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Preface

From the earliest days of measure theory, invariant measures have held the
interests of geometers and analysts alike. With Hausdorff’s introduction of
the measures that bear his name and the subsequent cementing of the re-
lationships between measure theory and geometry, those interests attained
a degree of permanency. Simultaneously, efforts at solving Hilbert’s fifth
problem (on recognizing Lie groups by their locally Euclidean structure)
naturally found invariant measures an ally in analyzing the structure of
topological groups, particularly compact and locally compact groups. Ex-
istence, uniqueness, and applications of invariant measures attracted the
attention of many of the strongest mathematical minds. We hope in this
volume to detail some of the highlights of those developments.

This book is aimed at an audience of people who have been exposed to a
basic course in real variables, although we do review the development of
Lebesgue’s measure. As is usually the case, a certain amount of mathemati-
cal maturity is critical to the understanding of many of the topics discussed.
We have included a few exercises; their occurrence is planned to coincide
with sections where material somewhat divorced from typical experience is
presented.

In the first chapter we develop Lebesgue measure in Euclidean spaces from
a topological perspective. Roughly speaking, we start with knowledge of
how big an open set is, pass from there to measuring the size of compact
sets, and then, using regularity as a guide, determine which sets are mea-
surable. Naturally, the details are more technical but the result—Lebesgue
measure—is worth the effort.

xi



xii Preface

We next discuss measures on metric spaces with special attention paid to
Borel measures. We encounter the aforementioned Hausdorff measures and
find that Hausdorff n-measure on Euclidean n-space is a multiple of Lebesgue
measure on the same space. What’s more, the constant of multiplicity is
an apt rate of exchange between rectilinear measurements (Lebesgue mea-
sure) and spherical ones (Hausdorff’s n-measure). Along the way we en-
counter and embrace Carathéodory’s fundamental method of outer mea-
sures, a method we will return to throughout these deliberations.

We turn then to topological groups and give a brief introduction to this
intriguing topic. A highlight of this chapter is the often surprising conse-
quences one can draw about topological groups: the mixture of algebra and
topology produces a sum in excess of what the summands hint. For instance,
every (Hausdorff) topological group is completely regular, and if it satisfies
the first axiom of countability (having a countable basis for the open sets
about each point), then it is metrizable, with a left invariant metric more-
over. These follow from the beautiful theorem of Birkhoff and Kakutani.
We also show that if the group is locally compact then it is paracompact.

Next, in the chapter on Banach and measure theory, we present Banach’s
proof on the existence of an invariant measure on a compact metrizable
topological group. Banach’s proof, which is plainly of geometric flavor, is
more general than showing “just” that compact metrizable groups have in-
variant measures; indeed, his proof asserts the existence of a Borel measure
on any compact metric space that is invariant under the action of a transi-
tive group of homeomorphisms. As is to be expected, Banach’s proof relies
on the methods of functional analysis, a subject he was deeply active in
developing—most particularly in his use of “Banach limits”, the existence
of which relies on the Hahn–Banach theorem. To put Banach’s result in
context, it’s important to know that we have a Borel probability in hand,
one that allows every continuous function to be integrated, and for this we
present Saks’ proof that positive linear functionals of norm-1 C(K)’s, where
K is a compact metric space, correspond to Borel probabilities. We follow
the presentation of Saks’ proof with Banach’s approach to the Lebesgue in-
tegral. This appeared as an appendix in Saks’ classical monograph Theory
of the Integral [111, 113]. It contains Banach’s proof of the Riesz Repre-
sentation of C(K)∗ for a compact metric space K.

Having discussed the situation of compact metrizable topological groups, we
next present von Neumann’s proof of the existence and uniqueness of nor-
malized Haar measure on any compact topological group. The importance
to this proof of the uniform continuity of continuous real-valued functions
defined an a compact group and the classical theorem of Arzelá and Ascoli
should be plain and clear. Von Neumann’s proof shows, in quite a natural
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way, that the normalized Haar measure is simultaneously left and right in-
variant. We include several other proofs of the existence of a Haar measure
in the Notes and Remarks to this chapter.

An all-too-short chapter on applications of Haar measure on compact groups
follows. Homogeneous spaces are shown to have unique invariant measures,
invariance being with respect to a transitive group of homeomorphisms. This
is followed by a presentation of the Peter–Weyl theorem on the existence of a
complete system of irreducible finite-dimensional unitary representations of
the group. We then broach the topic of absolutely p-summing operators on
Banach spaces; after showing the existence of a “Pietsch measure” for any
absolutely p-summing operator, we use the uniqueness of Haar measure to
show that under appropriate mild invariance assumptions on a p-summing
operator on a space that has an invariant norm that Haar measure serves
as a Pietsch measure.

A chapter detailing the existence and uniqueness of Haar measure on a
general locally compact topological group is next. There appears to be no
clever trick to pass from the compact case to the locally compact situation;
only hard work will suffice. The measure theory is more delicate and the
proofs of existence and uniqueness of Haar measure follow suit. We present
Weil’s proof of existence, followed by H. Cartan’s simultaneous proof of
existence and uniqueness. Our Notes and Remarks in Chapter 6 complement
this with the more commonly known proof via the Fubini theorem.

