A Course in Complex Analysis and Riemann Surfaces

Wilhelm Schlag

Graduate Studies
in Mathematics
Volume 154

A Course in Complex Analysis and Riemann Surfaces

Wilhelm Schlag

Graduate Studies in Mathematics
Volume 154

EDITORIAL COMMITTEE

Dan Abramovich
Daniel S. Freed
Rafe Mazzeo (Chair)
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 30-01, 30F10, 30F15, 30F20, 30F30, 30F35.

For additional information and updates on this book, visit

> www.ams.org/bookpages/gsm-154

Library of Congress Cataloging-in-Publication Data

Schlag, Wilhelm, 1969-
A course in complex analysis and Riemann surfaces / Wilhelm Schlag.
pages cm . - (Graduate studies in mathematics ; volume 154)
Includes bibliographical references and index.
ISBN 978-0-8218-9847-5 (alk. paper)

1. Riemann surfaces-Textbooks. 2. Functions of complex variables-Textbooks. I. Title.

QA333.S37 2014
515'. 93 -dc 23
2014009993

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2014 by Wilhelm Schlag. All rights reserved.

Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

$$
10987654321 \quad 191817161514
$$

Contents

Preface vii
Acknowledgments XV
Chapter 1. From i to z : the basics of complex analysis 1
§1.1. The field of complex numbers 1
§1.2. Holomorphic, analytic, and conformal 4
§1.3. The Riemann sphere 9
§1.4. Möbius transformations 11
§1.5. The hyperbolic plane and the Poincaré disk 15
§1.6. Complex integration, Cauchy theorems 18
§1.7. Applications of Cauchy's theorems 23
§1.8. Harmonic functions 33
§1.9. Problems 36
Chapter 2. From z to the Riemann mapping theorem: some finer points of basic complex analysis 41
§2.1. The winding number 41
§2.2. The global form of Cauchy's theorem 45
§2.3. Isolated singularities and residues 47
§2.4. Analytic continuation 56
§2.5. Convergence and normal families 60
§2.6. The Mittag-Leffler and Weierstrass theorems 63
§2.7. The Riemann mapping theorem 69
§2.8. Runge's theorem and simple connectivity 74
§2.9. Problems 79
Chapter 3. Harmonic functions 85
§3.1. The Poisson kernel 85
§3.2. The Poisson kernel from the probabilistic point of view 91
§3.3. Hardy classes of harmonic functions 95
§3.4. Almost everywhere convergence to the boundary data 100
§3.5. Hardy spaces of analytic functions 105
§3.6. Riesz theorems 109
§3.7. Entire functions of finite order 111
§3.8. A gallery of conformal plots 117
§3.9. Problems 122
Chapter 4. Riemann surfaces: definitions, examples, basic properties 129
§4.1. The basic definitions 129
§4.2. Examples and constructions of Riemann surfaces 131
§4.3. Functions on Riemann surfaces 143
§4.4. Degree and genus 146
§4.5. Riemann surfaces as quotients 148
§4.6. Elliptic functions 151
§4.7. Covering the plane with two or more points removed 160
§4.8. Groups of Möbius transforms 164
§4.9. Problems 174
Chapter 5. Analytic continuation, covering surfaces, and algebraic functions 179
§5.1. Analytic continuation 179
§5.2. The unramified Riemann surface of an analytic germ 185
§5.3. The ramified Riemann surface of an analytic germ 189
§5.4. Algebraic germs and functions 192
§5.5. Algebraic equations generated by compact surfaces 199
§5.6. Some compact surfaces and their associated polynomials 206
§5.7. ODEs with meromorphic coefficients 211
§5.8. Problems 221
Chapter 6. Differential forms on Riemann surfaces 225
§6.1. Holomorphic and meromorphic differentials 225
§6.2. Integrating differentials and residues 227
§6.3. The Hodge-* operator and harmonic differentials 230
§6.4. Statement and examples of the Hodge decomposition 236
§6.5. Weyl's lemma and the Hodge decomposition 244
$\S 6.6$. Existence of nonconstant meromorphic functions 250
§6.7. Examples of meromorphic functions and differentials 258
§6.8. Problems 266
Chapter 7. The Theorems of Riemann-Roch, Abel, and Jacobi 269
§7.1. Homology bases and holomorphic differentials 269
§7.2. Periods and bilinear relations 273
§7.3. Divisors 280
§7.4. The Riemann-Roch theorem 285
§7.5. Applications and general divisors 289
§7.6. Applications to algebraic curves 292
§7.7. The theorems of Abel and Jacobi 295
§7.8. Problems 303
Chapter 8. Uniformization 305
§8.1. Green functions and Riemann mapping 306
§8.2. Perron families 310
§8.3. Solution of Dirichlet's problem 314
§8.4. Green's functions on Riemann surfaces 317
§8.5. Uniformization for simply-connected surfaces 326
§8.6. Uniformization of non-simply-connected surfaces 335
§8.7. Fuchsian groups 338
§8.8. Problems 349
Appendix A. Review of some basic background material 353
§A.1. Geometry and topology 353
§A.2. Algebra 363
§A.3. Analysis 365
Bibliography 371
Index 377

Preface

During their first year at the University of Chicago, graduate students in mathematics take classes in algebra, analysis, and geometry, one of each every quarter. The analysis courses typically cover real analysis and measure theory, functional analysis and applications, and complex analysis. This book grew out of the author's notes for the complex analysis classes which he taught during the Spring quarters of 2007 and 2008. These courses covered elementary aspects of complex analysis such as the Cauchy integral theorem, the residue theorem, Laurent series, and the Riemann mapping theorem, but also more advanced material selected from Riemann surface theory.

Needless to say, all of these topics have been covered in excellent textbooks as well as classic treatises. This book does not try to compete with the works of the old masters such as Ahlfors [1, 2], Hurwitz-Courant [44], Titchmarsh [80], Ahlfors-Sario [3], Nevanlinna [67], and Weyl [88]. Rather, it is intended as a fairly detailed, yet fast-paced introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics (geometric group theory, dynamics, algebraic geometry, number theory, functional analysis).

There is no question that complex analysis is a cornerstone of a mathematics specialization at every university and each area of mathematics requires at least some knowledge of it. However, many mathematicians never take more than an introductory class in complex variables which ends up being awkward and slightly outmoded. Often this is due to the omission of Riemann surfaces and the assumption of a computational, rather than a geometric point of view.

The author has therefore tried to emphasize the intuitive geometric underpinnings of elementary complex analysis that naturally lead to Riemann
surface theory. Today this is either not taught at all, given an algebraic slant, or is presented from a sophisticated analytical perspective, leaving the students without any foundation, intuition, historical understanding, let alone a working knowledge of the subject.

