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pages cm. — (Graduate studies in mathematics ; volume 152)
Includes bibliographical references and index.
ISBN 978-1-4704-1047-6 (alk. paper)
1. Geometry, Differential. I. Title.

QA641.S94 2014
516.3′73—dc23

2014006619

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

c© 2014 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 19 18 17 16 15 14



To Sonja and Nóra
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Preface

This book grew out of lecture notes written for a graduate topics course
taught at the University of Notre Dame in the spring of 2012. The goal is
to quickly introduce graduate students to ideas surrounding recent devel-
opments on extremal Kähler metrics. We make an effort to introduce the
main ideas from Kähler geometry and analysis that are required, but the
parts of the book on geometric invariant theory and K-stability would be
difficult to follow without more background in complex algebraic geometry.
A reader with a background in Riemannian geometry and graduate level
analysis should be able to follow the rest of the book.

I would like to thank Tamás Darvas, Yueh-Ju Lin, and Valentino Tosatti
for helpful comments about the manuscript.

Gábor Székelyhidi
Notre Dame, 2014
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Introduction

A basic problem in differential geometry is to find canonical, or best, metrics
on a given manifold. There are many different incarnations of this, perhaps
the most well known being the classical uniformization theorem for Riemann
surfaces. The study of extremal metrics is an attempt at finding a higher-
dimensional generalization of this result in the setting of Kähler geometry.
Extremal metrics were introduced by Calabi in the 1980s as an attempt to
find canonical Kähler metrics on Kähler manifolds as critical points of a
natural energy functional. The energy functional is simply the L2-norm of
the curvature of a metric. The most important examples of extremal metrics
are Kähler-Einstein metrics and constant scalar curvature Kähler (or cscK)
metrics.

It turns out that extremal metrics do not always exist, and the question
of their existence is particularly interesting on projective manifolds. In this
case, by works of Yau, Tian, and Donaldson, it was realized that the exis-
tence of extremal metrics is related to the stability of the manifold in an
algebro-geometric sense, and obtaining a necessary and sufficient condition
of this form for existence is the central problem in the field. Our goal in
this book is to introduce the reader to some of the basic ideas on both the
analytic and the algebraic sides of this problem. One concrete goal is to give
a fairly complete proof of the following result.

Theorem. If M admits a cscK metric in c1(L) for an ample line bundle
L → M and if M has no non-trivial holomorphic vector fields, then the pair
(M,L) is K-stable.

The converse of this result, i.e. the existence of cscK metrics on K-stable
manifolds, is the central conjecture in the field.

xiii



xiv Introduction

We will now give a brief description of the contents of the book. The
first two chapters give a quick review of some of the background material
that is needed. The first chapter contains the basic definitions in Kähler
geometry, with a focus on calculations in local coordinates. The second
chapter focuses on some of the analytic background required, in particular
the Schauder estimates for elliptic operators, which we prove using a blow-up
argument due to L. Simon.

The topic of Chapter 3 is Kähler-Einstein metrics, which are a special
case of extremal metrics. We give a proof of Yau’s celebrated theorem on
the solution of the complex Monge-Ampère equation, leading to existence
results for Kähler-Einstein metrics with zero or negative Ricci curvature.
The case of positive Ricci curvature has only been understood very recently
through the work of Chen, Donaldson, and Sun. The details of this are
beyond the scope of this book, and we only give a very brief discussion in
Section 3.5.

The study of general extremal metrics begins in Chapter 4. Follow-
ing Calabi, we introduce extremal metrics as critical points of the Calabi
functional, which is the L2-norm of the scalar curvature:

ω �→
∫
M

S(ω)2 ωn,

defined for metrics ω in a fixed Kähler class. An important discovery is
that extremal metrics have an alternative variational characterization, as
critical points of the (modified) Mabuchi functional. This is convex along
geodesics in the space of Kähler metrics with respect to a natural, infinite-
dimensional, Riemannian structure. Moreover the variation of the Mabuchi
functional is closely related to the Futaki invariant, which plays a prominent
role in the definition of K-stability. After giving the basic definitions, we
construct an explicit family of extremal metrics on a ruled surface due to
Tønnesen-Friedman in Section 4.4. This example illustrates how a sequence
of extremal metrics can degenerate, and we return to it again in Section 6.5.
In Section 4.5 we give an introduction to the study of extremal metrics on
toric manifolds. Toric manifolds provide a very useful setting in which to
study extremal metrics and stability, and while in the two-dimensional case
the basic existence question is understood through the works of Donald-
son and of Chen, Li, and Sheng, the higher-dimensional case remains an
important problem to study.

