Functional Analysis
An Elementary Introduction

Markus Haase

Graduate Studies in Mathematics
Volume 156

American Mathematical Society
Providence, Rhode Island
EDITORIAL COMMITTEE
Dan Abramovich
Daniel S. Freed
Rafe Mazzeo (Chair)
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 46-01, 46Cxx, 46N20, 35Jxx, 35Pxx.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-156

Library of Congress Cataloging-in-Publication Data
Haase, Markus, 1970–
Functional analysis : an elementary introduction / Markus Haase.
 pages cm. — (Graduate studies in mathematics ; volume 156)
 Includes bibliographical references and indexes.
QA320.H23 2014
515.7—dc23 2014015166

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2014 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 19 18 17 16 15 14
Für Dietlinde Haase (1938–2012)
Contents

Preface xiii

Chapter 1. Inner Product Spaces 1
§1.1. Inner Products 3
§1.2. Orthogonality 6
§1.3. The Trigonometric System 10
Exercises 11

Chapter 2. Normed Spaces 15
§2.1. The Cauchy–Schwarz Inequality and the Space ℓ^2 15
§2.2. Norms 18
§2.3. Bounded Linear Mappings 21
§2.4. Basic Examples 23
§2.5. *The ℓ^p-Spaces (1 $\leq p < \infty$) 28
Exercises 31

Chapter 3. Distance and Approximation 37
§3.1. Metric Spaces 37
§3.2. Convergence 39
§3.3. Uniform, Pointwise and (Square) Mean Convergence 41
§3.4. The Closure of a Subset 47
Exercises 50

Chapter 4. Continuity and Compactness 55
§4.1. Open and Closed Sets 55
§ 4.2. Continuity
§ 4.3. Sequential Compactness
§ 4.4. Equivalence of Norms
§ 4.5. *Separability and General Compactness
Exercises

Chapter 5. Banach Spaces
§ 5.1. Cauchy Sequences and Completeness
§ 5.2. Hilbert Spaces
§ 5.3. Banach Spaces
§ 5.4. Series in Banach Spaces
Exercises

§ 6.1. Banach’s Contraction Principle
§ 6.2. Application: Ordinary Differential Equations
§ 6.3. Application: Google’s PageRank
§ 6.4. Application: The Inverse Mapping Theorem
Exercises

Chapter 7. The Lebesgue Spaces
§ 7.1. The Lebesgue Measure
§ 7.2. The Lebesgue Integral and the Space $L^1(X)$
§ 7.3. Null Sets
§ 7.4. The Dominated Convergence Theorem
§ 7.5. The Spaces $L^p(X)$ with $1 \leq p \leq \infty$
Advice for the Reader
Exercises

Chapter 8. Hilbert Space Fundamentals
§ 8.1. Best Approximations
§ 8.2. Orthogonal Projections
§ 8.3. The Riesz–Fréchet Theorem
§ 8.4. Orthogonal Series and Abstract Fourier Expansions
Exercises

Chapter 9. Approximation Theory and Fourier Analysis
§ 9.1. Lebesgue’s Proof of Weierstrass’ Theorem
§9.2. Truncation 151
§9.3. Classical Fourier Series 156
§9.4. Fourier Coefficients of L^1-Functions 161
§9.5. The Riemann–Lebesgue Lemma 162
§9.6. *The Strong Convergence Lemma and Fejér’s Theorem 164
§9.7. *Extension of a Bounded Linear Mapping 168
Exercises 172

Chapter 10. Sobolev Spaces and the Poisson Problem 177
§10.1. Weak Derivatives 177
§10.2. The Fundamental Theorem of Calculus 179
§10.3. Sobolev Spaces 182
§10.4. The Variational Method for the Poisson Problem 184
§10.5. *Poisson’s Problem in Higher Dimensions 187
Exercises 188

Chapter 11. Operator Theory I 193
§11.1. Integral Operators and Fubini’s Theorem 193
§11.2. The Dirichlet Laplacian and Hilbert–Schmidt Operators 196
§11.3. Approximation of Operators 199
§11.4. The Neumann Series 202
Exercises 205

Chapter 12. Operator Theory II 211
§12.1. Compact Operators 211
§12.2. Adjoints of Hilbert Space Operators 216
§12.3. *The Lax–Milgram Theorem 219
§12.4. *Abstract Hilbert–Schmidt Operators 221
Exercises 226

Chapter 13. Spectral Theory of Compact Self-Adjoint Operators 231
§13.1. Approximate Eigenvalues 231
§13.2. Self-Adjoint Operators 234
§13.3. The Spectral Theorem 236
§13.4. *The General Spectral Theorem 240
Exercises 241

Chapter 14. Applications of the Spectral Theorem 247
Preface

The present book was developed out of my course, “Applied Functional Analysis”, given during the years 2007–2012 at Delft University of Technology. It provides an introduction to functional analysis on an elementary level, not presupposing, e.g., background in real analysis like metric spaces or Lebesgue integration theory. The focus lies on notions and methods that are relevant in “applied” contexts. At the same time, it should serve as a stepping stone towards more advanced texts in functional analysis.

The course (and the book) evolved over the years in a process of reflection and revision. During that process I gradually realized that I wanted the students to learn (at least):

- to view functions/sequences as points in certain spaces, abstracting from their internal structure;
- to treat approximations in a multitude of situations by virtue of the concept of an abstract distance (metric/norm) with its diverse instances;
- to use approximation arguments in order to establish properties of otherwise unwieldy objects;
- to recognize orthogonality and its fundamental role for series representations and distance minimization in Hilbert spaces;
- to reduce differential and integral equations to abstract fixed point or minimization problems and find solutions via approximation methods, recognizing the role of completeness;
- to work with weak derivatives in order to facilitate the search for solutions of differential equations via Hilbert space methods;
- to use operators as a unified tool of producing solutions to a problem with varying initial data;
- to be aware of the important role of compactness, in particular for eigenvalue expansions.

In this book, functional analysis is developed to an extent that serves these purposes. The included examples are of an elementary character and might appear — from the point of view of applications — a little artificial. However, with the material presented in the book at hand, students should be prepared for serious real-world applications as well as for more sophisticated theoretical functional analysis.

For the Student and the Teacher. This book can be used for self-study. Its material is divided into “mandatory” and “optional” parts. The latter are indicated by a star in front of the title; see the table of contents. By “optional” I mean that it can be omitted without affecting the “mandatory” parts. However, optional material from a later chapter may refer to optional material from an earlier one. In principle, “optional” does not necessarily mean “more advanced”, although it occasionally may be like that. In effect, the optional parts can be viewed as an “honors track” amendment to the mandatory course.

In the optional parts I sometimes leave the details to the reader, something that I have tried to avoid in the mandatory part.

Being interested mainly in “applied mathematics”, one may well stop with Chapter 14. Chapters 15 and 16 are more of a theoretical nature and are supposed to be a bridge towards higher functional analysis. (That, however, does not mean that they are irrelevant for applications.)

Integration Theory. A sensitive point in any introductory course on functional analysis is the use of measure-theoretic integration theory. For this book, no prior knowledge of Lebesgue theory is required. However, such ignorance has to be compensated by the will to take some things for granted and to work with some concepts even if they are only partially understood.

Chapter 7 provides the necessary information. For the later chapters one should have a vague understanding of what Lebesgue measure is and how it is connected with the notion of integral, a more thorough understanding of what a null set is and what it means that something is true almost everywhere, and a good working knowledge of the dominated convergence theorem (neglecting any measurability issues).