This book intends to develop the subject of Riemann surfaces as a natural continuation of the elementary theory without which basic complex analysis would indeed seem artificial and antiquated. At the same time, we do not overly emphasize the algebraic aspects such as applications to elliptic curves. The author feels that those students who wish to pursue this direction will be able to do so quite easily after mastering the material in this book. Because of this, as well as numerous other omissions (e.g., zeta, theta, and automorphic functions, Serre duality, Dolbeault cohomology) and the reasonably short length of the book, it is to be considered as an "intermediate introduction".

Partly due to the fact that the Chicago first year curriculum covers a fair amount of topology and geometry before complex analysis, this book assumes knowledge of basic notions such as homotopy, the fundamental group, differential forms, cohomology and homology, and from algebra we require knowledge of the notions of groups and fields, and some familiarity with the resultant of two polynomials (but the latter is needed only for the definition of the Riemann surfaces of an algebraic germ). However, for the most part merely the most elementary familiarity of these concepts is assumed and we collect the few facts that we do need in Appendix A. As far as analytical prerequisites are concerned, they are fairly low, not extending far beyond multi-variable calculus and basic Hilbert space theory (in Chapter 6 we use orthogonal projections). One exception to this occurs in Sections 3.3, 3.4, and 3.5, which use the weak and weak-* topologies in L^{p} and the space of measures (Riesz representation theorem). Again, what we need is recalled in the appendix.

Let us now describe the contents of the individual chapters in more detail. Chapter 1 introduces the concept of differentiability over \mathbb{C}, the calculus of $\partial_{z}, \partial_{\bar{z}}$, the Cauchy-Riemann equations, power series, the Möbius (or fractional linear) transformations and the Riemann sphere. Applications of these transformations to hyperbolic geometry (the Poincaré disk and the upper half-plane models) are also discussed. In particular, we verify the Gauss-Bonnet theorem for this special case.

Next, we develop complex integration and Cauchy's theorem in various guises, as well as the Cauchy formula and estimates (with the fundamental theorem of algebra as an application), and then apply this to the study of analyticity, harmonicity, and the logarithm. We also prove Goursat's
theorem, which shows that complex differentiability without continuity of the derivative already implies analyticity.

A somewhat unusual feature of this chapter is the order: integration theory and its basic theorems appear after Möbius transforms and applications in non-Euclidean geometry. The reason for this is that the latter can be considered to be more elementary, whereas it is hoped that the somewhat miraculous integration theory becomes more accessible to a student who has seen many examples of analytic functions. Finally, to the author it is essential that complex differentiability should not be viewed as an ad hoc extension of the "limit of difference quotients" definition from the real field to the complex field, but rather as a geometric property at the infinitesimal level: the linearization equals a rotation followed by a dilation, which are precisely the linear maps representing multiplication by a complex number. In other words, conformality (at least at non-degenerate points). If there is any one basic notion that appears in every chapter of this book, then it is that of a conformal transformation.

Chapter 2 begins with the winding number, and some brief comments about cohomology and the fundamental group. It then applies these concepts in the "global form" of the Cauchy theorem by extending the "curves that can be filled in without leaving the region of holomorphy" version of the Cauchy theorem, to zero homologous cycles, i.e., those cycles which do not wind around any point outside of the domain of holomorphy. We then classify isolated singularities, prove the Laurent expansion and the residue theorems with applications. More specifically, we derive the argument principle and Rouché's theorem from the residue theorem. After that, Chapter 2 studies analytic continuation-with a demonstration of how to proceed for the Γ-function-and presents the monodromy theorem. Then, we turn to convergence of analytic functions and normal families. This is applied to Mittag-Leffler's "partial fraction representation", and the Weierstrass product formula in the entire plane. The Riemann mapping theorem is proved, and the regularity at the boundary of Riemann maps is discussed. The chapter concludes with Runge's approximation theorem, as well as a demonstration of several equivalent forms of simple connectivity.

Chapter 3 studies harmonic functions in a wide sense, with particular emphasis on the Dirichlet problem on the unit disk. This means that we solve the boundary value problem for the Laplacian on the disk via the Poisson kernel. The Poisson kernel is also identified from its invariance properties under the automorphisms of the disk, and we sketch some basic probabilistic aspects as well. We then present the usual L^{p}-based Hardy classes of harmonic functions on the disk, and discuss the question of representing them via their boundary data both in the sense of L^{p} and the sense
of "almost everywhere". A prominent role in this analysis is played by compactness ideas in functional analysis (weak-* compactness of the unit ball, i.e., Alaoglu's theorem), as well as the observation that positivity can be substituted for compactness in many instances. This part therefore requires some analytical maturity, say on the level of Rudin's book [73]. However, up to the aforementioned basic tools from functional analysis, the presentation is self-contained.

We then sketch the more subtle theory of holomorphic functions in the Hardy class, or equivalently, of the boundedness properties of the conjugate harmonic functions, culminating in the classical F. \& M. Riesz theorems.

The chapter also contains a discussion of the class of entire functions of exponential growth, the Jensen formula which relates zero counts to growth estimates, and the Hadamard product representation which refines the Weierstrass formula. We conclude with a gallery of conformal plots that will hopefully be both inspiring and illuminating.

The theory of Riemann surfaces begins with Chapter 4. This chapter covers the basic definition of such surfaces and of the analytic functions between them. Holomorphic and meromorphic functions are special cases where the target is either \mathbb{C} or $\mathbb{C} P^{1}$ (the latter being conformally equivalent to the compactification of \mathbb{C} obtained by "adding infinity"). The fairly long Section 4.2 introduces seven examples, or classes of examples, of Riemann surfaces. The first three are elementary and should be easily accessible even to a novice, but Examples 4)-7) are more involved and should perhaps only be attempted by a more experienced reader.

Example 4) shows that compact smooth orientable surfaces in \mathbb{R}^{3} carry the structure of a Riemann surface, a fact of great historical importance to the subject. It means that we may carry out complex analysis on such surfaces rather than on the complex plane. The key idea here is that of isothermal coordinates on such a manifold, which reduces the metric to the one conformal to the standard metric. Example 5) discusses covering spaces, quotients etc., Example 6) is devoted to algebraic curves and how they are best viewed as Riemann surfaces. Example 7) presents Weierstrass' idea of looking for all possible analytic continuations of a power series and building a Riemann surface from this process.

After these examples, we investigate basic properties of functions on Riemann surfaces and how they relate to the topology of the surface as reflected, for example, by the genus in the compact case.

Elementary results such as the Riemann-Hurwitz formula relating the branch points to the genera of the surfaces are discussed. We then show how to define Riemann surfaces via discontinuous group actions and give examples of this procedure.

