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Preface

Overview

The present text was written for my course Schrödinger Operators held
at the University of Vienna in winter 1999, summer 2002, summer 2005,
and winter 2007. It gives a brief but rather self-contained introduction
to the mathematical methods of quantum mechanics with a view towards
applications to Schrödinger operators. The applications presented are highly
selective; as a result, many important and interesting items are not touched
upon.

Part 1 is a stripped-down introduction to spectral theory of unbounded
operators where I try to introduce only those topics which are needed for
the applications later on. This has the advantage that you will (hopefully)
not get drowned in results which are never used again before you get to
the applications. In particular, I am not trying to present an encyclopedic
reference. Nevertheless I still feel that the first part should provide a solid
background covering many important results which are usually taken for
granted in more advanced books and research papers.

My approach is built around the spectral theorem as the central object.
Hence I try to get to it as quickly as possible. Moreover, I do not take the
detour over bounded operators but I go straight for the unbounded case. In
addition, existence of spectral measures is established via the Herglotz rather
than the Riesz representation theorem since this approach paves the way for
an investigation of spectral types via boundary values of the resolvent as the
spectral parameter approaches the real line.

xi



xii Preface

Part 2 starts with the free Schrödinger equation and computes the free
resolvent and time evolution. In addition, I discuss position, momentum,
and angular momentum operators via algebraic methods. This is usu-
ally found in any physics textbook on quantum mechanics, with the only
difference being that I include some technical details which are typically
not found there. Then there is an introduction to one-dimensional mod-
els (Sturm–Liouville operators) including generalized eigenfunction expan-
sions (Weyl–Titchmarsh theory) and subordinacy theory from Gilbert and
Pearson. These results are applied to compute the spectrum of the hy-
drogen atom, where again I try to provide some mathematical details not
found in physics textbooks. Further topics are nondegeneracy of the ground
state, spectra of atoms (the HVZ theorem), and scattering theory (the Enß
method).

Prerequisites

I assume some previous experience with Hilbert spaces and bounded
linear operators which should be covered in any basic course on functional
analysis. However, while this assumption is reasonable for mathematics
students, it might not always be for physics students. For this reason there
is a preliminary chapter reviewing all necessary results (including proofs).
In addition, there is an appendix (again with proofs) providing all necessary
results from measure theory.

Literature

The present book is highly influenced by the four volumes of Reed and
Simon [49]–[52] (see also [16]) and by the book by Weidmann [70] (an ex-
tended version of which has recently appeared in two volumes [72], [73],
however, only in German). Other books with a similar scope are, for ex-
ample, [16], [17], [21], [26], [28], [30], [48], [57], [63], and [65]. For those
who want to know more about the physical aspects, I can recommend the
classical book by Thirring [68] and the visual guides by Thaller [66], [67].
Further information can be found in the bibliographical notes at the end.

Reader’s guide

There is some intentional overlap among Chapter 0, Chapter 1, and
Chapter 2. Hence, provided you have the necessary background, you can
start reading in Chapter 1 or even Chapter 2. Chapters 2 and 3 are key
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chapters, and you should study them in detail (except for Section 2.6 which
can be skipped on first reading). Chapter 4 should give you an idea of how
the spectral theorem is used. You should have a look at (e.g.) the first
section, and you can come back to the remaining ones as needed. Chapter 5
contains two key results from quantum dynamics: Stone’s theorem and the
RAGE theorem. In particular, the RAGE theorem shows the connections
between long-time behavior and spectral types. Finally, Chapter 6 is again
of central importance and should be studied in detail.

The chapters in the second part are mostly independent of each other
except for Chapter 7, which is a prerequisite for all others except for Chap-
ter 9.

If you are interested in one-dimensional models (Sturm–Liouville equa-
tions), Chapter 9 is all you need.

If you are interested in atoms, read Chapter 7, Chapter 10, and Chap-
ter 11. In particular, you can skip the separation of variables (Sections 10.3
and 10.4, which require Chapter 9) method for computing the eigenvalues of
the hydrogen atom, if you are happy with the fact that there are countably
many which accumulate at the bottom of the continuous spectrum.

If you are interested in scattering theory, read Chapter 7, the first two
sections of Chapter 10, and Chapter 12. Chapter 5 is one of the key prereq-
uisites in this case.

