Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


An Introduction to Extremal Kähler Metrics

About this Title

Gábor Székelyhidi, University of Notre Dame, Notre Dame, IN

Publication: Graduate Studies in Mathematics
Publication Year: 2014; Volume 152
ISBNs: 978-1-4704-1047-6 (print); 978-1-4704-1687-4 (online)
DOI: https://doi.org/10.1090/gsm/152
MathSciNet review: MR3186384
MSC: Primary 53C55; Secondary 14L24, 32Q20, 53C25

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • M. Abreu, Kähler geometry of toric varieties and extremal metrics, Internat. J. Math. 9 (1998), 641–651.
  • V. Apostolov, D. M. J. Calderbank, P. Gauduchon, and C. W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry III, extremal metrics and stability, Invent. Math. 173 (2008), no. 3, 547–601.
  • C. Arezzo and F. Pacard, Blowing up and desingularizing constant scalar curvature Kähler manifolds, Acta Math. 196 (2006), no. 2, 179–228.
  • —, Blowing up Kähler manifolds with constant scalar curvature II, Ann. of Math. (2) 170 (2009), no. 2, 685–738.
  • C. Arezzo, F. Pacard, and M. A. Singer, Extremal metrics on blow ups, Duke Math. J. 157 (2011), no. 1, 1–51.
  • M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15.
  • T. Aubin, Métriques riemanniennes et courbure, J. Differential Geom. 4 (1970), 383–424.
  • —, Équations du type Monge-Ampère sur les varietés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95.
  • —, Réduction de cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984), no. 2, 143–153.
  • —, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
  • S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, Adv. Stud. Pure Math., vol. 10, 1985, pp. 11–40.
  • R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), no. 5, 661–693.
  • E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), no. 1, 1–44.
  • R. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, arXiv:1205:6214v2.
  • B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, arXiv:1303.4975.
  • O. Biquard and Y. Rollin, Smoothing singular extremal Kähler surfaces and minimal lagrangians, arXiv:1211.6957.
  • Z. Błocki, The Calabi-Yau theorem, Complex Monge-Ampère equations and geodesics in the space of Kähler metrics, Lecture Notes in Math., vol. 2038, Springer, Heidelberg, 2012, pp. 201–227.
  • S. Boucksom and H. Chen, Okounkov bodies of filtered linear series, Compos. Math. 147 (2011), 1205–1229.
  • S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199–262.
  • L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations II. Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209–252.
  • E. Calabi, Extremal Kähler metrics, Seminar on Differential Geometry (S. T. Yau, ed.), Princeton, 1982.
  • —, Extremal Kähler metrics II, Differential geometry and complex analysis, Springer, 1985, pp. 95–114.
  • H. D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372.
  • D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser Boston Inc., 1999, pp. 1–23.
  • J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480.
  • —, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13–35.
  • —, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37–74.
  • B. Chen, An-Min Li, and L. Sheng, Extremal metrics on toric surfaces, arXiv: 1008.2607.
  • X. X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234.
  • X. X. Chen, Space of Kähler metrics III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), no. 3, 453–503.
  • X. X. Chen, S. K. Donaldson, and S. Sun, Kähler-Einstein metrics and stability, arXiv:1210.7494.
  • —, Kähler-Einstein metrics on Fano manifolds, I: Approximation of metrics with cone singularities, arXiv:1211.4566.
  • —, Kähler-Einstein metrics on Fano manifolds, II: Limits with cone angle less than $2\pi$, arXiv:1212.4714.
  • —, Kähler-Einstein metrics on Fano manifolds, III: Limits as cone angle approaches $2\pi$ and completion of the main proof, arXiv:1302.0282.
  • X. X. Chen, C. LeBrun, and B. Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), no. 4, 1137–1168.
  • X. X. Chen and G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. (2008), no. 107, 1–107.
  • P. Cherrier, Équations de Monge-Ampère sur les variétés Hermitiennes compactes, Bull. Sci. Math. (2) 111 (1987), no. 4, 343–385.
  • T. Darvas, Morse theory and geodesics in the space of Kähler metrics, arXiv: 1207.4465.
  • J.-P. Demailly, Complex analytic and differential geometry, http://www-fourier. ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