As unproven facts from integration theory the following results are used:
- The dominated convergence theorem (Theorem 7.16);
- The density of $C[a,b]$ in $L^2(a,b)$ (Theorem 7.24);
- Fubini’s theorem (Section [11.1]);
- The density of $L^2(X) \otimes L^2(Y)$ in $L^2(X \times Y)$ (Theorem [11.2]).

See also my “Advice for the Reader” on page [125].

Exercises. Each chapter comes with three sets of exercises — labelled Exercises A, B and C. Exercises of category A are referred to alongside the text. Some of them are utmost elementary and all of them have a direct connection to the text at the point where they are referred to. They are “simple” as far as their complexity is concerned, and the context mostly gives a hint towards the solution. One could consider these exercises as recreational pauses during a strenuous hike; pauses that allow one to look back on the distance made and to observe a little closer the passed landscape.

Exercises of category B are to deepen the understanding of the main (mandatory) text. Many of them have been posed as homework exercises or exam questions in my course. The exercises of category C either refer to the mandatory parts, but are harder; or they refer to the optional material; or they cover some additional and more advanced topics.

Synopsis. In the following I describe shortly the contents of the individual chapters.

Chapter 1: Vector spaces of functions, linear independence of monomials, standard inner products, inner product spaces, norm associated with an inner product, polarization identity, parallelogram law, orthogonality, Pythagoras’ lemma, orthonormal systems, orthogonal projections onto finite-dimensional subspaces, Gram–Schmidt procedure, the trigonometric system in $C[0,1]$.

Chapter 2: Cauchy–Schwarz inequality, triangle inequality, ℓ^2, normed spaces, ℓ^1, ℓ^∞, bounded linear mappings (operators), operator norm, isometries, point evaluations, left and right shift, multiplication operators and other examples of operators. *Optional:* ℓ^p-spaces for all $1 < p < \infty$ and Hölder’s inequality.

Chapter 3: Metric associated with a norm, metric spaces, discrete metric, convergence in metric spaces, uniform vs. pointwise vs. square mean convergence, mean vs. square mean convergence on $C[a,b]$, closure of a subset, dense subsets, c_00 dense in ℓ^p ($p = 1,2$) and in c_0, properties of the closure, Weierstrass’ theorem (without proof).

Chapter 4: Open and closed sets (definition, examples, properties), continuity in metric spaces, examples (continuity of metric, norm, algebraic operations, inner product), the closure of a subspace is a subspace, continuity is equal to boundedness for linear mappings, (sequential) compactness and its consequences, Bolzano–Weierstrass theorem, stronger and weaker norms, equivalence of norms. *Optional:* separability and general compactness.
Chapter 5: Cauchy sequences, complete metric spaces, Hilbert spaces, \(\ell^2 \) is a Hilbert space, \((C[a,b], \|\cdot\|_2)\) is not complete, Banach spaces, examples (finite-dimensional spaces, \((B(\Omega), \|\cdot\|_{\infty})\), \(\ell^\infty\), \((C[a,b], \|\cdot\|_{\infty})\), absolutely convergent series in Banach spaces.

Chapter 6 (optional): Banach’s contraction principle, local existence and uniqueness of solutions to ODEs, Google’s PageRank algorithm, inverse mapping theorem and implicit function theorem from many-variable calculus.

Chapter 7: Lebesgue (outer) measure, measurable sets and functions, Lebesgue integral, \(L^p \) for \(p \in \{1, 2, \infty\} \), null sets, equality/convergence almost everywhere, dominated convergence theorem, completeness of \(L^p \), Hölder’s inequality, \(C[a,b] \) is dense in \(L^p(a,b) \), for \(p = 1, 2 \). Optional: \(L^p \)-spaces for general \(p \).

Chapter 8: Best approximations, counterexamples (nonexistence and non-uniqueness), existence and uniqueness of best approximations in closed convex subsets of a Hilbert space, orthogonal projections, orthogonal decomposition, Riesz–Fréchet theorem, orthogonal series and Parseval’s identity, abstract Fourier expansions and Bessel’s inequality, orthonormal bases.

Chapter 9: Approximation and permanence principles, proof of Weierstrass’ theorem, approximation via truncation, density of \(C_c^\infty(\mathbb{R}) \) in \(L^p(\mathbb{R}) \), classical Fourier series, the trigonometric system is an orthonormal basis of \(L^2(0,1) \), theorem of Riemann–Lebesgue. Optional: strong convergence lemma, Fejér’s theorem, convolution operators, uniqueness theorem for Fourier series, extension of bounded linear mappings, Plancherel’s theorem.

Chapter 10: Weak derivatives, Sobolev spaces \(H^1(a,b) \), fundamental theorem of the calculus for \(H^1 \)-functions, density of \(C_c^1[a,b] \) in \(H^1(a,b) \), variational method for the Poisson problem on \((a,b)\), Poincaré’s inequality for an interval. Optional: Poisson problem on \(\Omega \subseteq \mathbb{R}^d \).

Chapter 11: Integration on product spaces, Fubini’s theorem, integral operators, invertibility of operators and well-posedness of equations, Dirichlet Laplacian, Green’s function, Hilbert–Schmidt integral operators, strong vs. norm convergence of operators, perturbation and Neumann series, Volterra integral equations.

Chapter 14: Eigenvalue expansion of the (one-dimensional) Dirichlet Laplacian and a Schrödinger operator, application to the associated parabolic evolution equation. Optional: the norm of the integration operator, best constant in the one-dimensional Poincaré inequality.

Chapter 15: Principle of nested balls, Baire’s theorem, uniform boundedness principle, Banach–Steinhaus theorem, Dirichlet kernel, Du Bois-Reymond’s theorem, open mapping theorem, closed graph theorem, applications, Tietze’s theorem.
Chapter 16: Dual space, sublinear functionals, Hahn–Banach theorem for separable spaces, elementary duality theory, dual operators, pairings and dualities, identification of duals for c_0, ℓ^1, and $L^1[a,b]$. Optional: Hahn–Banach theorem for general spaces, geometric Hahn–Banach theorem (without proof), reflexivity, weak convergence, dual of ℓ^p and $L^p[a,b]$ for $1 \leq p < \infty$, Riesz representation theorem, dual of $C[a,b]$.

History of Functional Analysis. Many mathematical concepts or results are named after mathematicians, contemporary or past. These names are a convenient help for our memory, but should not be mistaken as a claim about who did what first. Certainly, what I call Pythagoras’ lemma in this book (Lemma 1.9) was not stated in this form by Pythagoras, and we use the name since the lemma is a generalization and modernization of a well-known theorem from Euclidean geometry that traditionally is associated with Pythagoras.

Although the taxonomy is sometimes unjustified or questionable, it is not arbitrary. There are in fact real people behind functional analysis, and what now appears to be a coherent and complete theory needed more than a century to find its contemporary form.

After the main text and before the appendices I have included a short account of that history with special focus on the parts that are treated in the main text. A brief historical account of the real number system is included in Appendix A.5.

What is Missing. Several topics from the classical canon of functional analysis are not covered: continuous functions on compact spaces (Urysohn’s lemma, Arzelá–Ascoli, Stone–Weierstrass theorem), locally convex vector spaces, theory of distributions, Banach algebras and Gelfand theory, weak topologies, Riesz’ theory of compact operators on general Banach spaces, spectral theory on Banach spaces, unbounded (symmetric or selfadjoint) operators on Hilbert spaces, the general spectral theorem, Sobolev spaces other than H^n on intervals, elliptic differential equations other than in dimension one, operator semigroups.

Further Reading. A book close in spirit to my text is the work [GGK03] by Gohberg, Goldberg and Kaashoek. Beyond that, I recommend the excellent works [Che01] by Ward Cheney and [You88] by Nicholas Young. These two books were a very valuable assistance during the writing.