2nd edition

Several people have sent me valuable feedback and pointed out misprints
since the appearance of the first edition. All of these comments are of course
taken into account. Moreover, numerous small improvements were made
throughout. Chapter 3 has been reworked, and I hope that it is now more
accessible to beginners. Also some proofs in Section 9.4 have been simplified
(giving slightly better results at the same time). Finally, the appendix on
measure theory has also grown a bit: I have added several examples and
some material around the change of variables formula and integration of
radial functions.

Updates

The AMS is hosting a web page for this book at

http://www.ams.org/bookpages/gsm-157/

http://www.ams.org/bookpages/gsm-157/
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where updates, corrections, and other material may be found, including a
link to material on my own web site:

http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/

Acknowledgments

I would like to thank Volker Enß for making his lecture notes [20] avail-
able to me. Many colleagues and students have made useful suggestions and
pointed out mistakes in earlier drafts of this book, in particular: Kerstin
Ammann, Jörg Arnberger, Chris Davis, Fritz Gesztesy, Maria Hoffmann-
Ostenhof, Zhenyou Huang, Helge Krüger, Katrin Grunert, Wang Lanning,
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Bibliographical notes

The aim of this section is not to give a comprehensive guide to the literature,
but to document the sources from which I have learned the materials and
which I have used during the preparation of this text. In addition, I will
point out some standard references for further reading. In some sense, all
books on this topic are inspired by von Neumann’s celebrated monograph
[74] and the present text is no exception.

General references for the first part are Akhiezer and Glazman [1],
Berthier (Boutet de Monvel) [10], Blank, Exner, and Havĺıček [11], Ed-
munds and Evans [18], Lax [32], Reed and Simon [49], Weidmann [70],
[72], or Yosida [76].

Chapter 0: A first look at Banach and Hilbert spaces

As a reference for general background I can warmly recommend Kelly’s
classical book [33]. The rest is standard material and can be found in any
book on functional analysis.

Chapter 1: Hilbert spaces

The material in this chapter is again classical and can be found in any book
on functional analysis. I mainly follow Reed and Simon [49], respectively,
Weidmann [70], with the main difference being that I use orthonormal sets
and their projections as the central theme from which everything else is
derived. For an alternate problem-based approach, see Halmos’ book [27].

Chapter 2: Self-adjointness and spectrum

This chapter is still similar in spirit to [49], [70] with some ideas taken from
Schechter [57].

341
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Chapter 3: The spectral theorem

The approach via the Herglotz representation theorem follows Weidmann
[70]. However, I use projection-valued measures as in Reed and Simon [49]
rather than the resolution of the identity. Moreover, I have augmented the
discussion by adding material on spectral types and the connections with
the boundary values of the resolvent. For a survey containing several recent
results, see [35].

Chapter 4: Applications of the spectral theorem

This chapter collects several applications from various sources which I have
found useful or which are needed later on. Again, Reed and Simon [49] and
Weidmann [70], [73] are the main references here.

Chapter 5: Quantum dynamics

The material is a synthesis of the lecture notes by Enß [20], Reed and Simon
[49], [51], and Weidmann [73]. See also the book by Amrein [3]. There are
also close connections with operator semigroups and we refer to the classical
monograph by Goldstein [25] for further information.

Chapter 6: Perturbation theory for self-adjoint operators

This chapter is similar to [70] (which contains more results) with the main
difference being that I have added some material on quadratic forms. In
particular, the section on quadratic forms contains, in addition to the clas-
sical results, some material which I consider useful but was unable to find
(at least not in the present form) in the literature. The prime reference
here is Kato’s monumental treatise [29] and Simon’s book [58]. For fur-
ther information on trace class operators, see Simon’s classic [61]. The idea
to extend the usual notion of strong resolvent convergence by allowing the
approximating operators to live on subspaces is taken from Weidmann [72].

Chapter 7: The free Schrödinger operator

Most of the material is classical. Much more on the Fourier transform can
be found in Reed and Simon [50] or Grafakos [23].

Chapter 8: Algebraic methods

This chapter collects some material which can be found in almost any physics
textbook on quantum mechanics. My only contribution is to provide some
mathematical details. I recommend the classical book by Thirring [68] and
the visual guides by Thaller [66], [67].

