Dedicated to Misha and Esther and our extended family
Contents

Preface ix

Chapter 1. Perspectives on Manifolds 1
§1.1. Topological Manifolds 1
§1.2. Differentiable Manifolds 7
§1.3. Oriented Manifolds 10
§1.4. Triangulated Manifolds 12
§1.5. Geometric Manifolds 21
§1.6. Connected Sums 23
§1.7. Equivalence of Categories 25

Chapter 2. Surfaces 29
§2.1. A Few Facts about 1-Manifolds 29
§2.2. Classification of Surfaces 31
§2.3. Decompositions of Surfaces 39
§2.4. Covering Spaces and Branched Covering Spaces 41
§2.5. Homotopy and Isotopy on Surfaces 45
§2.6. The Mapping Class Group 47

Chapter 3. 3-Manifolds 55
§3.1. Bundles 56
§3.2. The Schönflies Theorem 62
§3.3. 3-Manifolds that are Prime but Reducible 71
§3.4. Incompressible Surfaces	72
§3.5. Dehn’s Lemma*	75
§3.6. Hierarchies*	80
§3.7. Seifert Fibered Spaces	87
§3.8. JSJ Decompositions	96
§3.9. Compendium of Standard Arguments	98

Chapter 4. Knots and Links in 3-Manifolds 101
§4.1. Knots and Links	101
§4.2. Reidemeister Moves	106
§4.3. Basic Constructions	108
§4.4. Knot Invariants	113
§4.5. Zoology	118
§4.6. Braids	122
§4.7. The Alexander Polynomial	126
§4.8. Knots and Height Functions	128
§4.9. The Knot Group*	137
§4.10. Covering Spaces*	139

Chapter 5. Triangulated 3-Manifolds 143
§5.1. Simplicial Complexes	143
§5.2. Normal Surfaces	148
§5.3. Diophantine Systems	155
§5.4. 2-Spheres*	162
§5.5. Prime Decompositions	166
§5.6. Recognition Algorithms	169
§5.7. PL Minimal Surfaces**	172

Chapter 6. Heegaard Splittings 175
§6.1. Handle Decompositions	175
§6.2. Heegaard Diagrams	180
§6.3. Reducibility and Stabilization	182
§6.4. Waldhausen’s Theorem	188
§6.5. Structural Theorems	193
§6.6. The Rubinstein-Scharlemann Graphic	196
§6.7. Weak Reducibility and Incompressible Surfaces	200
Preface

This book grew out of a graduate course on 3-manifolds taught at Emory University in the spring of 2003. It aims to introduce the beginning graduate student to central topics in the study of 3-manifolds. Prerequisites are kept to a minimum but do include some point set topology (see [109]) and some knowledge of general position (see [128]). In a few places, it is worth our while to mention results or proofs involving concepts from algebraic topology or differential geometry. This should not stop the interested reader with no background in algebraic topology or differential geometry from enjoying the material presented here. The sections and exercises involving algebraic topology are marked with a *, those involving differential geometry with a **.

This book conveys my personal path through the subject of 3-manifolds during a certain period of time (roughly 1990 to 2007). Marty Scharlemann deserves credit for setting me on this path. He remains a much appreciated guide. Other guides include Misha Kapovich, Andrew Casson, Rob Kirby, and my collaborators.

In Chapter 1 we introduce the notion of a manifold of arbitrary dimension and discuss several structures on manifolds. These structures may or may not exist on a given manifold. In addition, if a particular structure exists on a given manifold, it may or may not be presented as part of the information given. In Chapter 2 we consider manifolds of a particular dimension, namely 2-manifolds, also known as surfaces. Here we provide an overview of the classification of surfaces and discuss the mapping class group. Chapter 3 gives examples of 3-manifolds and standard techniques used to study 3-manifolds. In Chapter 4 we catch a glimpse of the interaction of pairs of manifolds, specifically pairs of the form (3-manifold, 1-manifold). Of
particular interest here is the consideration of knots from the point of view of the complement (“Not Knot”). For other perspectives, we refer the reader to the many books, both new and old, mentioned in Chapter 4 that provide a more in-depth study. In Chapter 5 we consider triangulated 3-manifolds, normal surfaces, almost normal surfaces, and how these set the stage for algorithms pertaining to 3-manifolds. In Chapter 6 we cover a subject near and dear to the author’s heart: Heegaard splittings. Heegaard splittings are decompositions of 3-manifolds into symmetric pieces. They can be thought of in many different ways. We discuss key examples, classical problems, and recent advances in the subject of Heegaard splittings. In Chapter 7 we introduce hyperbolic structures on manifolds and complexes and provide a glimpse of how they affect our understanding of 3-manifolds. We include two appendices: one on general position and one on Morse functions. Exercises appear at the end of most sections.