In the direction of applications, a suitable follow-up to this book are Eberhard Zeidler’s two volumes [Zei95a, Zei95b].
If one wants to step deeper into functional analysis there are so many possibilities that to mention just a few would do injustice to all the others. The most profound and comprehensive modern treatment that I know, and certainly a recommendation for the future expert, is Peter Lax’s *opus magnum* [Lax02].

Acknowledgements. I am very grateful to my students at Delft University of Technology. Confronting their questions about the material and their difficulties in coming to terms with it had a profound influence on me while writing this book. In addition, several students helped to eliminate mistakes from the various preliminary versions.

Special thanks (and many compliments) go to Martijn de Jong (Delft) for producing the vast majority of the figures.

I also want to acknowledge the contributions of many colleagues, most prominently the remarks by Jürgen Voigt (Dresden) and Hendrik Vogt (Dresden, Clausthal) on Chapter 15, which grew out of a discussion of Sokal’s article [Sok11]. From Bernhard Haak (Bordeaux) I learned — apart from many other things — to view the usual proof of Tietze’s theorem in functional analytic terms.

I am grateful to my colleagues from Delft for the excellent working atmosphere they create and the love for functional analysis that we share. In particular, I am indebted to Ben de Pagter, who encouraged me all along to write this text and to Jan van Neerven who read parts of the manuscript and whose comments helped much to improve it.

This book was completed during a sabbatical stay at the University of Auckland, and my warmest thanks go to Tom ter Elst for his generous invitation and his warm hospitality, and for his very valuable remarks on some parts of the text.

I am indebted to Luann Cole from the American Mathematical Society for her very thorough copyediting which led to a considerable improvement of the text.

I thank my friends and co-authors Bálint Farkas (Wuppertal) and Bernhard Haak (Bordeaux) for their support and their patience.

Finally, I would like to thank those from whom I myself learned functional analysis, Wolfgang Arendt (Ulm), Rainer Nagel and Ulf Schlotterbeck (Tübingen). Without them not one single line of this text would ever have been written.

Delft and Auckland, April 2014

Markus Haase
Bibliography

Symbol Index

\begin{align*}
\mathbb{C}, & \quad 311, 321 \\
\mathbb{K}, & \quad 1, 322 \\
\mathbb{N} = & \quad \{1, 2, \ldots\}, 311 \\
\mathbb{N}_0 = & \quad \{0, 1, 2, \ldots\}, 311 \\
\mathbb{Q}, & \quad 311 \\
\mathbb{R}, & \quad 311, 319 \\
\mathbb{Z} = & \quad \{\ldots, -2, -1, 0, 1, 2, \ldots\}, 311 \\
i, & \quad 322 \\
e, & \quad 10 \\
\text{Re} z, & \quad 321 \\
\text{Im} z, & \quad 321 \\
x, & \quad 322 \\
\mathbf{0}, & \quad 329 \\
1_{\mathcal{A}}, & \quad 109 \\
\delta_{ij}, & \quad 7 \\
f_+, & \quad 111 \\
f_-, & \quad 111 \\
f, & \quad 152 \\
k^*, & \quad 210 \\
\emptyset, & \quad 329 \\
a \in A, & \quad 329 \\
A \cap B, & \quad 330 \\
A \cup B, & \quad 330 \\
A \setminus B, & \quad 329 \\
A \subseteq B, & \quad 329 \\
A \times B, & \quad 330 \\
A^c, & \quad 330 \\
\mathcal{P}(X), & \quad 330 \\
X/\sim, & \quad 312 \\
[x]_{\sim}, & \quad 312 \\
dom(f), & \quad 330 \\
\text{graph}(f), & \quad 330 \\
f(A), & \quad 330 \\
f^{-1}(B), & \quad 330 \\
f^{-1}, & \quad 331 \\
\text{inf} A, & \quad 315 \\
\text{sup} A, & \quad 315 \\
(x_n)_{n \in \mathbb{N}}, & \quad 311 \\
B(x, r), & \quad 38 \\
B[x, r], & \quad 56 \\
\mathcal{A}, & \quad 18 \\
diam(A), & \quad 52 \\
d(x, A), & \quad 11 \quad 129 \\
B_E, & \quad 23 \\
d_E(f, g), & \quad 37 \\
\|f\|, & \quad 5 \quad 18 \\
(f, g), & \quad 3 \\
f \perp g, f \perp S, & \quad 6 \\
S^\perp, & \quad 6 \quad 285 \\
\text{span}(A), & \quad 323 \\
\text{span}(A), & \quad 92 \\
j : E \to E'', & \quad 280 \\
\mathcal{F}(X; E), & \quad 11 \quad 326 \\
U \oplus V, & \quad 326 \\
I, & \quad 24 \\
\text{Lin}(E; F), & \quad 321 \\
\mathcal{L}(E; F), \mathcal{L}(E), & \quad 21 \\
E' = \mathcal{L}(E; \mathbb{K}), & \quad 277 \\
\|T\|, & \quad 22 \\
T', & \quad 285 \\
\text{ran}(T), & \quad 64 \quad 325
\end{align*}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ran}(T))</td>
<td>64</td>
</tr>
<tr>
<td>(\text{ker}(T))</td>
<td>64, 224</td>
</tr>
<tr>
<td>(\sigma(A))</td>
<td>232, 243</td>
</tr>
<tr>
<td>(\rho(A))</td>
<td>243</td>
</tr>
<tr>
<td>(R(\lambda, A))</td>
<td>243</td>
</tr>
<tr>
<td>(A^*)</td>
<td>218</td>
</tr>
<tr>
<td>(|A|)</td>
<td>232</td>
</tr>
<tr>
<td>(A_{</td>
<td>\lambda})</td>
</tr>
<tr>
<td>(\delta_{\alpha})</td>
<td>25, 326</td>
</tr>
<tr>
<td>(\hat{f})</td>
<td>157</td>
</tr>
<tr>
<td>(L_f)</td>
<td>127</td>
</tr>
<tr>
<td>(P_F)</td>
<td>131, 133</td>
</tr>
<tr>
<td>(|f|_1)</td>
<td>118</td>
</tr>
<tr>
<td>(|f|_1) ((f \in \mathcal{L}^1(\mathbb{X})))</td>
<td>113</td>
</tr>
<tr>
<td>(|f|_\infty) ((f \in \mathcal{C}[a, b]))</td>
<td>19</td>
</tr>
<tr>
<td>(|f|_2) ((f \in C[a, b]))</td>
<td>5</td>
</tr>
<tr>
<td>(|f|_2) ((f \in C^1[a, b]))</td>
<td>29</td>
</tr>
<tr>
<td>(|f|_p) ((f \in L^p(\mathbb{X})))</td>
<td>123</td>
</tr>
<tr>
<td>(|f|_{\infty}) ((f \in \mathcal{B}(\Omega)))</td>
<td>20</td>
</tr>
<tr>
<td>(|f|_{C^0(\mathbb{K})})</td>
<td>152</td>
</tr>
<tr>
<td>(|f|{\infty}) ((f \in \mathcal{C}\alpha[a, b]))</td>
<td>35</td>
</tr>
<tr>
<td>(|f|_{C_1[0, 1]})</td>
<td>157</td>
</tr>
<tr>
<td>(|f|_{H^1(a, b)})</td>
<td>178</td>
</tr>
<tr>
<td>(|f|_{H^2(a, b)})</td>
<td>183</td>
</tr>
<tr>
<td>(|f|_{\infty}) ((f \in \mathcal{C}_c\mathbb{R}))</td>
<td>155</td>
</tr>
<tr>
<td>(|f|{\infty}) ((f \in \mathcal{C}\infty[a, b]))</td>
<td>50</td>
</tr>
<tr>
<td>(|f|_{L^p(\mathbb{X} \times \mathbb{Y})})</td>
<td>194</td>
</tr>
<tr>
<td>(|f|_{L^p(\mathbb{X} \times \mathbb{Y})})</td>
<td>123</td>
</tr>
<tr>
<td>(|f|_{C^0(\mathbb{K})})</td>
<td>152</td>
</tr>
<tr>
<td>(|f|{\infty}) ((f \in \mathcal{C}\alpha[a, b]))</td>
<td>35</td>
</tr>
<tr>
<td>(|f|_{C_1[0, 1]})</td>
<td>157</td>
</tr>
</tbody>
</table>
Subject Index