The chapter continues with a discussion of tori and some aspects of the classical theory of meromorphic functions on these tori. These functions are precisely the doubly periodic or elliptic functions. We develop the standard properties of the Weierstrass \wp function, some of which foreshadow much more general facts which we will see in a much wider Riemann surface context in later chapters. We briefly discuss the connection between the Weierstrass function and the theory of integration of the square root of cubic polynomials (the so-called elliptic integrals).

In Section 4.7 the covering spaces of the doubly punctured plane are constructed and applied to Picard's small and big theorems, as well as the fundamental normality test of Montel. The chapter concludes with a discussion of groups of Möbius transforms, starting off with an analysis of the fixed points of maps in the automorphism group of the disk.

Then the modular group $\operatorname{PSL}(2, \mathbb{Z})$ is analyzed in some detail. We identify the fundamental region of that group, which implies, in particular, that the action of the group on the upper half-plane is discontinuous. As a particular example of an automorphic function, we introduce the basic modular function λ, which is constructed by means of the \wp function. Remarkably, this function provides an explicit example of the covering map from Section 4.7.

Chapter 5 presents another way in which Riemann surfaces arise naturally, namely via analytic continuation. Historically, the desire to resolve unnatural issues related to "multi-valued functions" (most importantly for algebraic functions) led Riemann to introduce his surfaces. Even though the underlying ideas leading from a so-called analytic germ to its Riemann surface are geometric and intuitive, and closely related to covering spaces in topology, their rigorous rendition requires some patience as ideas such as "analytic germ", "branch point", "(un)ramified Riemann surface of an analytic germ", etc., need to be defined precisely. The chapter also develops some basic aspects of algebraic functions and their Riemann surfaces. At this point the reader will need to be familiar with basic algebraic constructions.

In particular, we observe that every compact Riemann surface is obtained through analytic continuation of some algebraic germ. This uses the machinery of Chapter 5 together with a potential-theoretic result that guarantees the existence of a non-constant meromorphic function on every Riemann surface. The reference to potential theory here means the we employ basic results on elliptic PDEs to obtain this (in fact, we will phrase the little we need in terms of harmonic functions and differentials).

This, as well as other fundamental existence results, is developed in Chapter 6. It turns out that differential forms are easier to work with on

Riemann surfaces than functions, and it is through forms that we construct functions. One of the reasons for this preference for forms over functions lies with the fact that it is meaningful to integrate 1 -forms over curves, but not functions.

The chapter concludes with a discussion of ordinary differential equations with meromorphic coefficients. We introduce the concept of a Fuchsian equation, and illustrate this term by means of the example of the Bessel equation.

Chapter 6 introduces differential forms on Riemann surfaces and their integrals. Needless to say, the only really important class of linear forms are the 1-forms and we define harmonic, holomorphic and meromorphic forms and the residues in the latter case. Furthermore, the Hodge $*$ operator appears naturally (informally, it acts like a rotation by $\pi / 2$). We then present some examples that lead up to the Hodge decomposition, which is established later in that chapter. This decomposition states that every 1-form can be decomposed additively into three components: a closed, co-closed, and a harmonic form (the latter being characterized as being simultaneously closed and co-closed). In this book, we follow the classical L^{2}-based derivation of this theorem. Thus, via Hilbert space methods one first derives this decomposition with L^{2}-valued forms and then uses Weyl's regularity lemma (weakly harmonic functions are smoothly harmonic) to upgrade to smooth forms.

Chapter 6 then applies the Hodge decomposition to establish some basic results on the existence of meromorphic differentials and functions on a general Riemann surface. In particular, we derive the striking fact that every Riemann surface carries a non-constant meromorphic function which is a key ingredient for the result on compact surfaces being algebraic in Chapter 5.

The chapter concludes with several examples of meromorphic functions and differentials on Riemann surfaces, mostly for the class of hyper-elliptic surfaces (compact surfaces that admit a meromorphic function of degree 2).

Chapter 7 presents the Riemann-Roch theorem which relates the dimension of certain spaces of meromorphic differentials with the dimension of a space of meromorphic functions, from properties of the underlying divisor and the genus of the compact Riemann surface. Before proving this theorem, which is of central importance both in historical terms as well as in applications, there are a number of prerequisites to be dealt with, such as a linear basis in the space of holomorphic differentials, the Riemann period relations, and the study of divisors.

Section 7.5 studies a diverse collection of applications of the RiemannRoch theorem, such as the fact that every compact Riemann surface of genus g is a branched cover of S^{2} with $g+1$ sheets, as well as the fact that surfaces of genus 2 only require 2 sheets (and are thus hyper-elliptic). Section 7.6 completes the identification of compact surfaces M as projective algebraic curves. Moreover, we show that every meromorphic function on such a surface M can be expressed by means of a primitive pair of meromorphic functions; see Theorem 7.24.

Section 7.7 discusses the Abel and Jacobi theorems. The former result identifies all possible divisors associated with meromorphic functions (the so-called principal divisors) on a compact Riemann surface by means of the vanishing of a certain function of the divisor modulo the period lattice. This implies, amongst other things, that every compact surface of genus 1 is a torus. For all genera $g \geq 1$ we obtain the surjectivity of the Jacobi map onto the Jacobian variety; in other words, we present the Jacobi inversion. In this chapter we omit the theta functions, which would require a chapter of their own.

Chapter 8 is devoted to the proof of the uniformization theorem. This theorem states that the only simply-connected Riemann surfaces (up to isomorphisms) are \mathbb{C}, \mathbb{D}, and $\mathbb{C} P^{1}$. For the compact case, we deduce this from the Riemann-Roch theorem. But for the other two cases we use methods of potential theory which are motivated by the proof of the Riemann mapping theorem. In fact, we first reprove this result in the plane by means of a Green function associated with a domain.

The idea is then to generalize this proof strategy to Riemann surfaces. The natural question of when a Green function exists on a Riemann surface leads to the classification of non-compact surfaces as either hyperbolic (such as \mathbb{D}) or parabolic (such as \mathbb{C}); in the compact case a Green function cannot exist.

Via the Perron method, we prove the existence of a Green function for hyperbolic surfaces, thus establishing the conformal equivalence with the disk. For the parabolic case, a suitable substitute for the Green function needs to be found. We discuss this in detail for the simply-connected case, and also sketch some aspects of the non-simply-connected cases.

As in other key results in this text (equivalence between compact Riemann surfaces and algebraic curves, Riemann-Roch) the key here is to establish the existence of special types of functions on a given surface. In this context, the functions are harmonic (or meromorphic for the compact surfaces). Loosely speaking, the classification theorem then follows from the mapping properties of these functions.

