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§1.6. Complex integration, Cauchy theorems 18

§1.7. Applications of Cauchy’s theorems 23

§1.8. Harmonic functions 33

§1.9. Problems 36

Chapter 2. From z to the Riemann mapping theorem: some finer
points of basic complex analysis 41

§2.1. The winding number 41

§2.2. The global form of Cauchy’s theorem 45

§2.3. Isolated singularities and residues 47

§2.4. Analytic continuation 56

§2.5. Convergence and normal families 60

§2.6. The Mittag-Leffler and Weierstrass theorems 63

§2.7. The Riemann mapping theorem 69

§2.8. Runge’s theorem and simple connectivity 74

iii



iv Contents

§2.9. Problems 79

Chapter 3. Harmonic functions 85

§3.1. The Poisson kernel 85

§3.2. The Poisson kernel from the probabilistic point of view 91

§3.3. Hardy classes of harmonic functions 95

§3.4. Almost everywhere convergence to the boundary data 100

§3.5. Hardy spaces of analytic functions 105

§3.6. Riesz theorems 109

§3.7. Entire functions of finite order 111

§3.8. A gallery of conformal plots 117

§3.9. Problems 122

Chapter 4. Riemann surfaces: definitions, examples, basic properties 129

§4.1. The basic definitions 129

§4.2. Examples and constructions of Riemann surfaces 131

§4.3. Functions on Riemann surfaces 143

§4.4. Degree and genus 146

§4.5. Riemann surfaces as quotients 148

§4.6. Elliptic functions 151

§4.7. Covering the plane with two or more points removed 160
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Preface

During their first year at the University of Chicago, graduate students in
mathematics take classes in algebra, analysis, and geometry, one of each
every quarter. The analysis courses typically cover real analysis and measure
theory, functional analysis and applications, and complex analysis. This
book grew out of the author’s notes for the complex analysis classes which he
taught during the Spring quarters of 2007 and 2008. These courses covered
elementary aspects of complex analysis such as the Cauchy integral theorem,
the residue theorem, Laurent series, and the Riemann mapping theorem, but
also more advanced material selected from Riemann surface theory.

Needless to say, all of these topics have been covered in excellent text-
books as well as classic treatises. This book does not try to compete with
the works of the old masters such as Ahlfors [1, 2], Hurwitz–Courant [44],
Titchmarsh [80], Ahlfors–Sario [3], Nevanlinna [67], and Weyl [88]. Rather,
it is intended as a fairly detailed, yet fast-paced introduction to those parts
of the theory of one complex variable that seem most useful in other ar-
eas of mathematics (geometric group theory, dynamics, algebraic geometry,
number theory, functional analysis).

There is no question that complex analysis is a cornerstone of a math-
ematics specialization at every university and each area of mathematics re-
quires at least some knowledge of it. However, many mathematicians never
take more than an introductory class in complex variables which ends up
being awkward and slightly outmoded. Often this is due to the omission
of Riemann surfaces and the assumption of a computational, rather than a
geometric point of view.

The author has therefore tried to emphasize the intuitive geometric un-
derpinnings of elementary complex analysis that naturally lead to Riemann

vii



viii Preface

surface theory. Today this is either not taught at all, given an algebraic
slant, or is presented from a sophisticated analytical perspective, leaving
the students without any foundation, intuition, historical understanding, let
alone a working knowledge of the subject.

This book intends to develop the subject of Riemann surfaces as a nat-
ural continuation of the elementary theory without which basic complex
analysis would indeed seem artificial and antiquated. At the same time,
we do not overly emphasize the algebraic aspects such as applications to
elliptic curves. The author feels that those students who wish to pursue
this direction will be able to do so quite easily after mastering the material
in this book. Because of this, as well as numerous other omissions (e.g.,
zeta, theta, and automorphic functions, Serre duality, Dolbeault cohomol-
ogy) and the reasonably short length of the book, it is to be considered as
an “intermediate introduction”.