Chapter 9: One-dimensional Schrödinger operators

One-dimensional models have always played a central role in understand-
ing quantum mechanical phenomena. In particular, general wisdom used to
say that Schrödinger operators should have absolutely continuous spectrum
plus some discrete point spectrum, while singular continuous spectrum is a
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pathology that should not occur in examples with bounded V [16, Sect. 10.4].
In fact, a large part of [52] is devoted to establishing the absence of sin-
gular continuous spectrum. This was proven wrong by Pearson, who con-
structed an explicit one-dimensional example with singular continuous spec-
trum. Moreover, after the appearance of random models, it became clear
that such types of exotic spectra (singular continuous or dense pure point)
are frequently generic. The starting point is often the boundary behaviour
of the Weyl m-function and its connection with the growth properties of
solutions of the underlying differential equation, the latter being known as
Gilbert and Pearson or subordinacy theory. One of my main goals is to give
a modern introduction to this theory. The section on inverse spectral theory
presents a simple proof for the Borg–Marchenko theorem (in the local ver-
sion of Simon) from Bennewitz [9]. Again, this result is the starting point of
almost all other inverse spectral results for Sturm–Liouville equations and
should enable the reader to start reading research papers in this area.

Other references with further information are the lecture notes by Weid-
mann [71] or the classical books by Coddington and Levinson [15], Levitan
[36], Levitan and Sargsjan [37], [38], Marchenko [40], Naimark [42], Pear-
son [46]. See also the recent monographs by Rofe-Betekov and Kholkin [55],
Zettl [77] or the recent collection of historic and survey articles [4]. A com-
pilation of exactly solvable potentials can be found in Bagrov and Gitman
[6, App. I]. For a nice introduction to random models I can recommend
the recent notes by Kirsch [34] or the classical monographs by Carmona
and Lacroix [13] or Pastur and Figotin [45]. For the discrete analog of
Sturm–Liouville and Jacobi operators, see my monograph [64].

Chapter 10: One-particle Schrödinger operators

The presentation in the first two sections is influenced by Enß [20] and
Thirring [68]. The solution of the Schrödinger equation in spherical coordi-
nates can be found in any textbook on quantum mechanics. Again I tried
to provide some missing mathematical details. Several other explicitly solv-
able examples can be found in the books by Albeverio et al. [2] or Flügge
[22]. For the formulation of quantum mechanics via path integrals I suggest
Roepstorff [54] or Simon [59].

Chapter 11: Atomic Schrödinger operators

This chapter essentially follows Cycon, Froese, Kirsch, and Simon [16]. For
a recent review, see Simon [60]. For multi-particle operators from the view-
point of stability of matter, see Lieb and Seiringer [41].

Chapter 12: Scattering theory

This chapter follows the lecture notes by Enß [20] (see also [19]) using some
material from Perry [47]. Further information on mathematical scattering
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theory can be found in Amrein, Jauch, and Sinha [5], Baumgaertel and
Wollenberg [7], Chadan and Sabatier [14], Cycon, Froese, Kirsch, and Simon
[16], Komech and Kopylova [31], Newton [43], Pearson [46], Reed and
Simon [51], or Yafaev [75].

Appendix A: Almost everything about Lebesgue integration

Most parts follow Rudin’s book [56], respectively, Bauer [8], with some ideas
also taken from Weidmann [70]. I have tried to strip everything down to the
results needed here while staying self-contained. Another useful reference
is the book by Lieb and Loss [39]. A comprehensive source are the two
volumes by Bogachev [12].
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[22] S. Flügge, Practical Quantum Mechanics, Springer, Berlin, 1994.

[23] L. Grafakos, Classical Fourier Analysis, 2nd ed., Springer, New York, 2008.