Finally, Appendix A collects some of the material that arguably exceeds the usual undergraduate preparation which can be expected at the entry level to complex analysis. Naturally, this chapter is more expository and does not present many details. References are given to the relevant sources.

This text does perhaps assume more than other introductions to the subject. The author chose to present the material more like a landscape. Essential features that the reader encounters on his or her guided tour are pointed out as we go along. Since complex analysis does have to do with many basic features of mathematical analysis it is not surprising that examples can and should be drawn from different sources. The author hopes that students and teachers will find this to be an attractive feature.

How to use this book: On the largest scale, the structure is linear. This means that the material is presented progressively, with later chapters drawing on earlier ones. It is not advisable for a newcomer to this subject to "pick and choose". In the hands of an experienced teacher, though, such a strategy is to some extent possible. This will be also necessary with a class of varying backgrounds and preparation. For example, Sections 3.3-3.6 require previous exposure to basic functional analysis and measure theory, namely L^{p} spaces, their duals and the weak-* compactness (Alaoglu's theorem). This is, however, the only instance where that particular background is required. If these sections are omitted, but Chapter 8 is taught, then the basic properties of subharmonic functions as presented in Section 3.5 will need to be discussed.

As far as functional analysis is concerned, of far greater importance to this text are rudiments of Hilbert spaces and L^{2} spaces (but only some of the most basic facts such as completeness and orthogonal decompositions). These are essential for the Hodge theorem in Chapter 6.

As a general rule, all details are presented (with the exception of the appendix). On rare occasions, certain routine technical aspects are moved to the problem section which can be found at the end of each chapter. Some of the problems might be considered to be more difficult, but essentially all of them are to be viewed as an integral part of this text. As always in mathematics courses, working through at least some of the exercises is essential to mastering this material. References are not given in the main text since they disturb the flow, but rather collected at the end in the "Notes". This is the same format employed in the author's books with Camil Muscalu [65]. By design, this text should be suitable for both independent-but preferably guided-study and the traditional classroom setting. A well-prepared student will hopefully be able to read the eight main chapters in linear succession, occasionally glancing at the appendix if needed.

The main motivation for writing this book was to bridge a gap in the literature, namely between the introductory complex analysis literature such as Lang [55], and to a lesser extent perhaps Ahlfors [1] on the one hand, and on the other hand, well-established pure Riemann surface texts such as Forster [29], Farkas, Kra [23]. Ideally, this book could serve as a stepping stone into more advanced texts such as [23], as well as the recent ones by Donaldson $[\mathbf{1 8}]$ and Varolin [84]. The author hopes that the somewhat higher-level machinery that is used in the latter two books (complex line bundles, Serre duality, etc.) will become more natural as well as more easily accessible after the classical approach, which we employ here, has been understood.

Acknowledgments

The author was partially supported by the National Science Foundation during the preparation of this book. He is indebted to his colleagues Vladimir Gershonovich Drinfeld and Benson Farb at the University of Chicago, as well as Fritz Gesztesy at the University of Missouri, for many helpful comments on an earlier version of this book. Through their influence much more material was added to the original set of complex analysis course notes. Tom Church made numerous corrections to these course notes. Genevieve Raugel at Orsay, France, and Jackson Hance, Jack Sempliner, Ana Balibanu, Zev Chonoles, Gong Chen, and Nick Salter, all at the University of Chicago, helped with the proofreading of the final version of the book. The combined efforts of all of these mathematicians played an essential role in the completion of this project.