Partly due to the fact that the Chicago first year curriculum covers a
fair amount of topology and geometry before complex analysis, this book
assumes knowledge of basic notions such as homotopy, the fundamental
group, differential forms, cohomology and homology, and from algebra we
require knowledge of the notions of groups and fields, and some familiarity
with the resultant of two polynomials (but the latter is needed only for
the definition of the Riemann surfaces of an algebraic germ). However,
for the most part merely the most elementary familiarity of these concepts
is assumed and we collect the few facts that we do need in Appendix A.
As far as analytical prerequisites are concerned, they are fairly low, not
extending far beyond multi-variable calculus and basic Hilbert space theory
(in Chapter 6 we use orthogonal projections). One exception to this occurs
in Sections 3.3, 3.4, and 3.5, which use the weak and weak-∗ topologies in Lp

and the space of measures (Riesz representation theorem). Again, what we
need is recalled in the appendix.

Let us now describe the contents of the individual chapters in more
detail. Chapter 1 introduces the concept of differentiability over C, the
calculus of ∂z, ∂z̄, the Cauchy-Riemann equations, power series, the Möbius
(or fractional linear) transformations and the Riemann sphere. Applications
of these transformations to hyperbolic geometry (the Poincaré disk and the
upper half-plane models) are also discussed. In particular, we verify the
Gauss-Bonnet theorem for this special case.

Next, we develop complex integration and Cauchy’s theorem in various
guises, as well as the Cauchy formula and estimates (with the fundamental
theorem of algebra as an application), and then apply this to the study
of analyticity, harmonicity, and the logarithm. We also prove Goursat’s
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theorem, which shows that complex differentiability without continuity of
the derivative already implies analyticity.

A somewhat unusual feature of this chapter is the order: integration
theory and its basic theorems appear after Möbius transforms and applica-
tions in non-Euclidean geometry. The reason for this is that the latter can
be considered to be more elementary, whereas it is hoped that the some-
what miraculous integration theory becomes more accessible to a student
who has seen many examples of analytic functions. Finally, to the author it
is essential that complex differentiability should not be viewed as an ad hoc
extension of the “limit of difference quotients” definition from the real field
to the complex field, but rather as a geometric property at the infinitesimal
level: the linearization equals a rotation followed by a dilation, which are
precisely the linear maps representing multiplication by a complex number.
In other words, conformality (at least at non-degenerate points). If there is
any one basic notion that appears in every chapter of this book, then it is
that of a conformal transformation.

Chapter 2 begins with the winding number, and some brief comments
about cohomology and the fundamental group. It then applies these con-
cepts in the “global form” of the Cauchy theorem by extending the “curves
that can be filled in without leaving the region of holomorphy” version of
the Cauchy theorem, to zero homologous cycles, i.e., those cycles which
do not wind around any point outside of the domain of holomorphy. We
then classify isolated singularities, prove the Laurent expansion and the
residue theorems with applications. More specifically, we derive the argu-
ment principle and Rouché’s theorem from the residue theorem. After that,
Chapter 2 studies analytic continuation—with a demonstration of how to
proceed for the Γ-function—and presents the monodromy theorem. Then,
we turn to convergence of analytic functions and normal families. This is
applied to Mittag-Leffler’s “partial fraction representation”, and the Weier-
strass product formula in the entire plane. The Riemann mapping theorem
is proved, and the regularity at the boundary of Riemann maps is discussed.
The chapter concludes with Runge’s approximation theorem, as well as a
demonstration of several equivalent forms of simple connectivity.

Chapter 3 studies harmonic functions in a wide sense, with particular
emphasis on the Dirichlet problem on the unit disk. This means that we
solve the boundary value problem for the Laplacian on the disk via the
Poisson kernel. The Poisson kernel is also identified from its invariance
properties under the automorphisms of the disk, and we sketch some basic
probabilistic aspects as well. We then present the usual Lp-based Hardy
classes of harmonic functions on the disk, and discuss the question of repre-
senting them via their boundary data both in the sense of Lp and the sense
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of “almost everywhere”. A prominent role in this analysis is played by com-
pactness ideas in functional analysis (weak-∗ compactness of the unit ball,
i.e., Alaoglu’s theorem), as well as the observation that positivity can be
substituted for compactness in many instances. This part therefore requires
some analytical maturity, say on the level of Rudin’s book [73]. However, up
to the aforementioned basic tools from functional analysis, the presentation
is self-contained.