[24] I. Gohberg, S. Goldberg, and N. Krupnik, Traces and Determinants of Linear
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AC(I) . . . absolutely continuous functions, 95
Br(x) . . . open ball of radius r around x, 4
B = B1

Bn . . . Borel σ-field of Rn, 296
C(H) . . . set of compact operators, 151
C . . . the set of complex numbers
C(U) . . . set of continuous functions from U to C

C∞(U) . . . set of functions in C(U) which vanish at ∞
C(U, V ) . . . set of continuous functions from U to V
Cc(U, V ) . . . set of compactly supported continuous functions
C∞(U, V ) . . . set of smooth functions
Cb(U, V ) . . . set of bounded continuous functions
χΩ(.) . . . characteristic function of the set Ω
dim . . . dimension of a vector space
dist(x, Y ) = infy∈Y ‖x− y‖, distance between x and Y
D(.) . . . domain of an operator
e . . . exponential function, ez = exp(z)
E(A) . . . expectation of an operator A, 63
F . . . Fourier transform, 187
H . . . Schrödinger operator, 257
H0 . . . free Schrödinger operator, 197
Hm(a, b) . . . Sobolev space, 95
Hm

0 (a, b) . . . Sobolev space, 96
Hm(Rn) . . . Sobolev space, 194
hull(.) . . . convex hull
H . . . a separable Hilbert space
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i . . . complex unity, i2 = −1
I . . . identity operator
Im(.) . . . imaginary part of a complex number
inf . . . infimum
Ker(A) . . . kernel of an operator A, 27
L(X,Y ) . . . set of all bounded linear operators from X to Y , 29
L(X) = L(X,X)
Lp(X, dμ) . . . Lebesgue space of p integrable functions, 31
Lp
loc(X, dμ) . . . locally p integrable functions, 36

Lp
c(X, dμ) . . . compactly supported p integrable functions

L∞(X, dμ) . . . Lebesgue space of bounded functions, 32
L∞
∞(Rn) . . . Lebesgue space of bounded functions vanishing at ∞

�p(N) . . . Banach space of p summable sequences, 15
�2(N) . . . Hilbert space of square summable sequences, 21
�∞(N) . . . Banach space of bounded summable sequences, 16
λ . . . a real number
ma(z) . . .Weyl m-function, 235
M(z) . . .Weyl M -matrix, 246
max . . .maximum
M . . .Mellin transform, 287
μψ . . . spectral measure, 108
N . . . the set of positive integers
N0 = N ∪ {0}
o(x) . . . Landau symbol little-o
O(x) . . . Landau symbol big-O
Ω . . . a Borel set
Ω± . . . wave operators, 283
PA(.) . . . family of spectral projections of an operator A, 108
P± . . . projector onto outgoing/incoming states, 286
Q . . . the set of rational numbers
Q(.) . . . form domain of an operator, 109
R(I,X) . . . set of regulated functions, 132
RA(z) . . . resolvent of A, 83
Ran(A) . . . range of an operator A, 27
rank(A) = dimRan(A), rank of an operator A, 151
Re(.) . . . real part of a complex number
ρ(A) . . . resolvent set of A, 83
R . . . the set of real numbers
S(I,X) . . . set of simple functions, 132
S(Rn) . . . set of smooth functions with rapid decay, 187
sign(x) = x/|x| for x �= 0 and 0 for x = 0; sign function
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σ(A) . . . spectrum of an operator A, 83
σac(A) . . . absolutely continuous spectrum of A, 119
σsc(A) . . . singular continuous spectrum of A, 119
σpp(A) . . . pure point spectrum of A, 119
σp(A) . . . point spectrum (set of eigenvalues) of A, 115
σd(A) . . . discrete spectrum of A, 170
σess(A) . . . essential spectrum of A, 170
span(M) . . . set of finite linear combinations from M , 17
sup . . . supremum
supp(f) . . . support of a function f , 8
supp(μ) . . . support of a measure μ, 301
Z . . . the set of integers
z . . . a complex number

√
z . . . square root of z with branch cut along (−∞, 0]

z∗ . . . complex conjugation
A∗ . . . adjoint of A, 67

A . . . closure of A, 72

f̂ = Ff , Fourier transform of f , 187

f̌ = F−1f , inverse Fourier transform of f , 189

|x| =
√∑n

j=1 |xj|2 Euclidean norm in Rn or Cn

|Ω| . . . Lebesgue measure of a Borel set Ω
‖.‖ . . . norm in the Hilbert space H, 21
‖.‖p . . . norm in the Banach space Lp, 30
〈., ..〉 . . . scalar product in H, 21
Eψ(A) = 〈ψ,Aψ〉, expectation value, 64
Δψ(A) = Eψ(A