Bibliography

[1] Ahlfors, L., Complex analysis. An introduction to the theory of analytic functions of one complex variable. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978
[2] Ahlfors, L., Conformal invariants. Topics in geometric function theory. Reprint of the 1973 original. With a foreword by Peter Duren, F. W. Gehring and Brad Osgood. AMS Chelsea Publishing, Providence, RI, 2010.
[3] Ahlfors, L., Sario, L. Riemann surfaces, Princeton University Press, 1960.
[4] Alekseev, V. B., Abel's theorem in problems and solutions. Based on the lectures of Professor V. I. Arnold. With a preface and an appendix by Arnold and an appendix by A. Khovanskii. Kluwer Academic Publishers, Dordrecht, 2004.
[5] Ash, R., Novinger, W. Complex variables: Second Edition, Dover, Mineola, N.Y., 2004.
[6] Beardon, A., A primer on Riemann surfaces, London Mathematical Society Lecture Notes Series 78. Cambridge University Press, Cambridge, 1984.
[7] Beardon, A., The geometry of discrete groups. Corrected reprint of the 1983 original. Graduate Texts in Mathematics, 91. Springer-Verlag, New York, 1995.
[8] Beardon, A., Algebra and geometry. Cambridge University Press, Cambridge, 2005.
[9] Beukers, F., Heckman, G., Monodromy for the hypergeometric function ${ }_{n} F_{n-1}$. Invent. Math. 95 (1989), no. 2, 325-354.
[10] Chandrasekharan, K. Elliptic functions. Grundlehren der Mathematischen Wissenschaften, 281. Springer-Verlag, Berlin, 1985.
[11] Chern, S. S., Proceedings of the American Mathematical Society, Vol. 6, No. 5 (1955), 771-782.
[12] Conway, J. Functions of one complex variable, Springer, Second Edition, 1978.
[13] Costin, O., Costin, R. D. On the formation of singularities of solutions of nonlinear differential systems in antistokes directions. Invent. Math. 145 (2001), no. 3, 425-485.
[14] Dixon, J., A brief proof of Cauchy's integral theorem. Proc. Amer. Math. Soc. 29 (1971), 625-626.
[15] do Carmo, M., Diffferential geometry of curves and surfaces, Prentice Hall, 1976.
[16] do Carmo, M., Riemannian geometry, Birkhäuser, Boston 1992.
[17] do Carmo, M., Differential forms and applications. Universitext. Springer-Verlag, Berlin, 1994.
[18] Donaldson, S., Riemann surfaces. Oxford Graduate Texts in Mathematics, 22. Oxford University Press, Oxford, 2011.
[19] Dubrovin, B. A., Theta-functions and nonlinear equations. With an appendix by I. M. Krichever. Uspekhi Mat. Nauk 36 (1981), no. 2(218), 11-80.
[20] Dubrovin, B. A., Krichever, I. M., Novikov, S. P. Topological and algebraic geometry methods in contemporary mathematical physics. Classic Reviews in Mathematics and Mathematical Physics, 2. Cambridge Scientific Publishers, Cambridge, 2004
[21] Ekedahl, T., One semester of elliptic curves. EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.
[22] Evans, L., Partial differential equations, AMS, Graduate Studies in Mathematics, vol. 19, 1998.
[23] Farkas, H., Kra, I., Riemann surfaces. Second edition. Graduate Texts in Mathematics, 71. Springer-Verlag, New York, 1992.
[24] Fay, J. Theta functions on Riemann surfaces. Lecture Notes in Mathematics, Vol. 352. Springer-Verlag, Berlin-New York, 1973.
[25] Feldman, J., Knörrer, H., Trubowitz, E. Riemann surfaces of infinite genus. CRM Monograph Series, 20. American Mathematical Society, Providence, RI, 2003.
[26] Fletcher, A., Markovic, V., Quasiconformal maps and Teichmueller theory, Oxford Graduate Texts in Mathematics, 11, Oxford University Press, Oxford, 2007.
[27] Folland, G. B., Introduction to partial differential equations. Second edition. Princeton University Press, Princeton, NJ, 1995.
[28] Ford, L., Automorphic functions, McGraw-Hill, 1929.
[29] Forster, O., Lectures on Riemann surfaces. Reprint of the 1981 English translation. Graduate Texts in Mathematics, 81. Springer-Verlag, New York, 1991.
[30] Fuchs, E., Meiri, C., Sarnak, P., Hyperbolic monodromy groups for the hypergeometric equation and Cartan involutions, arXiv:1305.0729 [math.GR], 2013.
[31] Garnett, J., Bounded analytic functions. Revised first edition. Graduate Texts in Mathematics, 236. Springer, New York, 2007.
[32] Garnett, J., Marshall, D., Harmonic measure. New Mathematical Monographs, 2. Cambridge University Press, Cambridge, 2005.
[33] Gesztesy, F., Holden, H., Soliton equations and their algebro-geometric solutions. Vol. I. (1+1)-dimensional continuous models. Cambridge Studies in Advanced Mathematics, 79. Cambridge University Press, Cambridge, 2003.
[34] Godement, R. Analyse mathématique. III. Fonctions analytiques, différentielles et variétés, surfaces de Riemann. Springer-Verlag, Berlin, 2002.
[35] Griffiths, P., Introduction to algebraic curves. Translations of Mathematical Monographs, 76. American Mathematical Society, Providence, RI, 1989.
[36] Griffiths, P., Harris, J., Principles of algebraic geometry. Reprint of the 1978 original. Wiley Classics Library. John Wiley \& Sons, Inc., New York, 1994.
[37] Gunning, R. C., Riemann surfaces and generalized theta functions. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 91. Springer-Verlag, Berlin-New York, 1976.
[38] Gunning, R. C., Lectures on Riemann surfaces. Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966.
[39] Hadamard, J., Non-Euclidean geometry in the theory of automorphic functions, AMS, 1999.
[40] Han, Q., Lin, F., Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.
[41] Hancock, H., Lectures on the theory of elliptic functions: Analysis. Dover Publications, Inc., New York 1958
[42] Hartman, P., Ordinary differential equations. Reprint of the second edition. Birkhäuser, Boston, Mass., 1982.
[43] Hoffman, K., Banach spaces of analytic functions. Reprint of the 1962 original. Dover Publications, Inc., New York, 1988.
[44] Hurwitz, A., Courant, R., Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Interscience Publishers, Inc., New York, (1944).
[45] Israel, G., Nurzia, L., The Poincaré-Volterra theorem: a significant event in the history of the theory of analytic functions. Historia Math. 11 (1984), no. 2, 161-192.
[46] Jänich, K. Einführung in die Funktionentheorie, zweite Auflage, Springer, 1980.
[47] Jones, G., Singerman, D. Complex functions. An algebraic and geometric viewpoint. Cambridge University Press, Cambridge, 1987.
[48] Jost, J., Compact Riemann surfaces. An introduction to contemporary mathematics. Third edition. Universitext. Springer-Verlag, Berlin, 2006.
[49] Jost, J., Riemannian geometry and geometric analysis. Fourth edition. Universitext. Springer-Verlag, Berlin, 2005.
[50] Katok, S., Fuchsian groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992.
[51] Klein, F., On Riemann's theory of algebraic functions and their integrals. A supplement to the usual treatises. Translated from the German by Frances Hardcastle Dover Publications, Inc., New York 1963
[52] Koosis, P., Introduction to H_{p} spaces. Second edition. With two appendices by V. P. Havin. Cambridge Tracts in Mathematics, 115. Cambridge University Press, Cambridge, 1998.
[53] Kostov, V. P., The Deligne-Simpson problem - a survey, J. Algebra 281 (2004), 83108.
[54] Lang, S., Elliptic functions. With an appendix by J. Tate. Second edition. Graduate Texts in Mathematics, 112. Springer-Verlag, New York, 1987.
[55] Lang, S., Complex analysis. Fourth edition. Graduate Texts in Mathematics, 103. Springer-Verlag, New York, 1999.
[56] Lang, S., Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
[57] Lawler, G., Conformally invariant processes in the plane. Mathematical Surveys and Monographs, 114. American Mathematical Society, Providence, RI, 2005.
[58] Lawler, G., Limic, V., Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge, 2010.
[59] Lehner, J., Discontinuous groups and automorphic functions, AMS, 1964.
[60] Levin, B. Ya., Lectures on Entire Functions, Translations of Mathematical Monographs, Volume 150, AMS 1996.
[61] Madsen, I., Tornehave, J., From calculus to cohomology. de Rham cohomology and characteristic classes. Cambridge University Press, Cambridge, 1997.
[62] Majstrenko, P., On a theorem of Poincaré and Volterra. Proc. London Math. Soc. (2) 53 (1951), 57-64.
[63] McKean, H., Moll, V., Elliptic curves. Function theory, geometry, arithmetic. Cambridge University Press, Cambridge, 1997.
[64] Mumford, D., Tata lectures on theta I, II, III, reprints of the original edition, Birkhäuser, 2007.
[65] Muscalu, C., Schlag, W. Classical and multilinear harmonic analysis. Vol. I., II. Cambridge Studies in Advanced Mathematics, 137, 138. Cambridge University Press, Cambridge, 2013.
[66] Narasimhan, R., Compact Riemann surfaces. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992.
[67] Nevanlinna, R., Uniformisierung, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 64, Springer, zweite Auflage, 1967.
[68] Pyateskii-Shapiro, I. I., Automorphic functions and the geometry of classical domains. Translated from the Russian. Mathematics and Its Applications, Vol. 8 Gordon and Breach Science Publishers, New York-London-Paris, 1969.
[69] Radó, T., Über die Begriffe der Riemannschen Fläche. Acta Litt. Sci. Szeged 2 (1925), 101-121.
[70] Remmert, R., Funktionentheorie. II. Grundwissen Mathematik, 6. Springer-Verlag, Berlin, 1991.
[71] Rosenberg, S., The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds. London Mathematical Society Student Texts, 31. Cambridge University Press, Cambridge, 1997.
[72] Rosenblum, M., Rovnyak, J., Topics in Hardy classes and univalent functions, Birkhäuser Advanced Texts, Basel, 1994.
[73] Rudin, W., Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987.
[74] Schiff, J., Normal families. Universitext. Springer-Verlag, New York, 1993.
[75] Sogge, C. D., Hangzhou Lectures on Eigenfunctions of the Laplacian. Annals of Mathematics Studies. Princeton, 2014.
[76] Springer, G., Introduction to Riemann surfaces. Addison-Wesley Publishing Company, Inc., Reading, Mass., 1957.
[77] Stein, E., Shakarchi, R. Complex analysis, Princeton Lectures in Analysis II, Princeton University Press, 2003.
[78] Stein, E., Weiss, G. Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.
[79] Taylor, J. L., Complex Variables, Undergraduate Texts, Vol. 16, AMS, Providence, R.I., 2011.
[80] Titchmarsh, E., The theory of functions, Oxford, second edition, 1939.
[81] Titchmarsh, E., The theory of the Riemann zeta-function. Second edition. The Clarendon Press, Oxford University Press, New York, 1986.
[82] Ullrich, P., The Poincaré-Volterra theorem: from hyperelliptic integrals to manifolds with countable topology. Arch. Hist. Exact Sci. 54 (2000), no. 5, 375-402.
[83] Varadarajan, V. S., Reflections on quanta, symmetries, and supersymmetries, Springer, 2011.
[84] Varolin, D., Riemann surfaces by way of complex analytic geometry. Graduate Studies in Mathematics, 125. American Mathematical Society, Providence, RI, 2011.
[85] Walker, R. J., Algebraic curves. Reprint of the 1950 edition. Springer-Verlag, New York-Heidelberg, 1978.
[86] Watson, G. N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, Cambridge, 1996
[87] Werner, W., Percolation et modéle d'Ising. Cours Spécialisés, 16. Société Mathématique de France, Paris, 2009.
[88] Weyl, H., Die Idee der Riemannschen Fläche. Fünfte Auflage. B. G. Teubner, Stuttgart, 1974.