We then sketch the more subtle theory of holomorphic functions in the
Hardy class, or equivalently, of the boundedness properties of the conjugate
harmonic functions, culminating in the classical F. & M. Riesz theorems.

The chapter also contains a discussion of the class of entire functions
of exponential growth, the Jensen formula which relates zero counts to
growth estimates, and the Hadamard product representation which refines
the Weierstrass formula. We conclude with a gallery of conformal plots that
will hopefully be both inspiring and illuminating.

The theory of Riemann surfaces begins with Chapter 4. This chapter
covers the basic definition of such surfaces and of the analytic functions
between them. Holomorphic and meromorphic functions are special cases
where the target is either C or CP 1 (the latter being conformally equivalent
to the compactification of C obtained by “adding infinity”). The fairly long
Section 4.2 introduces seven examples, or classes of examples, of Riemann
surfaces. The first three are elementary and should be easily accessible even
to a novice, but Examples 4)–7) are more involved and should perhaps only
be attempted by a more experienced reader.

Example 4) shows that compact smooth orientable surfaces in R3 carry
the structure of a Riemann surface, a fact of great historical importance
to the subject. It means that we may carry out complex analysis on such
surfaces rather than on the complex plane. The key idea here is that of
isothermal coordinates on such a manifold, which reduces the metric to the
one conformal to the standard metric. Example 5) discusses covering spaces,
quotients etc., Example 6) is devoted to algebraic curves and how they are
best viewed as Riemann surfaces. Example 7) presents Weierstrass’ idea of
looking for all possible analytic continuations of a power series and building
a Riemann surface from this process.

After these examples, we investigate basic properties of functions on
Riemann surfaces and how they relate to the topology of the surface as
reflected, for example, by the genus in the compact case.

Elementary results such as the Riemann-Hurwitz formula relating the
branch points to the genera of the surfaces are discussed. We then show
how to define Riemann surfaces via discontinuous group actions and give
examples of this procedure.
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The chapter continues with a discussion of tori and some aspects of the
classical theory of meromorphic functions on these tori. These functions
are precisely the doubly periodic or elliptic functions. We develop the stan-
dard properties of the Weierstrass ℘ function, some of which foreshadow
much more general facts which we will see in a much wider Riemann sur-
face context in later chapters. We briefly discuss the connection between
the Weierstrass function and the theory of integration of the square root of
cubic polynomials (the so-called elliptic integrals).

In Section 4.7 the covering spaces of the doubly punctured plane are
constructed and applied to Picard’s small and big theorems, as well as the
fundamental normality test of Montel. The chapter concludes with a dis-
cussion of groups of Möbius transforms, starting off with an analysis of the
fixed points of maps in the automorphism group of the disk.

Then the modular group PSL(2,Z) is analyzed in some detail. We iden-
tify the fundamental region of that group, which implies, in particular, that
the action of the group on the upper half-plane is discontinuous. As a par-
ticular example of an automorphic function, we introduce the basic modular
function λ, which is constructed by means of the ℘ function. Remarkably,
this function provides an explicit example of the covering map from Sec-
tion 4.7.

Chapter 5 presents another way in which Riemann surfaces arise nat-
urally, namely via analytic continuation. Historically, the desire to resolve
unnatural issues related to “multi-valued functions” (most importantly for
algebraic functions) led Riemann to introduce his surfaces. Even though
the underlying ideas leading from a so-called analytic germ to its Riemann
surface are geometric and intuitive, and closely related to covering spaces
in topology, their rigorous rendition requires some patience as ideas such
as “analytic germ”, “branch point”, “(un)ramified Riemann surface of an
analytic germ”, etc., need to be defined precisely. The chapter also develops
some basic aspects of algebraic functions and their Riemann surfaces. At
this point the reader will need to be familiar with basic algebraic construc-
tions.