2)− Eψ(A)
2, variance, 64

Δ . . . Laplace operator, 197
∂ . . . gradient, 188
∂α . . . derivative, 187
⊕ . . . orthogonal sum of vector spaces or operators, 52, 89
⊗ . . . tensor product, 53, 143
M⊥ . . . orthogonal complement, 49
A′ . . . complement of a set
(λ1, λ2) = {λ ∈ R |λ1 < λ < λ2}, open interval
[λ1, λ2] = {λ ∈ R |λ1 ≤ λ ≤ λ2}, closed interval
ψn → ψ . . . norm convergence, 14
ψn ⇀ ψ . . . weak convergence, 55



352 Glossary of notation

An → A . . . norm convergence

An
s→ A . . . strong convergence, 57

An ⇀ A . . . weak convergence, 56

An
nr→ A . . . norm resolvent convergence, 179

An
sr→ A . . . strong resolvent convergence, 179
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a.e., see also almost everywhere

absolue value of an operator, 138

absolute convergence, 20

absolutely continuous

function, 95

measure, 331

spectrum, 119
accumulation point, 4

adjoint operator, 54, 67

algebra, 295

almost everywhere, 302

angular momentum operator, 210

B.L.T. theorem, 28

Baire category theorem, 38

ball

closed, 6

open, 4

Banach algebra, 29

Banach space, 14

Banach–Steinhaus theorem, 39

base, 5

basis, 17
orthonormal, 47

spectral, 106

Bessel function, 204

modified, 202

spherical, 267

Bessel inequality, 45

bijective, 8

Bolzano–Weierstraß theorem, 12

Borel

function, 308

measure, 298

regular, 298

set, 296

σ-algebra, 296

transform, 107, 112

boundary condition

Dirichlet, 224

Neumann, 224

periodic, 224

boundary point, 4

bounded

operator, 27

sesquilinear form, 26

set, 11

C-real, 93

canonical form of compact operators,
161

Cantor

function, 338

measure, 339

set, 302

Cauchy sequence, 7

Cauchy–Schwarz–Bunjakowski
inequality, 22

Cayley transform, 91

Cesàro average, 150

characteristic function, 312

Chebyshev inequality, 339

closable

form, 80

operator, 72

closed
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ball, 6
form, 80
operator, 72
set, 6

closed graph theorem, 75
closure, 6

essential, 117
cluster point, 4
commute, 136
compact, 9

locally, 12
sequentially, 11

complete, 7, 14
completion, 26
configuration space, 64
conjugation, 93
conserved quantity, 138
continuous, 8
convergence, 6
convolution, 191
core, 71
cover, 9
C∗ algebra, 55
cyclic vector, 106

dense, 7
dilation group, 259
Dirac measure, 301, 317
Dirac operator, 149, 215
Dirichlet boundary condition, 224
discrete set, 4
discrete topology, 4
distance, 3, 12
distribution function, 298
Dollard theorem, 200
domain, 27, 64, 66
dominated convergence theorem, 316
Dynkin system, 303
Dynkin’s π-λ theorem, 303

eigenspace, 132
eigenvalue, 83

multiplicity, 132
eigenvector, 83
element

adjoint, 55
normal, 55
positive, 55
self-adjoint, 55
unitary, 55

equivalent norms, 24
essential

closure, 117
range, 84
spectrum, 170
supremum, 32

expectation, 63
Exponential Herglotz representation,

129
extension, 67
Extreme value theorem, 12

finite intersection property, 9
first resolvent formula, 85
form, 80

bound, 175
bounded, 26, 82
closable, 80
closed, 80
core, 81
domain, 77, 109
hermitian, 80
nonnegative, 80
semi-bounded, 80

Fourier
series, 47
transform, 150, 187

Friedrichs extension, 80
Fubini theorem, 320
function

absolutely continuous, 95
open, 8

fundamental theorem of calculus, 135,
317

gamma function, 328
Gaussian wave packet, 209
gradient, 188
Gram–Schmidt orthogonalization, 48
graph, 72
graph norm, 72
Green’s function, 202
ground state, 272

Hamiltonian, 65
Hankel operator, 169
Hankel transform, 203
harmonic oscillator, 212
Hausdorff space, 5
Heine–Borel theorem, 11
Heisenberg picture, 154
Heisenberg uncertainty principle, 193
Hellinger–Toeplitz theorem, 76
Herglotz
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function, 107
representation theorem, 120