Index

0-homologous, 45, 47, 52, 76
1-parameter subgroup, 166
L^{p} space, 89
$\mathrm{GL}(2, \mathbb{C}), 11$
$\operatorname{PSL}(2, \mathbb{R}), 341$
$\operatorname{PSL}(2, \mathbb{Z}), 167$
$\operatorname{PSL}(2, \mathbb{C}), 11$
$\operatorname{PSL}(2, \mathbb{R}), 15$
$\mathrm{SO}(3), 175$
$\mathrm{SU}(1,1), 165$
$\mathrm{SU}(2), 175$
$\mathrm{SL}(2, \mathbb{Z}), 151$
$\partial_{z}, \partial_{\bar{z}}$ calculus, 8
$\wp, 152,177$
differential equation, 156
n-to-one, 28

Abel's theorem, 296
absence of holes, 76
accumulation point, 26
action
group, 139, 167
affine curve, 141
affine part, 140
Alaoglu theorem, 97, 368
algebraic curve, 141
algebraic equation, 199, 201, 292, 347
ambient space, 119
analytic
continuation, 56, 142, 143
continuation, along disks, 57
continuation, along paths, 181
continuation, Riemann surface, 179
function, 5
function, complete, 179
germ, 179, 185
solution, 142
angle form, 41
annulus, 150
anti-derivative, 57
approximate identity, 88, 98
area, 361
argument principle, 53, 81, 229
Arzela-Ascoli theorem, 62
Atiyah-Singer index theorem, 302
atlas, 130
automorphism, 11, 29
disk, $30,91,164,166$
plane, 51
Riemann sphere, 52
upper half-plane, 167

Banach space, 367
barrier, 314
Bessel equation, 212, 224
Betti numbers, 358
bilinear relation, 273, 277
binomial theorem, 2
Blaschke product, 127
Bloch principle, 174
Borel measure, 87
boundary
ideal, 329
operator, 355
boundary regularity, 72,314
bounded linear functional, 75
branch, 143
branch point, $28,147,148,179,187,294$
algebraic, 190
rooted, 187
branched cover, 141, 148
topological construction, 142
branching number, 147, 187, 205
Brownian motion, 94
conformal invariance, 122
canonical class, 282
genus, 290
canonical factor, 67, 154
Casorati-Weierstrass theorem, 49, 164
Cauchy
estimates, 24, 115
formula, 45, 61, 90, 99
theorem, 18
theorem, global, 45
Cauchy-Riemann equations, 7, 9, 21, $33,90,98,119,227$
center of mass, 36
chain
disks, 56
of curves, 355
chain rule, $5,9,358$
change of coordinates, 360
chart, 130
uniformizing, 188, 194
Chern class, 266
closed curve, 19, 355
closed form, 21
cluster, 64
co-compact, 344
cohomology, 43, 235, 270, 359
compact, 89, 145
compactness, 60, 74, 366, 368
Montel, 162
comparison test, 2
complete analytic function, 179
complex
anti-linear, 8
conjugate, 1
differentiability, 4
exponential, 6
integration, 18
linear, 8,135
logarithm, 33, 41, 66, 139, 143
projective line, 10
projective space, 133
structure, 143
conformal, 7
change of coordinates, 34,135
equivalence, $9,150,167,326$
equivalence, tori, 177
invariance, 78, 91
isomorphism, 162
structure, 130, 337
congruent, 339, 340
conjugate
complex, 1
harmonic, 33, 41
conservative field, 85
conserved energy, 159
contract, 26
convergence
$L^{p}, 89,96$
almost everywhere, 100
uniform, 31, 59, 66
weak-*, 96
convolution, 87
corners, 72
cover, 138
branched, 147, 202, 289
universal, $3,44,59,163,326,335$
covering map, 3, 184
cross ratio, 14
invariance, 14
reflection, 14
curl-free, 243
curvature, 360
Gaussian, 362
cycle, 42
cyclotomic polynomial, 200, 364
de Rham cohomology, 235, 358
deck transformation, 336, 353
definite integral, 53, 80
degree, 146, 157, 201, 359
derivatives of any order, 25
determinant, 151, 364
Vandermonde, 303
diffeomorphism, 21, 28, 73
difference quotients, 4
differential
Abelian, 271
form, 356
harmonic, 230
holomorphic, 227
meromorphic, 227
differential form, 43, 225
closed, 9, 34
co-exact, 238
exact, 228
dilation, 12
Dirac mass, 95
Dirichlet
polygon, 176
principle, 86, 310
problem, 85, 93, 314
problem, solution, 315
region, 340
region, compact, 344
discrete, 28, 61, 139, 149, 176
discriminant, 195, 364
disk
automorphism, 30, 164
exterior, 314
punctured, 26
distributional Laplacian, 125
divergence-free, 243
divisor, 280
class group, 281
integral, 285
principal, 281
Dolbeault cohomology, 266
domination by maximal function, 102
doubly-periodic, 152
dual metric, 137
electric
charge, 119
field, $85,119,307$
ellipse, 36, 158
elliptic
fixed point, 177
integral, 159
modular function, 170
regularity, 237
elliptic curve, 141, 208, 290
entire
function, 24, 59
function, product representation, 66
entire functions of finite order, 111
equation
algebraic, 199, 292, 347
Bessel, 212, 224
differential, 155, 211, 224
Fuchsian, 212
equivalence relation, 180, 185
Euclidean
algorithm, 167, 197, 363
distance, 2
metric, 361
Euler
characteristic, 142, 147, 359
constant, 2
formula, 3
relation, 140
totient function, 200, 364
Euler-Poincaré formula, 147
exact
chain, 355
exponential function, 3
exterior
differentiation, 357
disk condition, 314
product, 357
F. \& M. Riesz theorems, 105, 109