In particular, we observe that every compact Riemann surface is ob-
tained through analytic continuation of some algebraic germ. This uses
the machinery of Chapter 5 together with a potential-theoretic result that
guarantees the existence of a non-constant meromorphic function on every
Riemann surface. The reference to potential theory here means the we em-
ploy basic results on elliptic PDEs to obtain this (in fact, we will phrase the
little we need in terms of harmonic functions and differentials).

This, as well as other fundamental existence results, is developed in
Chapter 6. It turns out that differential forms are easier to work with on
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Riemann surfaces than functions, and it is through forms that we construct
functions. One of the reasons for this preference for forms over functions
lies with the fact that it is meaningful to integrate 1-forms over curves, but
not functions.

The chapter concludes with a discussion of ordinary differential equa-
tions with meromorphic coefficients. We introduce the concept of a Fuch-
sian equation, and illustrate this term by means of the example of the Bessel
equation.

Chapter 6 introduces differential forms on Riemann surfaces and their
integrals. Needless to say, the only really important class of linear forms are
the 1-forms and we define harmonic, holomorphic and meromorphic forms
and the residues in the latter case. Furthermore, the Hodge ∗ operator ap-
pears naturally (informally, it acts like a rotation by π/2). We then present
some examples that lead up to the Hodge decomposition, which is estab-
lished later in that chapter. This decomposition states that every 1-form
can be decomposed additively into three components: a closed, co-closed,
and a harmonic form (the latter being characterized as being simultaneously
closed and co-closed). In this book, we follow the classical L2-based deriva-
tion of this theorem. Thus, via Hilbert space methods one first derives this
decomposition with L2-valued forms and then uses Weyl’s regularity lemma
(weakly harmonic functions are smoothly harmonic) to upgrade to smooth
forms.

Chapter 6 then applies the Hodge decomposition to establish some ba-
sic results on the existence of meromorphic differentials and functions on a
general Riemann surface. In particular, we derive the striking fact that ev-
ery Riemann surface carries a non-constant meromorphic function which
is a key ingredient for the result on compact surfaces being algebraic in
Chapter 5.

The chapter concludes with several examples of meromorphic functions
and differentials on Riemann surfaces, mostly for the class of hyper-elliptic
surfaces (compact surfaces that admit a meromorphic function of degree 2).

Chapter 7 presents the Riemann-Roch theorem which relates the dimen-
sion of certain spaces of meromorphic differentials with the dimension of a
space of meromorphic functions, from properties of the underlying divisor
and the genus of the compact Riemann surface. Before proving this theo-
rem, which is of central importance both in historical terms as well as in
applications, there are a number of prerequisites to be dealt with, such as
a linear basis in the space of holomorphic differentials, the Riemann period
relations, and the study of divisors.
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Section 7.5 studies a diverse collection of applications of the Riemann-
Roch theorem, such as the fact that every compact Riemann surface of genus
g is a branched cover of S2 with g+1 sheets, as well as the fact that surfaces
of genus 2 only require 2 sheets (and are thus hyper-elliptic). Section 7.6
completes the identification of compact surfaces M as projective algebraic
curves. Moreover, we show that every meromorphic function on such a
surface M can be expressed by means of a primitive pair of meromorphic
functions; see Theorem 7.24.

Section 7.7 discusses the Abel and Jacobi theorems. The former result
identifies all possible divisors associated with meromorphic functions (the
so-called principal divisors) on a compact Riemann surface by means of the
vanishing of a certain function of the divisor modulo the period lattice. This
implies, amongst other things, that every compact surface of genus 1 is a
torus. For all genera g ≥ 1 we obtain the surjectivity of the Jacobi map
onto the Jacobian variety; in other words, we present the Jacobi inversion.
In this chapter we omit the theta functions, which would require a chapter
of their own.

Chapter 8 is devoted to the proof of the uniformization theorem. This
theorem states that the only simply-connected Riemann surfaces (up to iso-
morphisms) are C, D, and CP 1. For the compact case, we deduce this from
the Riemann-Roch theorem. But for the other two cases we use methods of
potential theory which are motivated by the proof of the Riemann mapping
theorem. In fact, we first reprove this result in the plane by means of a
Green function associated with a domain.