In Chapter 5 we give an introduction to the relation between symplectic
and algebraic quotients—the Kempf-Ness theorem—which, at least on a
heuristic level, underpins many of the ideas that have to do with extremal
metrics. The general setting is a compact group K acting by Hamiltonian
isometries on a Kähler manifold M , with a moment map μ : M → k∗. The
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Kempf-Ness theorem characterizes those orbits of the complexified group
Kc which contain zeros of the moment map. The reason why this is relevant
is that the scalar curvature of a Kähler metric, or rather the map ω �→
S(ω) − Ŝ where Ŝ is the average scalar curvature, can be realized as a
moment map for a suitable infinite-dimensional Hamiltonian action. At the
same time, orbits of Kc can be thought of as metrics in a given Kähler class,
so an infinite-dimensional analog of the Kempf-Ness theorem would describe
Kähler classes that contain cscK metrics. In Section 5.5 we will describe a
suitable extension of the Kempf-Ness theorem dealing with critical points
of the norm squared of a moment map, which in the infinite-dimensional
setting are simply extremal metrics.

The notion of K-stability is studied in Chapter 6. It is defined in anal-
ogy with the Hilbert-Mumford criterion in geometric invariant theory by
requiring that a certain weight—the Donaldson-Futaki invariant—is posi-
tive for all C∗-equivariant degenerations of the manifold. These degenera-
tions are called test-configurations. In analogy with the finite-dimensional
setting of the Kempf-Ness theorem, the Donaldson-Futaki invariant of a
test-configuration can be seen as an attempt at encoding the asymptotics
of the Mabuchi functional “at infinity”, with the positivity of the weights
ensuring that the functional is proper. In Section 6.6 we will describe test-
configurations from the point of view of filtrations of the homogeneous coor-
dinate ring of the manifold. It is likely that the notion of K-stability needs to
be strengthened to ensure the existence of a cscK metric, and filtrations al-
low for a natural way to enlarge the class of degenerations that we consider.
In the case of toric varieties, passing from test-configurations to filtrations
amounts to passing from rational piecewise linear convex functions to all
continuous convex functions, as we will discuss in Section 6.7.

The basic tool in relating the differential geometric and algebraic aspects
of the problem is the Bergman kernel, which we discuss in Chapter 7. We
first give a proof of a simple version of the asymptotic expansion of the
Bergman kernel going back to Tian, based on the idea of constructing peaked
sections of a sufficiently high power of a positive line bundle. Then, following
Donaldson, we use this to show that a projective manifold which admits a
cscK metric must be K-semistable. This is a weaker statement than the
theorem stated above. The Bergman kernel also plays a key role in the
recent developments on Kähler-Einstein metrics, through the partial C0-
estimate conjectured by Tian. We will discuss this briefly in Section 7.6.

In the final chapter, Chapter 8, the main result is a perturbative exis-
tence result for cscK metrics due to Arezzo and Pacard. Starting with a cscK
metric ω on M and assuming that M has no non-zero holomorphic vector
fields, we show that the blow-up of M at any point admits cscK metrics in
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suitable Kähler classes. The gluing technique used together with analysis in
weighted Hölder spaces has many applications in geometric analysis. Apart
from giving many new examples of cscK manifolds, this existence result is
crucial in the final step of proving the theorem stated above, namely to
improve the conclusion from K-semistability (obtained in Chapter 7) to K-
stability. The idea due to Stoppa is to show that if M admits a cscK metric
and is not K-stable, then a suitable blow-up of M is not even K-semistable.
Since the blow-up admits a cscK metric, this is a contradiction.

There are several important topics that are missing from this book. We
make almost no mention of parabolic equations such as the Calabi flow
and the Kähler-Ricci flow. We also do not discuss in detail the existence
theory for constant scalar curvature metrics on toric surfaces and for Kähler-
Einstein metrics on Fano manifolds since each of these topics could take up
an entire book. It is our hope that after studying this book the reader will
be eager and ready to tackle these more advanced topics.
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A basic problem in differential geometry is to find canonical metrics on manifolds. 
The best known example of this is the classical uniformization theorem for Riemann 
surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-
dimensional generalization of this result, in the setting of Kähler geometry.

This book gives an introduction to the study of extremal Kähler metrics and in partic-
ular to the conjectural picture relating the existence of extremal metrics on projective 
manifolds to the stability of the underlying manifold in the sense of algebraic geometry. 
The book addresses some of the basic ideas on both the analytic and the algebraic 
sides of this picture. An overview is given of much of the necessary background mate-
rial, such as basic Kähler geometry, moment maps, and geometric invariant theory. 
Beyond the basic definitions and properties of extremal metrics, several highlights 
of the theory are discussed at a level accessible to graduate students: Yau’s theorem 
on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to 
Tian, Donaldson’s lower bound for the Calabi energy, and Arezzo-Pacard’s existence 
theorem for constant scalar curvature Kähler metrics on blow-ups.