  • W. Y. Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), no. 3, 463–471.
  • S. K. Donaldson, Lecture notes for TCC course “Geometric Analysis”, http://www2. imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF.
  • —, Remarks on gauge theory, complex geometry and four-manifold topology, Fields Medallists’ Lectures (Atiyah and Iagolnitzer, eds.), World Scientific, 1997, pp. 384–403.
  • —, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33.
  • —, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289–349.
  • —, Interior estimates for solutions of Abreu’s equation, Collect. Math. 56 (2005), no. 2, 103–142.
  • —, Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), no. 3, 453–472.
  • —, Two-forms on four-manifolds and elliptic equations, inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 153–172.
  • —, Extremal metrics on toric surfaces: A continuity method, J. Differential Geom. 79 (2008), no. 3, 389–432.
  • —, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009), no. 1, 83–136.
  • —, Discussion of the Kähler-Einstein problem, http://www2.imperial.ac. uk/~skdona/KENOTES.PDF (2009).
  • S. K. Donaldson and S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, arXiv:1206.2609.
  • P. Eyssidieux, V. Guedj, and A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639.
  • A. Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sûgaku 42 (1990), no. 3, 231–243;], Sugaku Expositions 5 (1992), no. 2, 173–191.
  • W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., vol. 131, Princeton University Press, Princeton, N.J., 1993.
  • A. Futaki, An obstruction to the existence of Einstein-Kähler metrics, Invent. Math. 73 (1983), 437–443.
  • A. Futaki and T. Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199–210.
  • P. Gauduchon, Invariant scalar-flat Kähler metrics on $\mathcal {O}(-l)$, preprint, 2012.
  • D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 ed., Classics in Mathematics, Springer-Verlag, Berlin, 2001.
  • P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.
  • D. Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett. 6 (1999), no. 5-6, 547–555.
  • V. Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), 285–309.
  • V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513.
  • —, Riemann sums over polytopes, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 7, 2183–2195.
  • R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255–306.
  • A. Hwang and M. A. Singer, A momentum construction for circle-invariant Kähler metrics, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2285–2325.
  • W. Jiang, Bergman kernel along the Kähler Ricci flow and Tian’s conjecture, arXiv:1311.0428.
  • F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, 1984.
  • S. Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117.
  • —, Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in ${L^p}$: The case of compact Kähler manifolds, Math. Ann. 342 (2008), no. 2, 379–386.
  • C. LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), no. 4, 591–596.
  • C. LeBrun and S. R. Simanca, On the Kähler classes of extremal metrics, Geometry and global analysis (Sendai, 1993), Tohoku Univ., 1993, pp. 255–271.
  • —, Extremal Kähler metrics and complex deformation theory, Geom. and Func. Anal. 4 (1994), no. 3, 298–336.
  • L. Lempert and L. Vivas, Geodesics in the space of Kähler metrics, Duke Math. J. 162 (2013), no. 7, 1369–1381.
  • M. Levine, A remark on extremal Kähler metrics, J. Differential Geom. 21 (1985), no. 1, 73–77.
  • C. Li and C. Xu, Special test configurations and K-stability of Fano varieties, arXiv:1111.5398.
  • A. Lichnerowicz, Sur les transformations analytiques des variétés kählériennes compactes, C. R. Acad. Sci. Paris 244 (1957), 3011–3013.
  • R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 1 (1985), no. 3, 409–447.
  • Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (1998), no. 2, 235–273.
  • T. Mabuchi, K-stability of constant scalar curvature polarization, arXiv:0812.4093.
  • —, K-energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986), no. 4, 575–593.
  • —, Some symplectic geometry on compact Kähler manifolds, Osaka J. Math. 24 (1987), 227–252.
  • M. Maruyama, On automorphism groups of ruled surfaces, J. Math. Kyoto University 11-1 (1971), 89–112.
  • Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150.
  • D. McDuff and D. Salamon, Introduction to symplectic topology, OUP, 1998.