The idea is then to generalize this proof strategy to Riemann surfaces.
The natural question of when a Green function exists on a Riemann surface
leads to the classification of non-compact surfaces as either hyperbolic (such
as D) or parabolic (such as C); in the compact case a Green function cannot
exist.

Via the Perron method, we prove the existence of a Green function for
hyperbolic surfaces, thus establishing the conformal equivalence with the
disk. For the parabolic case, a suitable substitute for the Green function
needs to be found. We discuss this in detail for the simply-connected case,
and also sketch some aspects of the non-simply-connected cases.

As in other key results in this text (equivalence between compact Rie-
mann surfaces and algebraic curves, Riemann-Roch) the key here is to es-
tablish the existence of special types of functions on a given surface. In
this context, the functions are harmonic (or meromorphic for the compact
surfaces). Loosely speaking, the classification theorem then follows from the
mapping properties of these functions.
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Finally, Appendix A collects some of the material that arguably exceeds
the usual undergraduate preparation which can be expected at the entry
level to complex analysis. Naturally, this chapter is more expository and
does not present many details. References are given to the relevant sources.

This text does perhaps assume more than other introductions to the
subject. The author chose to present the material more like a landscape.
Essential features that the reader encounters on his or her guided tour are
pointed out as we go along. Since complex analysis does have to do with
many basic features of mathematical analysis it is not surprising that ex-
amples can and should be drawn from different sources. The author hopes
that students and teachers will find this to be an attractive feature.

How to use this book: On the largest scale, the structure is linear.
This means that the material is presented progressively, with later chapters
drawing on earlier ones. It is not advisable for a newcomer to this subject to
“pick and choose”. In the hands of an experienced teacher, though, such a
strategy is to some extent possible. This will be also necessary with a class of
varying backgrounds and preparation. For example, Sections 3.3–3.6 require
previous exposure to basic functional analysis and measure theory, namely
Lp spaces, their duals and the weak-∗ compactness (Alaoglu’s theorem).
This is, however, the only instance where that particular background is
required. If these sections are omitted, but Chapter 8 is taught, then the
basic properties of subharmonic functions as presented in Section 3.5 will
need to be discussed.

As far as functional analysis is concerned, of far greater importance to
this text are rudiments of Hilbert spaces and L2 spaces (but only some of
the most basic facts such as completeness and orthogonal decompositions).
These are essential for the Hodge theorem in Chapter 6.

As a general rule, all details are presented (with the exception of the
appendix). On rare occasions, certain routine technical aspects are moved
to the problem section which can be found at the end of each chapter. Some
of the problems might be considered to be more difficult, but essentially all
of them are to be viewed as an integral part of this text. As always in math-
ematics courses, working through at least some of the exercises is essential
to mastering this material. References are not given in the main text since
they disturb the flow, but rather collected at the end in the “Notes”. This is
the same format employed in the author’s books with Camil Muscalu [65].
By design, this text should be suitable for both independent—but prefer-
ably guided—study and the traditional classroom setting. A well-prepared
student will hopefully be able to read the eight main chapters in linear
succession, occasionally glancing at the appendix if needed.
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degree, 146, 157, 201, 359
derivatives of any order, 25
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automorphism, 30, 164
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punctured, 26
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divisor, 280
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elliptic curve, 141, 208, 290
entire
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function, product representation, 66

entire functions of finite order, 111
equation

algebraic, 199, 292, 347
Bessel, 212, 224
differential, 155, 211, 224
Fuchsian, 212

equivalence relation, 180, 185
Euclidean

algorithm, 167, 197, 363
distance, 2
metric, 361

Euler
characteristic, 142, 147, 359

constant, 2
formula, 3
relation, 140
totient function, 200, 364

Euler-Poincaré formula, 147
exact

chain, 355
exponential function, 3
exterior

differentiation, 357
disk condition, 314
product, 357

F. & M. Riesz theorems, 105, 109
Fatou’s lemma, 100, 108, 111
field, 1

of meromorphic functions, 295
finite total variation, 95
first fundamental form, 361
fixed point, 13, 151, 164, 175, 326, 336

