On the finite dimensionality of every irreducible representation of a comact group, Proc. Amer. Math. Soc. 12 (1961), 11–12.
  • —, The Haar integral, Van Nostrand, Princeton, 1965.
  • M. G. Nadkarni and V. S. Sunder, Hamel bases and measurability, Mathematics Newsletter 14 (2004), no. 3, 1–3.
  • M. A. Naimark and A. I. S̆tern, Normed rings, P. Noordhoff N.v.: Groningen, 1964.
  • —, Theory of Group Representations, A Series of Comprenhensive Studies in Mathematics, Springer-Verlag, Berlin, 1982.
  • Masahiro Nakamura and Shizuo Kakutani, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Tokyo 19 (1943), 224–229.
  • I. P. Natanson, Theory of Functions of a Real Variable, Frederick Ungar Publishing Co., New York, 1955.
  • Piotr Niemiec, Invariant measures for equicontinuous semigroups of continuous transformations of a compact Hausdorff space, Topology Appl. 153 (2006), no. 18, 3373–3382.
  • J. Oxtoby, Measure and category: A survey of the analogies between topological and measure spaces., 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York, 1980.
  • John C. Oxtoby, Invariant measures in groups which are not locally compact, Trans. Amer. Math. Soc. 60 (1946), 215–237.
  • Andrzej Pelc, Invariant measures on abelian metric groups, Colloq. Math. 54 (1987), no. 1, 95–101.
  • R. R. Phelps, Gaussian null sets and differentiability of Lipschitz maps on Banach space, Pacific J. Math. 77 (1978), 523–531.
  • A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math 28 (1966/1967), 333–353. (German)
  • Gilles Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, Providence, RI, 1986.
  • —, Grothendieck’s theorem, past and present., Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 237–323.
  • L. Pontrjagin, The theory of topological commutative groups, Ann. of Math. (2) 35 (1934), no. 2, 361–388.
  • L. Pontrjagin, Topological groups, Princeton Mathematical Series, Vol. 2, Princeton University Press, Princeton, 1939 (translated from the Russian by Emma Lehmer).
  • C. A. Rogers, Hausdorff measures, Cambridge University Press, Cambridge, 1988.
  • Joseph Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc. 265 (1981), no. 2, 623–636.
  • David Ross, Measures invariant under local homeomorphisms, Proc. Amer. Math. Soc. 102 (1988), no. 4, 901–905.
  • W. Rudin, Fourier analysis on groups, Wiley Classics Library, Wiley-Interscience, New York, 1990.
  • C. Ryll-Nardzewski, Generalized random ergodic theorems and weakly almost periodic functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 271–275.
  • —, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Vol. II (Berkeley, CA), Contributions to Probability Theory, Part I, Univ. Calif. Press, 1967, pp. 55–61.
  • S. Saks, Theory of the integral, vol. VII, Monografie Matematyczne, Warazawa-łlwów, 1937.
  • —, Integration in abstract metric spaces, Duke Math. J. 4 (1938), 408–411.
  • —, Theory of the integral, second edition, Dover, 2005.
  • I. Schur, Neue Begründung der Theorie der Gruppencharaktere, Sitz. Pr. Akad. Wiss Berlin (1905), 406–432.
  • Issai Schur, Neue anwendungen der intergralrechnung auf probleme der invarianten theorie, I, Sitz. Preuss. Acad. Wiss. phys-math-kl (1924), 189–208.
  • —, Neue anwendungen der intergralrechnung auf probleme der invarianten theorie, II, Sitz. Preuss. Acad. Wiss. phys-math-kl (1924), 297–321.
  • —, Neue anwendungen der intergralrechnung auf probleme der invarianten theorie, III, Sitz. Preuss. Acad. Wiss. phys-math-kl (1924), 346–353.
  • I. E. Segal, Invariant measures on locally compact spaces, J. Indian Math. Soc.(N.S.) 13 (1949), 105–130.
  • K. Shiga, Representations of a compact group on a Banach space, J. Math. Soc. Japan 7 (1955), 224–248.
  • S. Solecki, Size of subsets of groups and Haar null sets, Geom. Funct. Anal. 15 (2005), 246–275.
  • R. C. Steinlage, On Haar measure in locally compact $T_2$ spaces, Amer. J. Math. 97 (1975), 291–307.
  • A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982.
  • Karl Stromberg, The Banach-Tarski paradox, American Math Monthly 86 (1979), no. 3, 151–161.
  • R. Struble, Metrics in locally compact groups, Compositio Math. 28 (1974), no. 3, 217–222.
  • Dennis Sullivan, For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 121–123.
  • E. Szpilrajn, La dimension et la mesure, Fund. Math. 25 (1937), 81–89.
  • N. Tomczak-Jaegermann, Banach-Mazur distances and finite dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, Harlow and Wiley, New York, 1989.
  • S. Ulam, Zur masstheorie in der allgemeinen Mengen lehre, Fund. Math. 16 (1930), 141–150.
  • D. van Dantzig, Über topologisch homogene Kontinua, Fund. Math. 15 (1930), no. 1, 102–105.
  • —, Zur topologisch algebra i. komplettierungstheorie, Ann. of Math. 107 (1932), 587–626.
  • E. R. van Kampen, Locally bicompact abelian groups and their character groups, Ann. of Math. (2) 36 (1935), 448–463.
  • Guiseppe Vitali, Sul probleme della misura dei gruppi di punti di una retta, Gamberani e Parmeggiani, Bologna, 1905.
  • J. von Neumann, Die Einführung analytisches Parameter in topologischen Gruppen, Ann. of Math. 34 (1933), 170–190.
  • John von Neumann, Invariant measures, American Mathematical Society, Providence, RI, 1999.
  • André Weil, Sur les espaces à structure uniforme et sur la topologie générale, Actual. Sci. Ind., no. 551, Hermann et Cie., Paris, 1938.
  • —, L’intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., no. 869, Hermann et Cie., Paris, 1940.
  • H. Weyl, The classical groups, their invariants and representations, Princeton University Press, Princeton, 1939.
  • H. Weyl and F. Peter, Die Vollständigkeit der primitive Darstellungen einen geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), 737–755.