  • D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
  • F. Pacard, Lectures on connected sum constructions in geometry and nonlinear analysis, http://www.math.polytechnique.fr/~pacard/Publications/ Lecture-Part-I.pdf.
  • S. T. Paul, Stable pairs and coercive estimates for the Mabuchi functional, arXiv:1308.4377.
  • S. T. Paul and G. Tian, CM stability and the generalised Futaki invariant II, Astérisque 328 (2009), 339–354.
  • G. Perelman, The entropy formula for the Ricci flow and its geometric applications, math.DG/0211159.
  • D. H. Phong, N. Sesum, and J. Sturm, Multiplier ideal sheaves and the Kähler-Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613–632.
  • D. H. Phong, J. Song, and J. Sturm, Complex Monge-Ampère equations, Surveys in differential geometry, vol. 17, Int. Press, Boston, MA, 2012, pp. 327–410.
  • J. Ross and R. P. Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), no. 2, 201–255.
  • W.-D. Ruan, Canonical coordinates and Bergman metrics, Comm. Anal. Geom. 6 (1998), no. 3, 589–631.
  • S. Semmes, Complex Monge-Ampère equations and symplectic manifolds, Amer. J. Math. 114 (1992), 495–550.
  • S. R. Simanca, Kähler metrics of constant scalar curvature on bundles over ${C\textrm {P}_{n-1}}$, Math. Ann. 291 (1991), no. 2, 239–246.
  • L. Simon, Theorems on regularity and singularity of energy minimizing maps, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.
  • Y. T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV Seminar 8, Birkhäuser Verlag, Basel, 1987.
  • J. Song and G. Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), no. 3, 609–653.
  • —, Canonical measures and Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2, 303–353.
  • J. Song and B. Weinkove, Lecture notes on the Kähler-Ricci flow, arXiv:1212.3653.
  • J. Stoppa, K-stability of constant scalar curvature Kähler manifolds, Adv. Math. 221 (2009), no. 4, 1397–1408.
  • J. Stoppa and G. Székelyhidi, Relative K-stability of extremal metrics, J. Eur. Math. Soc. 13 (2011), no. 4, 899–909.
  • G. Székelyhidi, Blowing up extremal Kähler manifolds II, arXiv:1302.0760.
  • —, Filtrations and test-configurations, with an appendix by S. Boucksom, arXiv:1111.4986.
  • —, The partial $C^0$-estimate along the continuity method, arXiv:1310.8471.
  • —, Extremal metrics and ${K}$-stability, Ph.D. thesis, Imperial College, London, 2006.
  • —, Extremal metrics and ${K}$-stability, Bull. Lond. Math. Soc. 39 (2007), no. 1, 76–84.
  • —, On blowing up extremal Kähler manifolds, Duke Math. J. 161 (2012), no. 8, 1411–1453.
  • R. P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, Surveys in Differential Geometry 10 (2006): A Tribute to Professor S.-S. Chern.
  • G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130.
  • —, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172.
  • —, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 137 (1997), 1–37.
  • —, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000.
  • —, Existence of Einstein metrics on Fano manifolds, Metric and Differential Geometry, The Jeff Cheeger Anniversary Volume (X. Dai and X. Rong, eds.), Progress in Mathematics, vol. 297, Springer, Basel, 2012, pp. 119–159.
  • G. Tian and Z. Zhang, Regularity of Kähler-Ricci flows on Fano manifolds, arXiv:1310.5897.
  • C. W. Tønnesen-Friedman, Extremal Kähler metrics on minimal ruled surfaces, J. Reine Angew. Math. 502 (1998), 175–197.
  • V. Tosatti and B. Weinkove, The complex Monge-Ampère equation on compact hermitian manifolds, J. Amer. Math. Soc. 23 (2010), no. 4, 1187–1195.
  • —, The Calabi-Yau equation, symplectic forms and almost complex structures, Geometry and analysis. No. 1, Adv. Lect. Math. (ALM), vol. 17, Int. Press, Somerville, MA, 2011, pp. 475–493.
  • X. Wang, Moment map, Futaki invariant and stability of projective manifolds, Comm. Anal. Geom. 12 (2004), no. 5, 1009–1037.
  • X.-J. Wang and B. Zhou, On the existence and nonexistence of extremal metrics on toric Kähler surfaces, Adv. Math. 226 (2011), no. 5, 4429–4455.
  • D. Witt Nyström, Test configurations and Okounkov bodies, Compos. Math. 148 (2012), no. 6, 1736–1756.
  • S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math. 31 (1978), 339–411.
  • —, Open problems in geometry, Proc. Symposia Pure Math. 54 (1993), 1–28.
  • S. Zelditch, Szegő kernel and a theorem of Tian, Int. Math. Res. Notices 6 (1998), 317–331.
  • —, Bernstein polynomials, Bergman kernels and toric Kähler varieties, J. Symplectic Geom. 7 (2009), no. 2, 51–76.