axes, 341
classification, 339
elliptic, 177
hyperbolic, 177
loxodromic, 176, 343

fluid flow, 119
form

harmonic, 271
Fourier series, 86, 242
Fréchet space, 84
fractional linear, 11
fractional linear transformation, 167
fractional order, 115
free group, 45, 142
Fuchsian

equation, 212
group, 337, 338
group, cyclic, 343
group, parabolic elements, 347
group, signature, 346

function
algebraic, 129, 194
analytic, 5
automorphic, 348
element, 180
elliptic, 139, 151
entire, 4, 24, 59, 67, 139, 162
entire, finite order, 111
exponential, 3
Gamma, 56, 59
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holomorphic, 4



380 Index

meromorphic, 49, 131, 146
modular, 172
potential, 85, 119
rational, 11, 74, 146, 156, 199, 260,
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fundamental

form, first, 361
form, second, 362
group, 139
normality test, 164
polygon, 269
region, 152, 157, 176, 339
solution, 239
theorem of algebra, 25, 55
theorem of calculus, 19

Gamma function, 56
gap series, 84
Gauss’ formula, 84
Gauss-Bonnet, 16, 339, 345
Gaussian curvature, 16, 362
genus, 139, 140, 142, 146, 147, 193, 207,

290, 360
geodesic, 16, 92, 159, 339

triangle, 166, 171
germ, 143

algebraic, 192, 195, 204
analytic, 179

global coordinates, 120
global homeomorphism, 72
global meromorphic functions, 142
Goursat’s theorem, 31
Green’s formula, 22, 239
Green’s function, 306, 317

admit, 308, 321
Perron family, 319
Riemann map, 309
symmetry, 324

Green’s theorem, 34
group

cyclic, 343
deck, 336
free, 45, 280
Fuchsian, 169, 337, 338, 343
fundamental, 43, 139, 151
homology, 355
Möbius transformations, 164
modular, 167, 339
monodromy, 211

properly discontinuous, 139
properly discontinuous action, 167,

336, 346
quotient, 148, 335
stabilizer, 15, 91, 344
subgroup, 15
transitive action, 16

group action, 139
singularity, 167

Hadamard product formula, 113
Hahn-Banach theorem, 76, 367
handles, 193, 360
Hankel’s loop contour, 83, 219
Hardy space, 95

analytic, 105
Hardy-Littlewood maximal function,

101
harmonic

conjugate, 33, 41, 105, 266
function, 33
function, oscillation, 333
function, positive, 96
function, rigidity, 333
majorant, 127
measure, 95, 321, 322

Harnack inequality, 126, 313
Hausdorff, 167, 183, 186
Herglotz

function, 99
representation, 98

hexagonal tiling, 76
Hilbert space, 230, 365

Riesz representation, 366
spectral theorem, 367

Hilbert transform, 98
Hodge theory, 143, 230, 245, 305

examples, 236
Hodge-∗ operator, 230
holomorphic, 4

differential, 227
primitive, 20, 25
sequences of functions, 60

homology, 228
basis, 269, 360
group, 360

homotopy, 21, 181, 187
homotopy invariance, 9, 47, 54
horocycles, 347
hyper-elliptic curves, 141
hyper-elliptic surface, 207, 258, 304

genus, 261, 267, 290
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holomorphic differential, 260
hyperbola, 166
hyperbolic

area, 16, 339
fixed point, 177
metric, 38
plane, 15
space, 38

ideal boundary, 329
implicit function theorem, 194
incompressibility, 119
indefinite reflections, 161
index, 43, 359
infinite product, 66
infinitely differentiable, 3
inner product, 230
interpolation