Fatou's lemma, 100, 108, 111
field, 1
of meromorphic functions, 295
finite total variation, 95
first fundamental form, 361
fixed point, $13,151,164,175,326,336$
axes, 341
classification, 339
elliptic, 177
hyperbolic, 177
loxodromic, 176, 343
fluid flow, 119
form
harmonic, 271
Fourier series, 86, 242
Fréchet space, 84
fractional linear, 11
fractional linear transformation, 167
fractional order, 115
free group, 45, 142
Fuchsian
equation, 212
group, 337, 338
group, cyclic, 343
group, parabolic elements, 347
group, signature, 346
function
algebraic, 129, 194
analytic, 5
automorphic, 348
element, 180
elliptic, 139, 151
entire, 4, 24, 59, 67, 139, 162
entire, finite order, 111
exponential, 3
Gamma, 56, 59
harmonic, 33, 85
holomorphic, 4
meromorphic, 49, 131, 146
modular, 172
potential, 85, 119
rational, 11, 74, 146, 156, 199, 260, 293
subhamonic, 305
subharmonic, 105, 311
functional equation, 82
fundamental
form, first, 361
form, second, 362
group, 139
normality test, 164
polygon, 269
region, $152,157,176,339$
solution, 239
theorem of algebra, 25,55
theorem of calculus, 19
Gamma function, 56
gap series, 84
Gauss' formula, 84
Gauss-Bonnet, 16, 339, 345
Gaussian curvature, 16, 362
genus, 139, 140, 142, 146, 147, 193, 207, 290, 360
geodesic, 16, 92, 159, 339
triangle, 166, 171
germ, 143
algebraic, 192, 195, 204
analytic, 179
global coordinates, 120
global homeomorphism, 72
global meromorphic functions, 142
Goursat's theorem, 31
Green's formula, 22, 239
Green's function, 306, 317
admit, 308, 321
Perron family, 319
Riemann map, 309
symmetry, 324
Green's theorem, 34
group
cyclic, 343
deck, 336
free, 45,280
Fuchsian, 169, 337, 338, 343
fundamental, 43, 139, 151
homology, 355
Möbius transformations, 164
modular, 167, 339
monodromy, 211
properly discontinuous, 139
properly discontinuous action, 167, 336, 346
quotient, 148, 335
stabilizer, 15, 91, 344
subgroup, 15
transitive action, 16
group action, 139
singularity, 167
Hadamard product formula, 113
Hahn-Banach theorem, 76, 367
handles, 193, 360
Hankel's loop contour, 83, 219
Hardy space, 95
analytic, 105
Hardy-Littlewood maximal function, 101
harmonic
conjugate, 33, 41, 105, 266
function, 33
function, oscillation, 333
function, positive, 96
function, rigidity, 333
majorant, 127
measure, 95, 321, 322
Harnack inequality, 126, 313
Hausdorff, 167, 183, 186
Herglotz
function, 99
representation, 98
hexagonal tiling, 76
Hilbert space, 230, 365
Riesz representation, 366
spectral theorem, 367
Hilbert transform, 98
Hodge theory, 143, 230, 245, 305
examples, 236
Hodge-* operator, 230
holomorphic, 4
differential, 227
primitive, 20, 25
sequences of functions, 60
homology, 228
basis, 269, 360
group, 360
homotopy, 21, 181, 187
homotopy invariance, $9,47,54$
horocycles, 347
hyper-elliptic curves, 141
hyper-elliptic surface, 207, 258, 304
genus, 261, 267, 290
holomorphic differential, 260
hyperbola, 166
hyperbolic
area, 16, 339
fixed point, 177
metric, 38
plane, 15
space, 38
ideal boundary, 329
implicit function theorem, 194
incompressibility, 119
indefinite reflections, 161
index, 43, 359
infinite product, 66
infinitely differentiable, 3
inner product, 230
interpolation
Marcinkiewicz, 102, 369
interpolation theory, 368
intersection numbers, 269
intrinsic notion, 361
inverse function theorem, 28
inversion, 12
irreducible, 195
irreducible polynomial, 141
isolated singularity, 47
isometry, $15,38,339$
orientation preserving, 38
isomorphism
conformal, 29, 69
isothermal coordinates, 119, 136, 265
Jacobi
inversion, 301
map, 300
variety, $275,295,335$
Jensen
formula, 106, 126
inequality, 107
Jukowski map, 37, 193
kernel
box, 88
Dirichlet, 98
Fejér, 88
Poisson, 87, 91, 110
Lagrange interpolation formula, 294
Laplace equation, 35, 85
Laplace-Beltrami operator, 137, 241
Laplacian, ix, 9, 125, 227, 238, 246, 307, 308
large boundary, 237
lattice, 149, 167, 340
Laurent series, 49
Lebesgue decomposition, 104, 109
Lebesgue differentiation theorem, 103
Lebesgue dominated convergence, 111
level curves, 117
lift, 353
linearization, 4
Liouville theorem, 25, 52, 69
locally finite, 338, 340, 344
log-convexity, 368
logarithm, 3, 26, 78, 239
logarithmic derivative, 154
loop-form, 248, 270
Lorentz spaces, 369
loxodromic fixed point, 176, 343
Möbius transformation, 11, 37, 149
fixed point, 336
preserves circles, 12
manifold
compact, 236
compact, orientable, 241
Riemannian, 265
smooth, 135, 225
topological, 354
Maple software, 117
Marcinkiewicz interpolation theorem, 369
Markovian, 94
maximal atlas, 130
maximal function
Hardy-Littlewood, 101, 102, 110
nontangential, 108
maximum principle, $29,35,89,151,232$
parabolic Riemann surface, 328
mean-value property, 34, 37, 97
measure
boundary, 96, 104
complex, 95
Lebesgue, 96
positive, 96
meromorphic
function, 49
metric, 37, 136
Mittag-Leffler theorem, 63
modular
function, 172
group, 167, 339
group, fundamental region, 168
monodromy theorem, 47, 58, 180, 188