The special character of Haar measure is the topic of our next chapter with a
gorgeous theorem of Bandt center stage. The theorem calls on an ingenious
use of Hausdorff-like measures in tandem with the uniqueness aspects of
Haar measure to show that if we encounter a locally compact metrizable
topological group with a left invariant metric in place, then subsets that are
isometric with this metric have the same Haar (outer) measure.

Just when we feel that we’ve done all that can be done with regard to Haar
measure in a locally compact setting, we present Steinlage’s remarkable
description of necessary and sufficient conditions that a G-invariant Borel
content exists on a locally compact Hausdorff space, where G is a suitable
group of homeomorphisms of the space onto itself. The proof of existence is
reminiscent of Banach’s proof with a touch of Weil thrown in.

We finish with an all-too-brief description of Oxtoby’s work on invariant
Borel measures on nonlocally compact Polish groups.

We have two appendices. In one we discuss Haar’s original proof of the
existence of Haar measure in the case where the group is a compact metric
group. The other appendix discusses the remarkable result of Kakutani and
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Oxtoby in which they show that Haar measure on an infinite compact metric
group can be extended to an amazingly large sigma field in a countably
additive, translation invariant manner.

Our presentation of this material was greatly influenced by the experiences
of talking about the material in a classroom setting, either in seminars or
graduate classes. We found often that presenting material at a slightly
less general level aided in conveying the essential ideas without any serious
sacrifice. This also had the beneficial effect of inspiring questions, leading
to deeper understanding, for both the students and us.

In any undertaking like this, many friends and colleagues have contributed
through discussions, lectures, and reading attempts at exposition in varying
states of preparation. We rush to thank all who have helped. We extend
particular thanks to (the late) Diomedes Barcenas, Floyd Barger, Jonathan
Borwein, Geraldo Botelho, Bruno Braga, John Buoni, Antonia Cardwell,
Neal Carothers, Charlotte Crowther, John Dalbec, Geoff Diestel, Rocco Du-
venhage, (the late) Doug Faires, Paul Fishback, Ralph Howard, Jozsi Jalics,
Hans Jarchow, Livia Karetka, Jay Kerns, Darci Kracht, Charles Maepa,
(the late) Roy Mimna, Daniel Pellegrino, Zbginiew Piotrowski, David Pol-
lack, Zach Riel, Nathan Ritchey, Sarah Ritchey, Stephen Rodabaugh, Pilar
Rueda, Dima Ryabogin, Juan Seoane, Brailey Sims, Anton Stroh, Johan
Swart, Jamal Tartir, Padraic Taylor, Andrew Tonge, Thomas Wakefield,
Matt Ward, Eric Wingler, George Yates, and Artem Zvavitch.

Through the years we have had the opportunity to talk about Haar measure
at various universities, including the Department of Mathematics and Ap-
plied Mathematics at the University of Pretoria, South Africa, the Depart-
ment of Mathematics, University of the Andes, Merida, Venezuela CARMA,
University of Newcastle, Newcastle, NSW, Australia (where Jon Borwein
and Brailey Sims provided the audience with added entertainment by hav-
ing Joe Diestel misuse exceptional modern technology!), the Department of
Mathematical Sciences at Kent State University, the Department of Mathe-
matics and Statistics at Youngstown State University, and the Institute for
Applied Topology and Topological Structures at Youngstown State Univer-
sity.

Finally, an endeavor such as this would not be possible without the lov-
ing support of our families, especially Linda Diestel, Kelly Spalsbury, Sue
Spalsbury, Julius Szigeti, and Peter Szigeti.
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[138] H. Weyl and F. Peter, Die Vollständigkeit der primitive Darstellungen einen
geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), 737–755.





Author Index

Alexandroff, A. D., 133
Alexandrov, P., 43
Alfsen, E. M., 207
Aronszajn, N., 283
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Mattila, P., 20
Maudlin, D., 209
Michael, E. A., 62

317



318 Author Index

Milman, V., 136, 172
Minkowski, H., 10
Montgomery, D., 62
Morris, S., 62, 220

Nachbin, L., 172, 173
Nadkarni, M. G., 19
Naimark, M. A., 207
Nakamura, M., 73
Natanson, I. P., 112
Niemiec, P., 269

Oxtoby, J., 112, 271, 282, 295
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From the earliest days of measure theory, invariant 
measures have held the interests of geometers 
and analysts alike, with the Haar measure playing 
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is to present invariant measures on topological 
groups, progressing from special cases to the 
more general. Presenting existence proofs in 
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highlights how the added assumptions give insight 
into just what the Haar measure is like; tools from different aspects of analysis and/or 
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the compact case, applications indicate how these tools can find use. The general-
ization to locally compact groups is then presented and applied to show relations 
between metric and measure theoretic invariance. Steinlage’s approach to the general 
problem of homogeneous action in the locally compact setting shows how Banach’s 
approach and that of Cartan and Weil can be unified with good effect. Finally, the situ-
ation of a nonlocally compact Polish group is discussed briefly with the surprisingly 
unsettling consequences indicated.

The book is accessible to graduate and advanced undergraduate students who have 
been exposed to a basic course in real variables, although the authors do review the 
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