Marcinkiewicz, 102, 369
interpolation theory, 368
intersection numbers, 269
intrinsic notion, 361
inverse function theorem, 28
inversion, 12
irreducible, 195
irreducible polynomial, 141
isolated singularity, 47
isometry, 15, 38, 339

orientation preserving, 38
isomorphism

conformal, 29, 69
isothermal coordinates, 119, 136, 265

Jacobi
inversion, 301
map, 300
variety, 275, 295, 335

Jensen
formula, 106, 126
inequality, 107

Jukowski map, 37, 193

kernel
box, 88
Dirichlet, 98
Fejér, 88
Poisson, 87, 91, 110

Lagrange interpolation formula, 294
Laplace equation, 35, 85
Laplace-Beltrami operator, 137, 241
Laplacian, ix, 9, 125, 227, 238, 246, 307,

308

large boundary, 237
lattice, 149, 167, 340
Laurent series, 49
Lebesgue decomposition, 104, 109
Lebesgue differentiation theorem, 103
Lebesgue dominated convergence, 111
level curves, 117
lift, 353
linearization, 4
Liouville theorem, 25, 52, 69
locally finite, 338, 340, 344
log-convexity, 368
logarithm, 3, 26, 78, 239
logarithmic derivative, 154
loop-form, 248, 270
Lorentz spaces, 369
loxodromic fixed point, 176, 343

Möbius transformation, 11, 37, 149
fixed point, 336
preserves circles, 12

manifold
compact, 236
compact, orientable, 241
Riemannian, 265
smooth, 135, 225
topological, 354

Maple software, 117
Marcinkiewicz interpolation theorem,

369
Markovian, 94
maximal atlas, 130
maximal function

Hardy-Littlewood, 101, 102, 110
nontangential, 108

maximum principle, 29, 35, 89, 151, 232
parabolic Riemann surface, 328

mean-value property, 34, 37, 97
measure

boundary, 96, 104
complex, 95
Lebesgue, 96
positive, 96

meromorphic
function, 49

metric, 37, 136
Mittag-Leffler theorem, 63
modular

function, 172
group, 167, 339
group, fundamental region, 168

monodromy theorem, 47, 58, 180, 188
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Montel’s normal family theorem, 61
Morera’s theorem, 30, 46, 59, 60, 75
multi-valued, 129, 179

negative subharmonic function, 317
non-Euclidean geometry, 15
nonsingular, 141
nontangential maximal function, 108
normal family, 60, 163
normal form, 27, 341
normal vector, 360

omit two values, 163
one-point compactification, 9, 133
open mapping theorem, 145
ordinary differential equations (ODE),

211
orientation, 135, 226, 357
orthogonal projection, 365

parabolic case, 165
parabolic vertices, 346
parameterization, 360
parametric disk, 130, 229, 330
partial fraction decomposition, 65
path independent, 20
pendulum, 159
period, 273

vanishing, 286
permutation, 294
perpendicular bisector, 340, 344
perpendicular grid, 119
Perron family, 310, 313, 330
Perron’s method, 306, 312
Phragmen-Lindelöf, 29, 125
Picard iteration, 2
Picard theorem, 49, 139
piecewise C1, 26
plane

automorphism, 51
doubly punctured, 139, 161, 172, 326
extended, 52
punctured, 43, 139, 149, 337

Poincaré
disk, 15, 38, 92, 139
lemma, 228, 358
theorem, 345, 347

point at infinity, 141
Poisson

equation, 237
Poisson kernel, 85

conjugate, 97, 105

polar coordinates, 1
pole, 48–54, 63, 68, 146, 152–158, 160,

229, 253, 255, 257, 258, 260, 261,
278–283, 285, 289–300

polyhedral surface, 133
positive definite, 136
potential theory, 72, 307, 328
power series, 5
prescribed zeros, 66, 146
primitive, 57, 78
primitive pair, 295
primitive root, 364
principal curvatures, 362
principal part, 49, 64
probability measure, 91
product rule, 5
properly discontinuous group action,

