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Preface

Hilbert’s fifth problem, from his famous list of twenty-three problems in
mathematics from 1900, asks for a topological description of Lie groups,
without any direct reference to smooth structure. As with many of Hilbert’s
problems, this question can be formalised in a number of ways, but one com-
monly accepted formulation asks whether any locally Euclidean topological
group is necessarily a Lie group. This question was answered affirmatively by
Montgomery and Zippin [MoZi1952] and Gleason [Gl1952]; see Theorem
1.1.9. As a byproduct of the machinery developed to solve this problem, the
structure of locally compact groups was greatly clarified, leading in particu-
lar to the very useful Gleason-Yamabe theorem (Theorem 1.1.13) describing
such groups. This theorem (and related results) have since had a number
of applications, most strikingly in Gromov’s celebrated theorem [Gr1981]
on groups of polynomial growth (Theorem 1.3.1), and in the classification
of finite approximate groups (Theorem 1.2.12). These results in turn have
applications to the geometry of manifolds, and on related topics in geometric
group theory.

In the fall of 2011, I taught a graduate topics course covering these top-
ics, developed the machinery needed to solve Hilbert’s fifth problem, and
then used it to classify approximate groups and then finally to develop ap-
plications such as Gromov’s theorem. Along the way, one needs to develop
a number of standard mathematical tools, such as the Baker-Campbell-
Hausdorff formula relating the group law of a Lie group to the associated
Lie algebra, the Peter-Weyl theorem concerning the representation-theoretic
structure of a compact group, or the basic facts about ultrafilters and ultra-
products that underlie nonstandard analysis.

xi



xii Preface

This text is based on the lecture notes from that course, as well as from
some additional posts on my blog at terrytao.wordpress.com on further
topics related to Hilbert’s fifth problem. Part 1 of this text can thus serve
as the basis for a one-quarter or one-semester advanced graduate course,
depending on how much of the optional material one wishes to cover. The
material here assumes familiarity with basic graduate real analysis (such as
measure theory and point set topology), as covered for instance in my texts
[Ta2011], [Ta2010], and including topics such as the Riesz representation
theorem, the Arzelá-Ascoli theorem, Tychonoff’s theorem, and Urysohn’s
lemma. A basic understanding of linear algebra (including, for instance, the
spectral theorem for unitary matrices) is also assumed.

The core of the text is Part 1. The first part of this section of the
book is devoted to the theory surrounding Hilbert’s fifth problem, and in
particular in fleshing out the long road from locally compact groups to Lie
groups. First, the theory of Lie groups and Lie algebras is reviewed, and it is
shown that a Lie group structure can be built from a special type of metric
known as a Gleason metric, thanks to tools such as the Baker-Campbell-
Hausdorff formula. Some representation theory (and in particular, the Peter-
Weyl theorem) is introduced next, in order to classify compact groups. The
two tools are then combined to prove the fundamental Gleason-Yamabe
theorem, which among other things leads to a positive solution to Hilbert’s
fifth problem.

After this, the focus turns from the “soft analysis” of locally compact
groups to the “hard analysis” of approximate groups, with the useful tool of
ultraproducts serving as the key bridge between the two topics. By using this
bridge, one can start imposing approximate Lie structure on approximate
groups, which ultimately leads to a satisfactory classification of approximate
groups as well. Finally, Part 1 ends with applications of this classification
to geometric group theory and the geometry of manifolds, and in particular
in reproving Gromov’s theorem on groups of polynomial growth.

Part 2 contains a variety of additional material that is related to one
or more of the topics covered in Part 1, but which can be omitted for the
purposes of teaching a graduate course on the subject.

Notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or for definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)
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Given a subset E of a space X, the indicator function 1E : X → R is
defined by setting 1E(x) equal to 1 for x ∈ E and equal to 0 for x �∈ E.

The cardinality of a finite set E will be denoted |E|. We will use the
asymptotic notation X = O(Y ), X � Y , or Y � X to denote the estimate
|X| ≤ CY for some absolute constant C > 0. In some cases we will need
this constant C to depend on a parameter (e.g., d), in which case we shall
indicate this dependence by subscripts, e.g., X = Od(Y ) or X �d Y . We
also sometimes use X ∼ Y as a synonym for X � Y � X. (Note though
that once we deploy the machinery of nonstandard analysis in Chapter 7,
we will use a closely related, but slightly different, asymptotic notation.)

Acknowledgments

I am greatly indebted to my students of the course on which this text was
based, as well as many further commenters on my blog, including Marius
Buliga, Tony Carbery, Nick Cook, Alin Galatan, Pierre de la Harpe, Ben
Hayes, Richard Hevener, Vitali Kapovitch, E. Mehmet Kiral, Allen Knutson,
Mateusz Kwasnicki, Fred Lunnon, Peter McNamara, William Meyerson,
Joel Moreira, John Pardon, Ravi Raghunathan, David Roberts, David Ross,
Olof Sisask, David Speyer, Benjamin Steinberg, Neil Strickland, Lou van den
Dries, Joshua Zelinsky, Pavel Zorin, and several anonymous commenters.
These comments can be viewed online at:

terrytao.wordpress.com/category/teaching/254a-hilberts-fifth-problem/

The author was supported by a grant from the MacArthur Foundation,
by NSF grant DMS-0649473, and by the NSF Waterman award. Last, but
not least, I thank Emmanuel Breuillard and Ben Green for introducing me
to the beautiful interplay between geometric group theory, additive combi-
natorics, and topological group theory that arises in this text.





Bibliography

[Ar1950] K. Arrow, A Difficulty in the Concept of Social Welfare, Journal of Political
Economy 58 (1950), 328–346.