Hermite polynomials, 213
hermitian

form, 80
operator, 67

Hilbert space, 21, 43
separable, 47

Hölder’s inequality, 16, 32
homeomorphism, 8
HVZ theorem, 278
hydrogen atom, 258

ideal, 55
identity, 29
induced topology, 5
injective, 7
inner product, 21
inner product space, 21
integrable, 315
integral, 312
interior, 6
interior point, 4
intertwining property, 284
involution, 55
ionization, 278
isolated point, 4

Jacobi operator, 76

Kato–Rellich theorem, 159
kernel, 27
KLMN theorem, 175
Kuratowski closure axioms, 6

λ-system, 303
l.c., see also limit circle
l.p., see also limit point
Lagrange identity, 218
Laguerre polynomial, 267

generalized, 268
Lebesgue

decomposition, 333
measure, 301
point, 335

Lebesgue–Stieltjes measure, 298
Legendre equation, 262
lemma

Riemann-Lebesgue, 191
Lidskij trace theorem, 168
limit circle, 223
limit point, 4, 223
Lindelöf theorem, 9

linear
functional, 29, 50
operator, 27

linearly independent, 17
Liouville normal form, 222
localization formula, 279
lower semicontinuous, 309

maximum norm, 14
Mean ergodic theorem, 155
mean-square deviation, 64
measurable

function, 307
set, 297
space, 296

measure, 296
absolutely continuous, 331
complete, 306
finite, 297
growth point, 112
Lebesgue, 301
minimal support, 338
mutually singular, 331
product, 319
projection-valued, 100
space, 297
spectral, 108
support, 301
topological support, 301

Mellin transform, 287
metric space, 3
Minkowski’s inequality, 32
mollifier, 35
momentum operator, 208
monotone convergence theorem, 313
Morrey inequality, 196
multi-index, 187

order, 187
multiplicity

spectral, 107
mutually singular measures, 331

neighborhood, 4
Neumann

boundary condition, 224
function

spherical, 267
series, 85

Nevanlinna function, 107
Noether theorem, 208
norm, 14

operator, 27
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norm resolvent convergence, 179
normal, 12, 55, 69, 76, 104
normalized, 22, 44
normed space, 14
nowhere dense, 38
null space, 27

observable, 63
ONB, see also orthonormal basis
one-parameter unitary group, 65
ONS, see also orthonormal set
onto, 8
open

ball, 4
function, 8
set, 4

operator
adjoint, 54, 67
bounded, 27
bounded from below, 79
closable, 72
closed, 72
closure, 72
compact, 151
domain, 27, 66
finite rank, 151
hermitian, 67
Hilbert–Schmidt, 163
linear, 27, 66
nonnegative, 77
normal, 69, 76, 104
positive, 77
relatively bounded, 157
relatively compact, 152
self-adjoint, 68
semi-bounded, 79
strong convergence, 56
symmetric, 67
unitary, 45, 65
weak convergence, 57

orthogonal, 22, 44
complement, 49
polynomials, 264
projection, 50
sum, 52

orthonormal
basis, 47
set, 44

orthonormal basis, 47
oscillating, 255
outer measure, 304

parallel, 22, 44
parallelogram law, 23
parity operator, 111
Parseval relation, 47
partial isometry, 139
partition of unity, 13
perpendicular, 22, 44
phase space, 64
π-system, 303
Plücker identity, 222
Plancherel identity, 190
polar coordinates, 325
polar decomposition, 139
polarization identity, 23, 45, 67
position operator, 207
positivity

improving, 272
preserving, 272

premeasure, 297
probability density, 63
probability measure, 297
product measure, 319
product topology, 9
projection, 55
proper metric space, 12
pseudometric, 3
pure point spectrum, 119
Pythagorean theorem, 22, 44

quadrangle inequality, 13
quadratic form, 67, see also form
quasinorm, 20

Radon measure, 311
Radon–Nikodym

derivative, 332
theorem, 332

RAGE theorem, 153
Rajchman measure, 155
range, 27

essential, 84
rank, 151
Rayleigh–Ritz method, 140
reducing subspace, 90
regulated function, 132
relative σ-algebra, 296
relative topology, 5
relatively compact, 9, 152
resolution of the identity, 101
resolvent, 83

convergence, 179
formula
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first, 85
second, 159