a.e. (almost everywhere), 116
absolute value (of a scalar), 322
absolutely summable, 87
addition
 of functions, 326
 of operators, 21
 of vectors, 322
additive
 countably, 111
 finitely, 110
adjoint
 kernel function, 219
 of a Hilbert–Schmidt integral operator, 219
 of a matrix, 219
 of an abstract Hilbert–Schmidt operator, 224
 of the left and right shift operator, 218
affine hyperplane, 145
affine subspace, 142
almost everywhere, 116
annihilator, 285
antisymmetric, 314
approximate eigenvalue, 232
Axiom of Choice, 313
axioms
 for a partial ordering, 314
 for a vector space, 328
 for an equivalence relation, 312
 for the real numbers, 318
Baire’s theorem, 262
ball
 closed, B[x, r], 56
 open, B(x, r), 38
Banach contraction principle, 341
Banach space adjoint, 286
basis
 algebraic, 324
 Hamel, 140
 orthonormal, countable, 139
 orthonormal, general, 353
Bernstein polynomial, 320
Bessel’s inequality, 8, 138, 157, 353
for double series, 143
best approximation, 120
bijective (mapping), 331
Bolzano–Weierstrass property, 319
 theorem, 320
bound
 lower, 315
 upper, 315
bounded
 essentially (function), 122
 function, 20
 linear mapping, 21
 operator, 21
 quadratic variation, 53
 subset of a metric space, 52
 subset of a normed space, 28
 variation, 34, 32, 245
bounded inverse theorem, 265
canonical surjection, 327
Cantor function, 299
Carlson–Beurling inequality, 348
Cartesian product (of sets), 330
Cauchy–Schwarz inequality, 15
change of variables, 113
closed
 ball, 56
 graph, 270
 subset, 55
closed graph theorem, 270
closure (of a subset in a metric space), 48
codomain, 330
coercive (sesquilinear form), 220
coercivity constant, 220
column stochastic matrix, 99
compact
 metric space, 64 72
 operator, 214
 relatively, 75
 sequentially, 64
 subset of a metric space, 64
compatible operation (with an equivalence relation), 312
complement (set-theoretic), 330
complete metric (space), 80
completeness, 80
 of \(B(\Omega) \), 84
 of \(B(\Omega; E) \), 91
 of \(BV([a,b]; E) \), 91
 of \(C_b(\Omega) \), 86
 of \(c \), 89
 of \(C[a,b] \), 85
 of \(C^\alpha([a,b]; E) \), 91
 of \(c_0 \), 88
 of \(\ell^1 \), 89
 of \(\ell^2 \), 82
 of \(\ell^\infty \), 85
 of \(\ell^p \), 91
 of \(L^1 \), 124
 of \(L^2 \), 122
 of \(L^\infty \), 123
 of \(L^p \), 123
 of \(UC_b(\Omega) \), 89
 of a discrete metric space, 88
 of a quotient space, 92
 of each fin.-dim. space, 84
completeness axiom, 339
completion (of a metric space), 331 333
complex conjugate \(\overline{z} \), 322
complex numbers \(\mathbb{C} \), 321
conditional expectation, 135
cone, 112
conjugate exponent, 29
conjugate transposed matrix, 219
continuity
 at a point, 58
 of a mapping, 58
 of the norm, 61
 of vector space operations, 61
continuous
 Hölder cont. of order \(\alpha \), 35
 linear mapping, 63
Lipschitz, 55
 uniformly, 65
convergence
 almost everywhere, 116
 in mean, 46
 in operator norm, 199
 in square mean, 46
 of a sequence, 39 40
 of a series, 87
 pointwise, 44
 strong, of operators, 201
 uniform, 44
 weak, 75
convex, 131
convolution, 176
convolution operator, 166
convolution product, 165
coordinate vector, 325
coordinatization
 countable (orthonormal) basis, 140
 finite basis, 0
countable (set), 316
countably additive, 111
counting measure, 240
cover, 110
cutoff function, 152 154 155
dangling node, 99
De Morgan’s laws, 331
Dedekind axiom, 319
definite, 15 35
density
 of \(C[a,b] \) in \(L^p(a,b) \), 125
 of \(C^1[a,b] \) in \(H^1(a,b) \), 183
 of \(C_0^1[a,b] \) in \(H_0^1(a,b) \), 189
 of \(C_0^1[a,b] \) in \(L^p(a,b) \), 154
diagonal argument, 213 302
diagonal matrix (infinite), 27
diameter (of a subset of a metric space), 52
dimension (of a vector space), 324
Dirichlet
D.–Dini criterion, 159
kernel, 267
Laplacian, 196
principle, 187, 190, 191
problem, 190, 191
directed sum, 135
algebraic, 326
decomposition, 326
Dirac functional, 25
direct sum, 135
algebraic, 326
decomposition, 326
Dini’s theorem, 77
Dirichlet–Dini criterion, 159
kernel, 267
Laplacian, 196
Laplace–Green principle, 187, 190, 191
problem, 190, 191
discrete metric, 38
distance
of a point to a set, 47, 129
of vectors in a normed space, 37
dividing by an equivalence relation, 8124
domain
of a mapping, 330
of the Dirichlet Laplacian, 247
of the Schrödinger operator, 249
dominated convergence theorem, 1118
double sequence, 52
Cauchy, 89
convergent, 52
double series, 91, 156
dual
basis, 328
mapping, 328
space (algebraic), 327
space (topological), 277
duality, 290
canonical, 286
eigenspace, 231
eigenvalue, 231
approximate, 232
eigenvector, 231
element of a set, 328
energy norm, 185
equality (of sets), 329
equality a.e., ∼λ, 116
equivalence
class, 312
of metrics, 76
of norms, 68
relation, 612
euler’s constant, 10
evaluation functional, 25, 326
evolution equation (for the schrödinger op.), 252
factor space, 327
family (indexed), 331
Fejér kernel, 167
finite rank, 211
finite-dimensional (vector) space, 324
finely additive, 110
fixed point equation, 92
form
hermitian, 328
quadratic, 328
sesquilinear, 328
symmetric, 328
Fourier coefficient
abstract, 7
classical, 10, 157, 160
Fourier inversion formula, 174, 347
Fourier series
abstract, 7, 138
classical, 11
Fourier transform, 128, 162
on L2, 170
Fredholm alternative, 238
Fubini’s theorem, 194
function
absolutely continuous, 299, 301
adjoint kernel, 219
characteristic, 109
constant 1, 180
cutoff, 152, 153, 155
essentially bounded, 122
even, 132
Hilbert–Schmidt kernel, 197
Hölder continuous, 35
integrable, 113
kernel, 194
Lebesgue measurable, 172, 194
Lipschitz continuous, 35
locally integrable, 174
of bounded variation, 341, 295
of compact support, 172
periodic, 157
potential, 249
regulated, 91, 175, 293
smooth, of compact support, 155
special regulated, 296
square integrable, 121
step, 35, 295
test, 177, 187
uniformly continuous, 89
Subject Index

weakly differentiable, 178
functional
(bounded) linear, 21
linear, 325
point evaluation, 20
sublinear, 279
fundamental principle of analysis, 90
fundamental theorem of calculus for H^1, 182