Montel's normal family theorem, 61
Morera's theorem, 30, 46, 59, 60, 75
multi-valued, 129, 179
negative subharmonic function, 317
non-Euclidean geometry, 15
nonsingular, 141
nontangential maximal function, 108
normal family, 60, 163
normal form, 27, 341
normal vector, 360
omit two values, 163
one-point compactification, 9,133
open mapping theorem, 145
ordinary differential equations (ODE), 211
orientation, 135, 226, 357
orthogonal projection, 365
parabolic case, 165
parabolic vertices, 346
parameterization, 360
parametric disk, 130, 229, 330
partial fraction decomposition, 65
path independent, 20
pendulum, 159
period, 273
vanishing, 286
permutation, 294
perpendicular bisector, 340,344
perpendicular grid, 119
Perron family, 310, 313, 330
Perron's method, 306, 312
Phragmen-Lindelöf, 29, 125
Picard iteration, 2
Picard theorem, 49, 139
piecewise $C^{1}, 26$
plane
automorphism, 51
doubly punctured, 139, 161, 172, 326
extended, 52
punctured, 43, 139, 149, 337
Poincaré
disk, $15,38,92,139$
lemma, 228, 358
theorem, 345, 347
point at infinity, 141
Poisson
equation, 237
Poisson kernel, 85
conjugate, 97, 105
polar coordinates, 1
pole, 48-54, 63, 68, 146, 152-158, 160, $229,253,255,257,258,260,261$, 278-283, 285, 289-300
polyhedral surface, 133
positive definite, 136
potential theory, 72, 307, 328
power series, 5
prescribed zeros, 66, 146
primitive, 57, 78
primitive pair, 295
primitive root, 364
principal curvatures, 362
principal part, 49, 64
probability measure, 91
product rule, 5
properly discontinuous group action, 139, 167, 336, 346
Puiseux series, 198
pullback, 358
punctured
disk, 26
doubly, 172, 326
plane, 43, 337
twice, 35
quasi-conformal map, 349
quasi-linear operators, 369
quaternions, 175
quotient rule, 5
random walk, 93
rational function, 11, 74
region, 4
bounded, 29
simply-connected, 25, 33, 70, 74
unbounded, 73
regular singular point, 212
Rellich theorem, 222
residue, 47, 152, 225
theorem, 52, 157, 229
vanishing, 267
restricted weak-type, 369
resultant, 195, 363
Riemann map, 69, 93, 111, 161
boundary, 71
Green's function, 306
Riemann sphere, 9, 52, 132
automorphism, 52
cut, 193
metric, 62
Riemann sum, 75

Riemann surface, 59, 129
admissible, 331
analytic continuation, 179
bilinear relation, 277
classification, 305
compact, 196, 204, 269, 293
cuts, 223
elliptic, 207
existence of meromorphic differential, 253, 256
existence of meromorphic function, $255,256,328$
Green's function, 317
harmonic function, 231
hyperbolic, 317, 319
logarithm, 223
parabolic, 326
ramified, 189
topology, 183
unramified, 185, 196
Riemann-Hurwitz formula, 147, 152, 191, 202, 290
Riemann-Roch theorem, 202, 255, 285, 291, 326
Riemannian manifold, 15, 38
Riesz
representation theorem, 366
Riesz measure, 125
Riesz representation, 98
Riesz-Thorin theorem, 368
roots, 26, 78
rotation, 12, 30
Rouché's theorem, 54, 61, 81
Runge's theorem, 74, 367
Sard's theorem, 359
scaling limit, 94
Schwarz
lemma, 29, 71
reflection, 81, 111, 161
Schwarz-Christoffel formula, 73, 160, 178
Schwarzian derivative, 350
second fundamental form, 362
self-adjointness, 100
separate points, 206, 266
sequences of holomorphic functions, 60
Serre duality, 266
sheaves, 185
sheets, $141,192,193,290$
simple closed curve, 55
simple roots, 196
simply-connected, 47, 183, 205, 238, 295
single-valued, 3
singular, 141
singular measure, 104
singularity
essential, 48, 164
isolated, 47
pole, 48
removable, 47
sinks, 119
SLE, 122
smooth projective algebraic curve, 139, 244, 293
smooth surface, 360
Sobolev space, 86, 243, 265, 311
sources, 119
space of holomorphic differentials, 286
spectral measure, 100
spectral theorem, 367
spherical harmonics, 241
stationary Gaussian increments, 94
stereographic projection, $9,37,120,132$
Stirling formula, 116
Stokes region, 227
Stokes' theorem, 21, 43, 331, 358
strong type, 369
sub-mean-value property, 106, 107
subharmonic
function, 105, 305, 311
function, maximum principle, 311
function, negative, 317
sublinear operator, 101
tangent space, 226
Taylor series, 112, 116
tessellation, 339
theorema egregium, 363
three lines theorem, 125,368
topological manifold, 354
tori, 149, 337
conformally inequivalent, 169, 177
trace, 243
transformation
fractional linear, 11
Möbius, 11
translation, 12
average, 87
triangulation, 21, 359
triaxial ellipsoid, 159
unbounded component, 42, 76
uniform convergence, 31, 59, 66
uniformization theorem, 29, 151, 305, 326
hyperbolic surfaces, 327
non-simply-connected case, 335
parabolic surfaces, 327
uniformizing variable, 189, 260
uniqueness theorem, $26,57,75,145,180$
unit ball, 366
universal cover, 3, 59
upper semicontinuous, 126
valency, 146, 152, 190
Vandermonde determinant, 303
vanish identically, 27
vanishing at infinity, 317
vanishing condition, 43
vector field, 356
conservative, 85
divergence, curl, 238, 243
electric, 85
incompressible, 265
volume form, 357
weak topology, 366
weak-*
convergence, 96
topology, 368
weak-type, 369
Weierstrass
function $\wp, 152,207$
preparation theorem, 197, 221
theorem, 63, 66, 154
Weyl's
law, 241, 265
lemma, 237, 244, 246
Wiener's covering lemma, 101
winding number, $41,53,75,187$
vanishes, 45
Young's inequality, 89
zero count, 61, 112

Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces.

The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level.

This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.

For additional information
and updates on this book, visit
www.ams.org/bookpages/gsm-I 54