Neumann series, 85
set, 83

Riesz lemma, 50
Ritz method, 140

scalar product, 21
scattering operator, 284
scattering state, 284
Schatten p-class, 165
Schauder basis, 17
Schrödinger equation, 65
Schur criterion, 34
Schwartz space, 187
second countable, 5
second resolvent formula, 159
self-adjoint, 55

essentially, 71
seminorm, 14
separable, 7, 18
series

absolutely convergent, 20
sesquilinear form, 21

bounded, 26
parallelogram law, 25
polarization identity, 26

short range, 289
σ-algebra, 296
σ-finite, 297
simple function, 132, 312
simple spectrum, 107
singular values, 161
singularly continuous

spectrum, 119
Sobolev space, 95, 194
span, 17
spectral

basis, 106
ordered, 118

mapping theorem, 118
measure

maximal, 118
theorem, 109

compact operators, 160
vector, 106

maximal, 118
spectrum, 83

absolutely continuous, 119
discrete, 170
essential, 170
pure point, 119

singularly continuous, 119
spherical coordinates, 260, 325
spherical harmonics, 263
spherically symmetric, 194
∗-ideal, 55
∗-subalgebra, 55
stationary phase, 288
Stieltjes inversion formula, 107, 134
Stone theorem, 147
Stone’s formula, 134
Stone–Weierstraß theorem, 60
strong convergence, 56
strong resolvent convergence, 179
Sturm comparison theorem, 254
Sturm–Liouville equation, 217

regular, 218
subcover, 9
subordinacy, 243
subordinate solution, 243
subspace

reducing, 90
subspace topology, 5
superposition, 64
supersymmetric quantum mechanics,

215
support, 8

measure, 301
surjective, 8

Temple’s inequality, 142
tensor product, 53
theorem

B.L.T., 28
Bair, 38
Banach–Steinhaus, 39
Bolzano–Weierstraß, 12
closed graph, 75
Dollard, 200
dominated convergence, 316
Dynkin’s π-λ, 303
Fatou, 314, 316
Fatou–Lebesgue, 316
Fubini, 320
fundamental thm. of calculus, 317
Heine–Borel, 11
Hellinger–Toeplitz, 76
Herglotz, 120
HVZ, 278
Jordan–von Neumann, 23
Kato–Rellich, 159
KLMN, 175
Kneser, 255
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Lebesgue decomposition, 333
Levi, 313
Lindelöf, 9
monotone convergence, 313
Noether, 208
Plancherel, 190
Pythagorean, 22, 44
Radon–Nikodym, 332
RAGE, 153
Riesz, 50
Schur, 34
Sobolev embedding, 196
spectral, 109
spectral mapping, 118
Stone, 147
Stone–Weierstraß, 60
Sturm, 254
Tonelli, 321
Urysohn, 12
virial, 259
Weidmann, 253
Weierstraß, 12, 19
Weyl, 171
Wiener, 150, 194

Tonelli theorem, 321
topological space, 4
topology

base, 5
product, 9

total, 18
trace, 167

class, 167
trace operator, 96
trace topology, 5
triangle inequality, 3, 14

inverse, 3, 14
trivial topology, 4
Trotter product formula, 155

uncertainty principle, 192, 208
uniform boundedness principle, 39
uniformly convex space, 25
unit sphere, 326
unit vector, 22, 44
unitary, 55, 65
unitary group, 65

generator, 65
strongly continuous, 65
weakly continuous, 147

upper semicontinuous, 309
Urysohn lemma, 12

Vandermonde determinant, 20
variance, 64
virial theorem, 259
Vitali set, 303

wave
function, 63
operators, 283

wave equation, 148
weak

Cauchy sequence, 56
convergence, 55
derivative, 96, 195

Weierstraß approximation, 19
Weierstraß theorem, 12
Weyl

M -matrix, 246
circle, 230
relations, 208
sequence, 86

singular, 171
theorem, 171

Weyl–Titchmarsh m-function, 235
Wiener covering lemma, 334
Wiener theorem, 150
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Young inequality, 191
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