Gaussian elimination, 93
generalized eigenspace, 231
generator of a subspace, 325
Gram–Schmidt procedure, 9
graph (of a mapping), 330
greatest (element in an ordered set), 315
greatest lower bound, 315
Green’s function, 225
for the Poisson problem, 184
for the Sturm–Liouville problem, 250

Hahn–Banach theorem, 280, 282, 284
Hausdorff’s maximality theorem, 316
heat equation, 252
hermitian form, 328
Hölder continuous, 35
Hölder’s inequality, 30, 123, 124
homogeneous, 18
imaginary part, 321
imaginary part $\text{Im} z$, 321
imaginary unit i, 321
implicit function theorem, 103
importance vector, 98
index set, 331
indexed family, 331
induced metric, 39
infimum, 315
infinite-dimensional (vector space), 324
initial value problem, 95
injective (mapping), 330
inner product, 3
standard, on $C[a, b]$, 8
standard, on \mathbb{K}^d, 6
inner product space, 3
integrable function, 113
integral
equation, 204
kernel, 194
Lebesgue, 108
operator, 194
Riemann, 107

Riemann–Stieltjes, 176
integration by parts (for H^1-functions), 189
integration operator, 119, 179
invariant (subspace), 235
inverse (of a mapping), 331
inverse mapping theorem, 102
invertible operator, 196
isometric
isomorphism, 24, 333
mapping, see also isometry
isometry, 24, 333
linear, in finite dimensions, 9
isomorphic
as vector spaces, 325
isomorphism
algebraic, 325
isometric, 24
topological, 89
iterative procedure, 94
kernel
Hilbert–Schmidt integral, 197
integral, 194
of a linear mapping, $\ker(T)$, 94, 325

Lagrange multiplier, 104
Laplace transform, 127, 198
Laplacian (with Dirichlet b.c.), 196
Lax–Milgram theorem, 146, 220
least (element in an ordered set), 315
least upper bound, 315
Lebesgue
integral, 108
measurable set, 111
measure, 111
outer measure, 110
singular function, see also Cantor function
Legendre polynomials, 12
length
of a vector, 4
of an interval, 108
limit
of a double sequence, 42
of a sequence, 10
linear
mapping, bounded, 21
combination, 323
functional, 325
independence, 325
mapping, 21, 325
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>space, 323</td>
<td>323</td>
</tr>
<tr>
<td>span, 323</td>
<td>323</td>
</tr>
<tr>
<td>subspace, 323</td>
<td>323</td>
</tr>
<tr>
<td>Lipschitz condition, 96</td>
<td>96</td>
</tr>
<tr>
<td>continuous, 96</td>
<td>96</td>
</tr>
<tr>
<td>local uniqueness (of solutions), 98</td>
<td>98</td>
</tr>
<tr>
<td>lower bound, 315</td>
<td>315</td>
</tr>
<tr>
<td>mapping</td>
<td>315</td>
</tr>
<tr>
<td>bijective, 331</td>
<td>331</td>
</tr>
<tr>
<td>continuous, 58</td>
<td>58</td>
</tr>
<tr>
<td>continuous at a point, 58</td>
<td>58</td>
</tr>
<tr>
<td>continuous linear, 63</td>
<td>63</td>
</tr>
<tr>
<td>general, 330</td>
<td>330</td>
</tr>
<tr>
<td>injective, 330</td>
<td>330</td>
</tr>
<tr>
<td>inverse, 331</td>
<td>331</td>
</tr>
<tr>
<td>linear, 325</td>
<td>325</td>
</tr>
<tr>
<td>surjective, 330</td>
<td>330</td>
</tr>
<tr>
<td>uniformly continuous, 65</td>
<td>65</td>
</tr>
<tr>
<td>maximal (element in an ordered set), 315</td>
<td>315</td>
</tr>
<tr>
<td>mean value theorem, 101</td>
<td>101</td>
</tr>
<tr>
<td>measurable function, 112</td>
<td>112</td>
</tr>
<tr>
<td>product, 194</td>
<td>194</td>
</tr>
<tr>
<td>set (Lebesgue), 111</td>
<td>111</td>
</tr>
<tr>
<td>measure, 111</td>
<td>111</td>
</tr>
<tr>
<td>counting, 240</td>
<td>240</td>
</tr>
<tr>
<td>Lebesgue, 111</td>
<td>111</td>
</tr>
<tr>
<td>Lebesgue, outer, 110</td>
<td>110</td>
</tr>
<tr>
<td>Lebesgue, two-dimensional, 194</td>
<td>194</td>
</tr>
<tr>
<td>spectral, 241</td>
<td>241</td>
</tr>
<tr>
<td>mesh, 72</td>
<td>72</td>
</tr>
<tr>
<td>metric, 58</td>
<td>58</td>
</tr>
<tr>
<td>associated with a norm, 37</td>
<td>37</td>
</tr>
<tr>
<td>discrete, 38</td>
<td>38</td>
</tr>
<tr>
<td>induced, 39</td>
<td>39</td>
</tr>
<tr>
<td>metric space (sequentially) compact, 64</td>
<td>64</td>
</tr>
<tr>
<td>compact, 72</td>
<td>72</td>
</tr>
<tr>
<td>precompact, 72</td>
<td>72</td>
</tr>
<tr>
<td>product, 72</td>
<td>72</td>
</tr>
<tr>
<td>separable, 71</td>
<td>71</td>
</tr>
<tr>
<td>midpoint-convex, 264</td>
<td>264</td>
</tr>
<tr>
<td>minimal (element in an ordered set), 315</td>
<td>315</td>
</tr>
<tr>
<td>minimal norm, 120</td>
<td>120</td>
</tr>
<tr>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>minimization problem (quadratic), 145</td>
<td>145</td>
</tr>
<tr>
<td>Minkowski's inequality, 29</td>
<td>29</td>
</tr>
<tr>
<td>minmax principle, 244</td>
<td>244</td>
</tr>
<tr>
<td>modulus, 322</td>
<td>322</td>
</tr>
<tr>
<td>moment operator, 301</td>
<td>301</td>
</tr>
<tr>
<td>problem, 301</td>
<td>301</td>
</tr>
<tr>
<td>sequence, 174</td>
<td>174</td>
</tr>
<tr>
<td>monotone convergence theorem, 118</td>
<td>118</td>
</tr>
<tr>
<td>multiplication abstract, 209</td>
<td>209</td>
</tr>
<tr>
<td>of two operators, 22</td>
<td>22</td>
</tr>
<tr>
<td>scalar, of functions, 826</td>
<td>826</td>
</tr>
<tr>
<td>scalar, of operators, 21</td>
<td>21</td>
</tr>
<tr>
<td>vectors with scalars, 823</td>
<td>823</td>
</tr>
<tr>
<td>multiplication operator on C[a, b], 31</td>
<td>31</td>
</tr>
<tr>
<td>on ℓp, 27</td>
<td>27</td>
</tr>
<tr>
<td>on Lp, 128</td>
<td>128</td>
</tr>
<tr>
<td>multiplier sequence, 27</td>
<td>27</td>
</tr>
<tr>
<td>negative part (of a function), 114</td>
<td>114</td>
</tr>
<tr>
<td>Neumann series, 203</td>
<td>203</td>
</tr>
<tr>
<td>Newton's method, 93</td>
<td>93</td>
</tr>
<tr>
<td>norm, 18</td>
<td>18</td>
</tr>
<tr>
<td>induced by an inner product, 5</td>
<td>5</td>
</tr>
<tr>
<td>attained, 27</td>
<td>27</td>
</tr>
<tr>
<td>of an operator, 22</td>
<td>22</td>
</tr>
<tr>
<td>stronger/weaker, 66</td>
<td>66</td>
</tr>
<tr>
<td>uniform, 14</td>
<td>14</td>
</tr>
<tr>
<td>norm (concrete) 1-norm</td>
<td>1-norm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1-norm</td>
<td>1-norm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1-norm</td>
<td>1-norm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1-norm</td>
<td>1-norm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2-norm</td>
<td>2-norm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>p-norm</td>
<td>p-norm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>p-norm</td>
<td>p-norm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Euclidean on Kd, 5</td>
<td>5</td>
</tr>
<tr>
<td>Hilbert–Schmidt</td>
<td></td>
</tr>
<tr>
<td>maximum norm</td>
<td></td>
</tr>
<tr>
<td>on H1, 182</td>
<td>182</td>
</tr>
<tr>
<td>supremum norm</td>
<td></td>
</tr>
<tr>
<td>supremum norm, on B(Ω), 20</td>
<td>20</td>
</tr>
<tr>
<td>variation norm</td>
<td></td>
</tr>
<tr>
<td>normal operator, 240</td>
<td>240</td>
</tr>
<tr>
<td>normed space, 240</td>
<td>240</td>
</tr>
</tbody>
</table>
Subject Index