I wish to thank the many colleagues and students who have given me the opportunity to learn and teach. I also wish to thank the institutions that have supported me through the years: University of California, Emory University, Max-Planck-Institut für Mathematik Bonn, Max-Planck-Institut für Mathematik Leipzig, and the National Science Foundation.
Bibliography

59. Allen Hatcher, Notes on basic 3-manifold topology, preprint.

156. Friedhelm Waldhausen, *On irreducible 3-manifolds which are sufficiently large*, Ann. of Math. (2) **87** (1968), 56–88. MR0224099 (36 #7146)
Index

- **2π-Theorem**, 237
- 2-bridge, 119
- 2-fold branched cover, 141
- 3-colorable, 107
- \(S_1 + S_2\), 157
- \(\delta\)-thin, 251
- \(k\)-handle, 175, 273
- \(k\)-simplex, 13
- \(n\)-manifold, 1
- \(n\)-torus, 2
- \(r\)-skeleton, 143
- Agol, 237
- Alexander Trick, 45
- Alexander’s Theorem, 67, 71
- almost normal, 170
- alternating, 115
- anannular, 224
- Anosov, 246
- arational, 246
- arborescent knot, 119
- arc complex, 257
- atlas, 3
- atoroidal, 96, 224
- barycentric coordinates, 144
- base space, 58
- bicollar, 60
- blackboard framing, 227
- boundary, 1
- boundary incompressible, 74
- boundary irreducible, 70
- braid, 122
- branch locus, 13
- branched covering, 43
- bridge number, 129
- bundle, 57
- bundle atlas, 58
- bundle chart, 58
- characteristic submanifold, 98
- chart, 1
- classification of surfaces, 37
- closure of a braid, 123
- cocore, 176
- collar, 60
- companion, 121
- complete, 218
- complexity, 248
- compressible, 73
- compression body, 202
- cone, 148
- connected sum, 23, 108
- convex, 219
- core, 176
- covering, 42
- covering space, 139
- crossing number, 114
- curve complex, 248
- cut, 63
- cut and paste argument, 99
- cyclic surgery, 232
- decomposing annulus, 210
- decomposing sphere, 167
- Dehn filling, 227
Dehn surgery, 227, 232
Dehn surgery space, 237
Dehn twist, 90, 215
Dehn’s Lemma, 76
Dehn’s Theorem, 139
destabilization, 190
dilation, 218
dimension, 1
Diophantine system, 159
distance, 248
distance of the Heegaard splitting, 202
double, 90
embedding, 1
ends, 258
equivalent, 19, 22, 59, 102, 178, 205
essential, 82, 83, 159
Euler characteristic, 20
exceptional fiber, 87
face, 14
fiber, 58, 87
fibering, 58
fill, 283
filling, 15, 246
foliation, 238
fundamental, 160
fundamental group, 139
Gauss-Jordan elimination, 159
general position, 55, 147
generalized Heegaard splitting, 204
genetic, 258
genus, 35, 112, 177, 193
geodesic, 218
geometric intersection number, 249
geometric manifold, 22
Geometrization Conjecture, 224
glue, 59
glued, 178
good system, 138
granny knot, 109
graph manifold, 87
Gromov, 237
Gromov hyperbolic, 241
Gromov-Hausdorff topology, 256
Haken 3-manifold, 75
handle decomposition, 274
handlebody, 177
Hausdorff distance, 256
Heegaard diagram, 151
Heegaard genus, 212
Heegaard splitting, 178, 202, 228
height function, 64, 128
hierarchy, 83
homotopy, 23
homotopy equivalent, 83
Hopf link, 117
horizontal, 92, 194, 254
hyperbolic arc length, 215
hyperbolic n-manifold, 221
hyperbolic volume, 215
ideal triangle, 219
incompressible, 73
independent, 102
index, 211, 269
inessential, 32
infinite cyclic cover, 139
innermost disk argument, 98
intersection cyclic cover, 139
intersection number, 51
inversion, 249
irreducible, 62, 183
isometry, 22
isomorphic, 59
isomorphism, 58
isotopy, 23
Jones polynomial, 126
Jordan Curve Theorem, 161
Kneser-Haken finiteness, 102
knot, 102
knot diagram, 103
knot invariant, 113
lamination, 243
leaf, 238
leaves, 243
length, 82, 139, 235
lens space, 83
link, 102, 146
linking number, 117
longitude, 106, 227
Loop Theorem, 79
mapping class group, 48, 255
measure, 152
meridian, 106, 227
meridian disks, 177
metric triangulation, 173
Möbius band, 10
Montesinos knot, 119
Morse function, 40, 161, 270
Mostow Rigidity Theorem, 225
natural framing, 227
negative curvature, 173
non-degenerate, 269
non-separating, 71
normal curve, 149
normal disk, 151
normal isotopy, 152
normal surface, 151
normal triangle, 150
nugatory, 113