[BoChLoSoVe2008] C. Borgs, J. Chayes, L. Lovász, V. Sós, K. Vesztergombi, Convergent
sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv.
Math. 219 (2008), no. 6, 1801–1851.

[Bo1968] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de
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[Go1938] K. Gödel, Consistency of the axiom of choice and of the generalized continuum-
hypothesis with the axioms of set theory, Proc. Nat. Acad. Sci, 24 (1938), 556–557.

[Go2009] I. Goldbring, Nonstandard methods in lie theory. Ph.D. Thesis, University of
Illinois at Urbana-Champaign, 2009.

[Go2010] I. Goldbring, Hilbert’s fifth problem for local groups, Ann. of Math. 172 (2010),
no. 2, 1269–1314.

[GoSa1964] E. D. Golod, I. R. Shafarevich, On the class field tower, Izv. Akad. Nauk
SSSR Ser. Mat. 28 (1964) 261–272.

[GrRu2007] B. Green, I. Z. Ruzsa, Freiman’s theorem in an arbitrary abelian group, J.
Lond. Math. Soc. 75 (2007), 163–175.

[Gr1984] R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of
invariant means, Math. USSR Izv. 25 (1985), 259–300; Russian original: Izv. Akad.
Nauk SSSR Sr. Mat. 48 (1984), 939–985.

[Gr1981] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes
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height, 308
Heisenberg group, 9
Helfgott-Lindenstrauss conjecture, 216
Hilbert’s fifth problem, 10, 133
Hilbert-Smith conjecture, 289
homogeneous space, 86
homomorphism, 29
Hrushovski Lie model theorem, 213

Hrushovski’s Lie model theorem, 192,
195

Hrushovski’s structure theorem, 194
hyperreal, 149

indicator function, xiii
infinitesimal, 159
infinitesimal part, 159
inner regularity, 77
internal function, 152
internal set, 149
invariance of dimension, 126
invariance of domain, 126, 132
inverse limit, 93
irreducible representation, 298
isotypic component, 300

Jacobi identity, 249
Jordan’s theorem, 6, 233
Jordan-Schur theorem, 233

Keisler-Fubini theorem, 319

lamplighter group, 191
left-invariant vector field, 34
Leibniz rule, 33
Levi’s theorem, 258
Lie algebra, 33
Lie algebra of a Lie group, 34
Lie bracket, 33
Lie group, 8
Lie groups are analytic, 49
Lie’s first theorem, 40
Lie’s second theorem, 50
Lie’s third theorem, 35, 50, 270
lifting lemma, 215
local finiteness, 77
local Gleason metric, 121
local Gleason-Yamabe theorem, 121
local group, 26
local Haar measure, 86
local homomorphism, 29
local Lie group, 27
Local Lie implies Lie, 43
local section, 283
local topological group, 26
Loeb measure, 317
�Los’s theorem, 154
lower central series, 241

Margulis-type lemma, 229
matrix exponential, 4
measure space, 313
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monad, 267

Newman’s first theorem, 291
Newman’s second theorem, 292
nilpotent Lie algebra, 251
nilprogression, 165
nilradical, 257
no small subgroups, 106
noncommutative progression, 18, 165
nonstandard finite set, 158
nonstandard function, 152
nonstandard object, 149
nonstandard space, 149
nonstandard universe, 149
normal Sanders lemma, 182
normal sub-local group, 119
normalising neighbourhood, 119
notation, xii
NSS, 106
NSS approximate group, 208

one-parameter subgroup, 41, 57
open mapping theorem, 56
orthogonal group, 9
outer regularity, 77
overspill principle, 155

periodic group, 233
Peter-Weyl theorem, 298
Plancherel identity, 303
Poincaré-Birkhoff-Witt theorem, 250
pointed Gromov-Hausdorff convergence,

174
pointed metric space, 174
probability space, 313
profinite group, 130, 134
projective limit, 93
pseudometric, 100
pushforward, 32

quotient space, 120
quotiented commutator map, 242

radially homogeneous C1,1 local group,
39

radical, 255
Radon measure, 77
regular representation, 74, 88
restricted Burnside problem, 235
restriction of a local group, 27
Riesz lemma, 64
Riesz representation theorem, 78
Ruzsa covering lemma, 183

Ruzsa triangle inequality, 221

Sanders lemma, 168, 212
Schur’s lemma, 298
Schur’s theorem, 233
smooth action, 87
smooth atlas, 8
smooth manifold, 8
smooth structure, 8
soft analysis, 139
solenoid, 12
special orthogonal group, 9
special unitary group, 9
spectral theorem, 90
stabiliser subgroup, 86
standard function, 152
standard object, 148
standard part, 159
standard universe, 148
Stone-Cech compactification, 146
strictly nonstandard, 150
sub-local group, 119
subgroup trapping, 112, 122
submanifold, 54
syndetic set, 95

tangent bundle, 31
tangent space, 30
tangent vector, 31
Tonelli theorem, 319
topological group, 10
topological manifold, 8
topological vector space, 61
torsion group, 162
totally disconnected space, 128
transitive action, 86, 127
triangle removal lemma, 315, 321

ultra approximate group, 162, 212
ultrafilter, 145
ultralimit, 149
ultrapower, 149
ultraproduct, 149
uniform total boundedness, 172
uniqueness of Lie structure, 42
unitary group, 9
universal cover, 226
universal enveloping algebra, 249

van Dantzig’s theorem, 128
vector field, 32
von Neumann’s theorem, 54
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weak Gleason metric, 104
Weil-Heisenberg group, 9
well-defined word, 30
well-formed formula, 156
word metric, 20
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Green, and the author on the structure of approximate groups.
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