nuclear operator, 245
null
 sequence, 33, 48
 set, 115
null space, see also kernel, 325
numerical radius, 234
open
 ball, 38
 cover, 72
 subset, 55
open mapping theorem, 267
operator, see also linear mapping, 21
 abstract Hilbert–Schmidt, 223
 adjoint (Hilbert space), 218
 Banach space adjoint, 285
 bounded, 21
 compact, 214
 convolution, 166
 Dirichlet Laplacian, 247
 dual, 285
 exponential, 210
 finite-dimensional, 211
 finitely approximable, 211
 Fourier transform, 128
 Hermitian, 234
 Hilbert–Hankel, 208
 Hilbert–Schmidt (integral), 198
 identity I, 241
 integral, 194
 invertible, 89, 196, 272
 Laplace, 157
 Laplace transform, 198
 Laplacian, mixed b.c., 255
 left and right shift, 26
 moment, 301
 monotonic, 340
 multiplication on C[a, b], 31
 multiplication on Lp, 27
 multiplication on L1, 128
 norm, 22
 normal, 240, 245
 nuclear, 245
 of finite rank, 211
 of integration J, 179, 200
 of trace class, 215
 positive self-adjoint, 242
 Schrödinger, one-dimensional, 240
 self-adjoint, 234
 semigroup, 254
 strict contraction, 208
 Sturm-Liouville, 249
 Volterra, on C[a, b], 204
 Volterra, the, 254
 zero 0, 241
order completeness, 319
ordered
 pair, 330
 set, 314
ordering
 partial, 314
 reverse, 315
 total, 314
orthogonal, 6
 decomposition, 135
 projection, 8
 133, 141
orthonormal basis
 countable, 139
 general, 465
orthonormal system, 7
 maximal, countable, 139
 maximal, general, 465
outer measure, 110
pair (ordered), 330
pairing, 290
 canonical, 290
parallelogram law, 5
Parseval’s identity, 135, 346
 for double series, 143
partial ordering, 314
partially ordered set, 314
perpendicular, 6
Plancherel’s identity, 170, 346
 Poincaré inequality, 185
 point evaluation, 25
 325, 190
 pointwise convergence, 44
 Poisson problem, 177, 184, 187
 196
 polarization identity, 5
 11
 positive cone, 141
 positive part (of a function), 114
 positively homogeneous, 269
 potential function, 249
 precompact (metric space), 72
 principle of nested balls, 262
 probability vector, 99
product
 (Cartesian) of sets, 330
 of metric spaces, 75
 of normed spaces, 75
 of two operators, 22
product rule (for H1-functions), 189
projection
associated with a direct sum, 326
 orthogonal, 8, 133, 141
Pythagoras’ lemma, 7
quadratic form, 328
quadratic minimization, 137, 145
quadratic variation (of a sequence), 53
quotient space, 327
range (of a linear mapping), 64, 325
real part, 321
rectangle, 194
reflexive, 312, 314
regulated function, 91, 295
relation
 equivalence, 312
 functional, 330
 set-theoretic, 330
relatively compact, 75
representative (for an equivalence class), 313
resolvent (of an operator), 243
resolvent identity, 243
resolvent set, 243
Riemann sum, 108
Riemann–Lebesgue lemma, 162, 163
Riemann–Stieltjes integral, 175
Riesz representation theorem, 297
Riesz’ lemma, 70
Riesz–Fréchet theorem, 136, 217, 220
 250, 252
Riesz-Fréchet theorem, 145
sandwich theorem, 60
scalar product, 3
self-adjoint operator, 234
semi-inner product, 145
semigroup, strongly continuous, 254
separable
 Hilbert space, 171
 metric space, 74
 normed space, 71, 280
separating the points, 278
separation lemma, 284
sequence, 311
 absolutely summable, 87
 Cauchy, 79
 convergent, 40
double, 52
 finite, 48
 multiplier, 27
null, 33, 48
of bounded variation, 52
of finite quadratic variation, 53
two-sided, 143
unconditionally convergent, 352
weakly convergent, 288
sequentially compact, 64
series
 (simply) convergent, 87
 absolutely convergent, 87
double, 91
 Neumann, 203
orthogonal, 137
unconditionally convergent, 352
sesquilinear form, 3, 328
set
 (Lebesgue) null, 114
 Cantor’s “middle thirds”, 116
 Cartesian product, 330
 complement, 330
 convex, 131
difference, 330
 empty, 329
 equality of sets, 329
 functional relation, 330
 image (under a mapping), 330
 index set, 330
 intersection, 330, 331
 inverse image (under a mapping), 330
 midpoint-convex, 264
 power set, 330
 relation, 330
 singleton, 329
 subset, 329
 symmetric, 264
 union, 330, 331
shift (left and right), 26
σ-algebra, 111
singleton set, 329
singular value decomposition, 245
singular values, 245
Sobolev space
 first order, 178
 higher order, 184
space
 (topological) dual, 277
 abstract vector space, 82
 algebraic dual, 327
 Banach, 83
 complete metric, 80
double dual, 280
finite-dimensional, 324
Subject Index

- **Hilbert**, 81
- infinite-dimensional, 324
- inner product, 3
- linear, 323
- metric, 38
- normed, 18
- pre-Hilbert, 3
- quotient, 91
- reflexive, 287
- separable, 141
- Sobolev (first order), 178
- Sobolev (higher order), 184

space (concrete)