139, 167, 336, 346
Puiseux series, 198
pullback, 358
punctured

disk, 26
doubly, 172, 326
plane, 43, 337
twice, 35

quasi-conformal map, 349
quasi-linear operators, 369
quaternions, 175
quotient rule, 5

random walk, 93
rational function, 11, 74
region, 4

bounded, 29
simply-connected, 25, 33, 70, 74
unbounded, 73

regular singular point, 212
Rellich theorem, 222
residue, 47, 152, 225

theorem, 52, 157, 229
vanishing, 267

restricted weak-type, 369
resultant, 195, 363
Riemann map, 69, 93, 111, 161

boundary, 71
Green’s function, 306

Riemann sphere, 9, 52, 132
automorphism, 52
cut, 193
metric, 62

Riemann sum, 75
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Riemann surface, 59, 129
admissible, 331
analytic continuation, 179
bilinear relation, 277
classification, 305
compact, 196, 204, 269, 293
cuts, 223
elliptic, 207
existence of meromorphic differential,

253, 256
existence of meromorphic function,

255, 256, 328
Green’s function, 317
harmonic function, 231
hyperbolic, 317, 319
logarithm, 223
parabolic, 326
ramified, 189
topology, 183
unramified, 185, 196

Riemann-Hurwitz formula, 147, 152,
191, 202, 290

Riemann-Roch theorem, 202, 255, 285,
291, 326

Riemannian manifold, 15, 38
Riesz

representation theorem, 366
Riesz measure, 125
Riesz representation, 98
Riesz-Thorin theorem, 368
roots, 26, 78
rotation, 12, 30
Rouché’s theorem, 54, 61, 81
Runge’s theorem, 74, 367

Sard’s theorem, 359
scaling limit, 94
Schwarz

lemma, 29, 71
reflection, 81, 111, 161

Schwarz-Christoffel formula, 73, 160,
178

Schwarzian derivative, 350
second fundamental form, 362
self-adjointness, 100
separate points, 206, 266
sequences of holomorphic functions, 60
Serre duality, 266
sheaves, 185
sheets, 141, 192, 193, 290
simple closed curve, 55
simple roots, 196

simply-connected, 47, 183, 205, 238, 295
single-valued, 3
singular, 141
singular measure, 104
singularity

essential, 48, 164
isolated, 47
pole, 48
removable, 47

sinks, 119
SLE, 122
smooth projective algebraic curve, 139,

244, 293
smooth surface, 360
Sobolev space, 86, 243, 265, 311
sources, 119
space of holomorphic differentials, 286
spectral measure, 100
spectral theorem, 367
spherical harmonics, 241
stationary Gaussian increments, 94
stereographic projection, 9, 37, 120, 132
Stirling formula, 116
Stokes region, 227
Stokes’ theorem, 21, 43, 331, 358
strong type, 369
sub-mean-value property, 106, 107
subharmonic

function, 105, 305, 311
function, maximum principle, 311
function, negative, 317

sublinear operator, 101

tangent space, 226
Taylor series, 112, 116
tessellation, 339
theorema egregium, 363
three lines theorem, 125, 368
topological manifold, 354
tori, 149, 337

conformally inequivalent, 169, 177
trace, 243
transformation

fractional linear, 11
Möbius, 11

translation, 12
average, 87

triangulation, 21, 359
triaxial ellipsoid, 159

unbounded component, 42, 76
uniform convergence, 31, 59, 66
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uniformization theorem, 29, 151, 305,
326

hyperbolic surfaces, 327
non-simply-connected case, 335
parabolic surfaces, 327

uniformizing variable, 189, 260
uniqueness theorem, 26, 57, 75, 145, 180
unit ball, 366
universal cover, 3, 59
upper semicontinuous, 126

valency, 146, 152, 190
Vandermonde determinant, 303
vanish identically, 27
vanishing at infinity, 317
vanishing condition, 43
vector field, 356

conservative, 85
divergence, curl, 238, 243
electric, 85
incompressible, 265

volume form, 357

weak topology, 366
weak-∗

convergence, 96
topology, 368

weak-type, 369
Weierstrass

function ℘, 152, 207
preparation theorem, 197, 221
theorem, 63, 66, 154

Weyl’s
law, 241, 265
lemma, 237, 244, 246

Wiener’s covering lemma, 101
winding number, 41, 53, 75, 187

vanishes, 45

Young’s inequality, 89

zero count, 61, 112
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