open regular neighborhood, 60
opposite, 11
orientable, 10
orientation, 31
orientation-preserving, 12
orientation-reversing, 12
outermost arc argument, 99

pair of pants, 5
pants decomposition, 40
partial ordering, 144
pattern, 121
Perelman, 224
periodic, 53
PL least area, 173
Poincaré Conjecture, 84, 224, 237
Poincaré-Hopf Index Theorem, 26, 64
pretzel knot, 119
prime, 24
prime decomposition, 162, 166
prime factorization, 55
prism manifolds, 90
projection, 55
projective measured lamination, 245
projectively equivalent, 245
proper, 73
properly discontinuously, 221
Property P, 236
pseudo-Anosov, 55, 247, 250
punctured, 102

rank, 212
real projective space, 2
reduced, 115
reducible, 63, 62, 183
Reeb foliation, 239
Reebless, 241
regular neighborhood, 50, 60
Reidemeister moves, 106
restriction, 59
Ricci flow, 224
Riemann-Hurwitz Theorem, 44
rotation, 219
satellite knot, 121
Scharlemann cycle, 235
Schönflies Theorem, 63, 67, 104, 163
section, 60
Seifert fibered space, 58, 238, 253
Seifert surface, 110, 119, 226
Seifert’s Algorithm, 110
self-indexing, 274
separating, 32, 71
simple arc, 29
simple closed curve, 29
simplices, 248
simplicial complex, 15, 19
simplicial isomorphism, 19
simplicial map, 15
simply connected at infinity, 86
small, 136
sphere, 2
Sphere Theorem, 79
spine, 194
square knot, 109
square restriction, 157
stabilization, 182
stable, 247
standard Heegaard splitting, 194
standard innermost disk argument, 92
star, 146
strongly irreducible, 158, 205
subcomplex, 19
subdivision, 149
submanifold, 3
subsurface projection, 257
swallow-follow torus, 121
sweepout, 196
tangent bundle, 261
taut, 242
thick level, 181
thin level, 132
thin position, 130
torus knot, 105
total space, 58
translation, 219
transversal, 241
transversality, 102
transverse, 263, 264
transverse invariant measure, 243
transverse isotopy, 243
transversely, 123
trivial, 23

tunnel system, 208

uniquely ergodic, 246
universal, 139
unknot, 102
unknotting number, 116
unstable, 247
untelescoping, 206
upper half-space model, 217

vertical, 92, 194, 254

Waldhausen’s Theorem, 83
weight, 152
weighted intersection number, 245
Whitehead manifold, 84
width, 130
wild knot, 101
Wirtinger presentation, 137
This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology.

The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex.

With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.