- $\mathcal{L}(E; F)$, $\mathcal{L}(E)$, 21
- $C_0(E; F)$, 211
- $BV([a, b]; E)$, 33, 91
- $BV_0([a, b])$, 295
- $L^1(E; F)$, 215
- $C_0([a, b])$, 211
- $C([a, b])$, 11
- $C^1([a, b])$, 187
- $C^1([a, b])$, 162
- $C^\alpha([a, b]; E)$, 35, 91
- $C^\infty([a, b])$, 50
- $C^k([a, b])$, 50
- $C_p([a, b])$, 51
- $C_{\text{per}}([0, 1])$, 157
- $F([a, b])$, 11
- $L^1(X)$, 113
- $L^1(X)$, 118
- $L^\infty(X)$, 122
- $L^2(X)$, $L^2(X)$, 121
- $L^p(X)$, $L^p(X)$, 123
- $L^p(X \times Y)$, 194
- $L^p(X \times Y)$, 194
- $L^p(\mathbb{R})$, 152
- $H^1([a, b])$, 178
- $H_0^1([a, b])$, 185
- $H^m([a, b])$, 183
- $M(X)$, 112
- $M_{\text{per}}(X)$, 143
- $P([a, b])$, 131
- $P([a, b])$, 139
- $R([a, b])$, 107
- $Reg([a, b])$, 91
- $Reg_s([a, b])$, 295
- $St([a, b]; E)$, 35, 91
- $UC_b(\Omega)$, 89
- \mathbb{K}^d, 1
- c_{00}, 48
- ℓ^1, 20
- ℓ^2, 17
- $\ell^2(\mathbb{Z})$, 143
- ℓ^∞, 20
- ℓ^p, 28
- s, 92

span, see also linear span

- special regulated function, 296
- spectral decomposition, 237
- spectral measure, 241
- spectral theorem
 - for compact self-adjoint operators, 260
 - for compact normal operators, 245
 - for normal operators, 241
- spectrum
 - of a matrix, 232
 - of an operator, 242, 248
- standard unit vectors, 25
- Steinitz’ theorem, 324
- step function, 35, 295
- strong convergence lemma, 104
- stronger/weaker norm, 66
- strongly convergent, 201
- Sturm–Liouville problem, 221, 225, 228
- 249
- subadditive, 279
- subcover (of an open cover), 72
- sublinear functional, 279
- subsequence (of a sequence), 312
- subspace
 - of a metric space, 39
 - of a vector space, 828
- summable
 - p-, 28
 - absolutely, 20
 - square, 171, 143
 - unconditionally, 352
- support (of a function), 152
- supremum, 315
- supremum norm, 20
- symmetric (mapping), 389
- form, 328
- set, 264
system of representatives, 318

target set or space, 330

theorem
 Weierstrass, trigonometric version, 160
 Baire, 202, 245
 Banach–Steinhaus, 265
 Bessel’s inequality, 8, 138
 Bolzano–Weierstrass, 66, 69, 320, 322
 bounded inverse, 268
 Carlson–Beurling inequality, 348
 Cauchy–Schwarz inequality, 15
 closed graph, 270
 completion (of a metric space), 334
 completion (of a normed space), 286
 bounded operator, 286
 contraction principle, 94
 Dini, 77
 Dirichlet–Dini criterion, 159
 dominated convergence, 118
 du Bois-Reymond, 159, 266
 Fejér, 167
 Fourier inversion formula, 147
 Fredholm alternative, 238
 Fubini, 194
 fundamental theorem of calculus for H^1, 182
 Gram–Schmidt, 9
 Hahn–Banach separation, 145, 284
 Hahn–Banach, general case, 252
 Hahn–Banach, separable case, 250
 Hausdorff maximality, 316
 Hellinger–Toeplitz, 275
 Hölder’s inequality
 $(p = 1, q = \infty)$, 123
 $(p = q = 2)$, 122
 discrete, 30
 general, 123
 implicit function, 103
 inverse mapping, 102
 Lax–Milgram, 148, 220
 mean value, 101
 Minkowski’s inequality, 29
 minmax principle, 241
 monotone convergence, 113
 Neumann series, 203
 open mapping, 267
 Parseval’s identity, 137
 for double series, 143
 Plancherel’s identity, 170, 346
 Poincaré inequality, 185
principle of nested balls, 262
 Pythagoras’, 7
 Riemann–Lebesgue lemma, 162, 163
 Riesz representation, 297
 Riesz’ lemma, 70
 Riesz–Fréchet, 145, 217, 220, 260, 292
 Riesz–Kakutani, 298
 Riesz-Fréchet, 145
 separation lemma, 284
 spectral theorem (for cp. normal), 245
 spectral theorem (for cp. self-adj.), 236
 spectral theorem (general), 241
 Steinitz, 324
 strong convergence lemma, 104
 Tietze, 273
 uniform boundedness principle, 264
 uniqueness for Fourier series, 161
 Weierstrass, 50, 149, 339
 Weierstrass’ M-test, 87
 Young’s inequality, 170
 Zorn’s lemma, 315
 totally ordered set, 314
 trace class operator, 245
 transitive, 312, 314
 transposed matrix, 216
 triangle inequality
 for metrics, 38
 for norms, 16, 18
 second t.i., for metrics, 80
 second t.i., for norms, 61
 trigonometric polynomial, 156
 trigonometric system, 110, 156
 truncation, 152

unconditional convergence (of a series), 352

uncountable (set), 316

uniform boundedness principle, 264
uniformly bounded (set of operators), 264
uniformly continuous, 65
unit ball (of a normed space), 28
unit vectors, standard, 25
unitarily equivalent, 240
upper bound, 315

variational method, 185
variational problem, 137, 145
vector space, 322
Volterra integral equation, 205
subject index

volterra operator
 the, 254
 abstract, 204

weak
 convergence, 75, 288
 derivative, 178
 gradient, 187
 limit, 288

weaker/stronger norm, 66

weierstrass theorem, 50, 149

weierstrass’ m-test, 87

well-defined operation, 313

well-posedness (of an equation), 196

wronskian, 251

young’s inequality, 175

zorn’s lemma, 314
Author Index

Aristotle (384–322 BC), 318

Baire, René-Louis (1874–1932), 261, 310
Banach, Stefan (1892–1945), 84, 305
Bernstein, Sergei (1880–1968), 339
Bessel, Friedrich Wilhelm (1784–1846), 8
Beurling, Arne Carl-August (1905–1986), 348
Bolzano, Bernard (1781–1848), 65, 318
Brin, Sergey (1973–), 99

Cantor, Georg (1845–1918), 81, 306, 318
Carathéodory, Constantin (1873–1950), 111
Carleson, Lennart (1928–), 160
Carlson, Fritz David (1888–1952), 348
Cauchy, Augustin-Louis (1789–1857), 15
Chernoff, Paul (1942–), 157
Dedekind, Richard (1831–1916), 306

De Morgan, Augustus (1806–1871), 331
Descartes, René (1596–1650), 317
Dini, Ulisse (1845–1918), 77, 159
Dirichlet, Gustav Lejeune (1805–1859), 159, 190
Du Bois-Reymond, Paul (1831–1889), 159, 266, 307
Dunford, James Nelson (1906–1986), 310

Enflo, Per (1944–), 215
Euclid (around 280 BC), 5, 316

Euler, Leonhard (1707–1783), 10

Fejér, Lipót (1880–1959), 167
Fischer, Ernst Sigismund (1875–1954), 309
Fourier, Joseph (1768–1830), 7, 318
Fréchet, Maurice René (1878–1973), 130, 307
Fredholm, Erik Ivar (1866–1927), 238, 308
Fubini, Guido (1879–1943), 194

Gauß, Carl Friedrich (1777–1855), 93
Gelfand, Israel (1913–2009), 241
Gram, Jørgen Pedersen (1850–1916), 9
Grassmann, Hermann Günther (1809–1877), 307
Green, George (1793–1841), 184
Grothendieck, Alexander (1928–), 215

Hadamard, Jacques-Salomon (1865–1963), 309
Hahn, Hans (1879–1934), 280
Halmos, Paul (1916–2006), 241
Hamel, Georg (1877–1954), 140
Hamilton, Sir William R. (1805–1865), 221

Hankel, Hermann (1839–1873), 208
Hausdorff, Felix (1868–1942), 307, 316
Heine, Eduard (1821–1881), 311
Hellinger, Ernst (1883–1950), 275
Hilbert, David (1862–1943), 3, 307, 317
Hölder, Otto (1859–1937), 30

371
<table>
<thead>
<tr>
<th>Author</th>
<th>Born</th>
<th>Died</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kakutani, Shizuo</td>
<td>1911–2004</td>
<td></td>
<td>298</td>
</tr>
<tr>
<td>Lagrange, Joseph-Louis de</td>
<td>1736–1813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laplace, Pierre-Simon Marquis de</td>
<td>1749–1827</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Lax, Peter</td>
<td>1926–</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>Lebesgue, Henri</td>
<td>1875–1941</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Legendre, Adrien-Marie</td>
<td>1752–1833</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Leibniz, Gottfried Wilhelm</td>
<td>1646–1716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levi, Beppo</td>
<td>1875–1961</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>Lévy, Paul</td>
<td>1886–1971</td>
<td></td>
<td>308</td>
</tr>
<tr>
<td>Liouville, Joseph</td>
<td>1809–1882</td>
<td></td>
<td>221</td>
</tr>
<tr>
<td>Lipschitz, Rudolf</td>
<td>1832–1903</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Mazur, Stanislaw</td>
<td>1905–1981</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>Mercer, James</td>
<td>1883–1932</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>Milgram, Arthur</td>
<td>1912–1961</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>Minkowski, Hermann</td>
<td>1864–1909</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Neumann, Carl</td>
<td>1832–1925</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>Neumann, John von</td>
<td>1903–1957</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Newton, Isaac</td>
<td>1643–1727</td>
<td></td>
<td>93–94</td>
</tr>
<tr>
<td>Page, Larry</td>
<td>1973–</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Parseval (des Chênes), Marc-Antoine</td>
<td>1755–1836</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>Peano, Giuseppe</td>
<td>1858–1932</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>Plancherel, Michel</td>
<td>1885–1967</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>Poincaré, Henri</td>
<td>1854–1912</td>
<td></td>
<td>185</td>
</tr>
<tr>
<td>Poisson, Siméon Denis</td>
<td>1781–1840</td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>Pythagoras (around 520 BC)</td>
<td></td>
<td></td>
<td>7, 317</td>
</tr>
<tr>
<td>Riemann, Bernhard</td>
<td>1826–1866</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Riesz, Frigyes</td>
<td>1880–1956</td>
<td></td>
<td>70, 330, 308</td>
</tr>
<tr>
<td>Schmidt, Erhard</td>
<td>1876–1959</td>
<td></td>
<td>9, 308</td>
</tr>
<tr>
<td>Schrödinger, Erwin</td>
<td>1887–1961</td>
<td></td>
<td>249</td>
</tr>
<tr>
<td>Schwartz, Jacob T.</td>
<td>1930–2009</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>Schwartz, Laurent-Moise</td>
<td>1915–2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarz, Hermann Amandus</td>
<td>1843–1921</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Sobolev, Sergei Lvovich</td>
<td>1908–1989</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>Steinhaus, Hugo</td>
<td>1887–1972</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>Steinitz, Ernst</td>
<td>1871–1928</td>
<td></td>
<td>524</td>
</tr>
<tr>
<td>Stieltjes, Thomas Joannes</td>
<td>1856–1894</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>Sturm, Charles</td>
<td>1803–1855</td>
<td></td>
<td>221–249</td>
</tr>
<tr>
<td>Taylor, Brook</td>
<td>1685–1731</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Tietze, Heinrich</td>
<td>1880–1964</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>Toeplitz, Otto</td>
<td>1881–1940</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>Ulam, Stanislaw</td>
<td>1909–1984</td>
<td></td>
<td>306</td>
</tr>
<tr>
<td>Volterra, Vito</td>
<td>1860–1940</td>
<td></td>
<td>244, 807</td>
</tr>
<tr>
<td>Weierstrass, Karl</td>
<td>1815–1897</td>
<td></td>
<td>50, 313</td>
</tr>
<tr>
<td>Weyl, Hermann</td>
<td>1885–1955</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>Wronski, Josef</td>
<td>1776–1853</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td>Zorn, Max August</td>
<td>1906–1993</td>
<td></td>
<td>315</td>
</tr>
</tbody>
</table>
Selected Published Titles in This Series

156 Markus Haase, Functional Analysis: An Elementary Introduction, 2014
155 Emmanuel Kowalski, An Introduction to the Representation Theory of Groups, 2014
154 Wilhelm Schlag, A Course in Complex Analysis and Riemann Surfaces, 2014
153 Terence Tao, Hilbert’s Fifth Problem and Related Topics, 2014
152 Gábor Székelyhidi, An Introduction to Extremal Kähler Metrics, 2014
151 Jennifer Schultens, Introduction to 3-Manifolds, 2014
150 Joe Diestel and Angela Spalsbury, The Joys of Haar Measure, 2013
148 Luis Barreira and Yakov Pesin, Introduction to Smooth Ergodic Theory, 2013
147 Xingzhi Zhan, Matrix Theory, 2013
146 Aaron N. Siegel, Combinatorial Game Theory, 2013
143 Alberto Bressan, Lecture Notes on Functional Analysis, 2013
142 Terence Tao, Higher Order Fourier Analysis, 2012
141 John B. Conway, A Course in Abstract Analysis, 2012
140 Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, 2012
139 John B. Walsh, Knowing the Odds, 2012
138 Maciej Zworski, Semiclassical Analysis, 2012
137 Luis Barreira and Claudia Valls, Ordinary Differential Equations, 2012
136 Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, 2012
135 Pascal Cherrier and Albert Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, 2012
134 Jean-Marie De Koninck and Florian Luca, Analytic Number Theory, 2012
132 Terence Tao, Topics in Random Matrix Theory, 2012
131 Ian M. Musson, Lie Superalgebras and Enveloping Algebras, 2012
130 Viviana Ene and Jürgen Herzog, Gröbner Bases in Commutative Algebra, 2011
127 Jeffrey Strom, Modern Classical Homotopy Theory, 2011
126 Terence Tao, An Introduction to Measure Theory, 2011
125 Dror Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, 2011
123 Gregory Eskin, Lectures on Linear Partial Differential Equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic Groups and Differential Galois Theory, 2011
121 Tobias Holck Colding and William P. Minicozzi II, A Course in Minimal Surfaces, 2011
120 Qing Han, A Basic Course in Partial Differential Equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical Statistics, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical Systems and Population Persistence, 2011

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.
This book introduces functional analysis at an elementary level without assuming any background in real analysis, for example on metric spaces or Lebesgue integration. It focuses on concepts and methods relevant in applied contexts such as variational methods on Hilbert spaces, Neumann series, eigenvalue expansions for compact self-adjoint operators, weak differentiation and Sobolev spaces on intervals, and model applications to differential and integral equations. Beyond that, the final chapters on the uniform boundedness theorem, the open mapping theorem and the Hahn–Banach theorem provide a stepping-stone to more advanced texts.

The exposition is clear and rigorous, featuring full and detailed proofs. Many examples illustrate the new notions and results. Each chapter concludes with a large collection of exercises, some of which are referred to in the margin of the text, tailor-made in order to guide the student digesting the new material. Optional sections and chapters supplement the mandatory parts and allow for modular teaching spanning from basic to honors track level.