Mathematical Methods in Quantum Mechanics

With Applications to Schrödinger Operators

SECOND EDITION

Gerald Teschl

Graduate Studies
in Mathematics
Volume 157

Mathematical Methods in Quantum Mechanics

With Applications
to Schrödinger Operators,
Second Edition

Mathematical Methods in Quantum Mechanics

With Applications
to Schrödinger Operators, Second Edition

Gerald Teschl

Graduate Studies in Mathematics
Volume 157

EDITORIAL COMMITTEE

Dan Abramovich
Daniel S. Freed
Rafe Mazzeo (Chair)
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 81-01, 81Qxx, 46-01, 34Bxx, 47B25.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-157

Library of Congress Cataloging-in-Publication Data

Teschl, Gerald, 1970-
Mathematical methods in quantum mechanics : with applications to Schrödinger operators / Gerald Teschl.- Second edition.
pages cm. - (Graduate studies in mathematics ; volume 157)
Includes bibliographical references and index.
ISBN 978-1-4704-1704-8 (alk. paper)

1. Schrödinger operator. 2. Quantum theory-Mathematics. I. Title.

QC174.17.S3T47 2014
530.1201'51-dc23

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center's RightsLink ${ }^{\circledR}$ service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.
(C) 2014 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
(a)

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
$10987654321 \quad 191817161514$

To Susanne, Simon, and Jakob

Contents

Preface xi
Part 0. Preliminaries
Chapter 0. A first look at Banach and Hilbert spaces 3
§0.1. Warm up: Metric and topological spaces 3
$\S 0.2$. The Banach space of continuous functions 14
§0.3. The geometry of Hilbert spaces 21
§0.4. Completeness 26
§0.5. Bounded operators 27
§0.6. Lebesgue L^{p} spaces 30
§0.7. Appendix: The uniform boundedness principle 38
Part 1. Mathematical Foundations of Quantum Mechanics
Chapter 1. Hilbert spaces 43
§1.1. Hilbert spaces 43
§1.2. Orthonormal bases 45
§1.3. The projection theorem and the Riesz lemma 49
§1.4. Orthogonal sums and tensor products 52
§1.5. The C^{*} algebra of bounded linear operators 54
§1.6. Weak and strong convergence 55
§1.7. Appendix: The Stone-Weierstraß theorem 59
Chapter 2. Self-adjointness and spectrum 63
§2.1. Some quantum mechanics 63
§2.2. Self-adjoint operators 66
§2.3. Quadratic forms and the Friedrichs extension 76
§2.4. Resolvents and spectra 83
§2.5. Orthogonal sums of operators 89
§2.6. Self-adjoint extensions 91
§2.7. Appendix: Absolutely continuous functions 95
Chapter 3. The spectral theorem 99
§3.1. The spectral theorem 99
§3.2. More on Borel measures 112
§3.3. Spectral types 118
§3.4. Appendix: Herglotz-Nevanlinna functions 120
Chapter 4. Applications of the spectral theorem 131
§4.1. Integral formulas 131
§4.2. Commuting operators 135
§4.3. Polar decomposition 138
§4.4. The min-max theorem 140
§4.5. Estimating eigenspaces 142
§4.6. Tensor products of operators 143
Chapter 5. Quantum dynamics 145
§5.1. The time evolution and Stone's theorem 145
§5.2. The RAGE theorem 150
§5.3. The Trotter product formula 155
Chapter 6. Perturbation theory for self-adjoint operators 157
§6.1. Relatively bounded operators and the Kato-Rellich theorem 157
$\S 6.2$. More on compact operators 160
§6.3. Hilbert-Schmidt and trace class operators 163
§6.4. Relatively compact operators and Weyl's theorem 170
§6.5. Relatively form-bounded operators and the KLMN theorem 174
§6.6. Strong and norm resolvent convergence 179
Part 2. Schrödinger Operators
Chapter 7. The free Schrödinger operator 187
§7.1. The Fourier transform 187
§7.2. Sobolev spaces 194
§7.3. The free Schrödinger operator 197
§7.4. The time evolution in the free case 199
§7.5. The resolvent and Green's function 201
Chapter 8. Algebraic methods 207
§8.1. Position and momentum 207
§8.2. Angular momentum 209
§8.3. The harmonic oscillator 212
§8.4. Abstract commutation 214
Chapter 9. One-dimensional Schrödinger operators 217
§9.1. Sturm-Liouville operators 217
§9.2. Weyl's limit circle, limit point alternative 223
§9.3. Spectral transformations I 231
§9.4. Inverse spectral theory 238
§9.5. Absolutely continuous spectrum 242
§9.6. Spectral transformations II 245
§9.7. The spectra of one-dimensional Schrödinger operators 250
Chapter 10. One-particle Schrödinger operators 257
§10.1. Self-adjointness and spectrum 257
$\S 10.2$. The hydrogen atom 258
§10.3. Angular momentum 261
§10.4. The eigenvalues of the hydrogen atom 265
§10.5. Nondegeneracy of the ground state 272
Chapter 11. Atomic Schrödinger operators 275
§11.1. Self-adjointness 275
§11.2. The HVZ theorem 278
Chapter 12. Scattering theory 283
§12.1. Abstract theory 283
§12.2. Incoming and outgoing states 286
§12.3. Schrödinger operators with short range potentials 289
Part 3. Appendix
Appendix A. Almost everything about Lebesgue integration 295
§A.1. Borel measures in a nutshell 295
§A.2. Extending a premeasure to a measure 303
§A.3. Measurable functions 307
§A.4. How wild are measurable objects? 309
§A.5. Integration - Sum me up, Henri 312
§A.6. Product measures 319
$\S A .7$. Transformation of measures and integrals 322
§A.8. Vague convergence of measures 328
§A.9. Decomposition of measures 331
§A.10. Derivatives of measures 334
Bibliographical notes 341
Bibliography 345
Glossary of notation 349
Index 353

Preface

Overview

The present text was written for my course Schrödinger Operators held at the University of Vienna in winter 1999, summer 2002, summer 2005, and winter 2007. It gives a brief but rather self-contained introduction to the mathematical methods of quantum mechanics with a view towards applications to Schrödinger operators. The applications presented are highly selective; as a result, many important and interesting items are not touched upon.

Part 1 is a stripped-down introduction to spectral theory of unbounded operators where I try to introduce only those topics which are needed for the applications later on. This has the advantage that you will (hopefully) not get drowned in results which are never used again before you get to the applications. In particular, I am not trying to present an encyclopedic reference. Nevertheless I still feel that the first part should provide a solid background covering many important results which are usually taken for granted in more advanced books and research papers.

My approach is built around the spectral theorem as the central object. Hence I try to get to it as quickly as possible. Moreover, I do not take the detour over bounded operators but I go straight for the unbounded case. In addition, existence of spectral measures is established via the Herglotz rather than the Riesz representation theorem since this approach paves the way for an investigation of spectral types via boundary values of the resolvent as the spectral parameter approaches the real line.

Part 2 starts with the free Schrödinger equation and computes the free resolvent and time evolution. In addition, I discuss position, momentum, and angular momentum operators via algebraic methods. This is usually found in any physics textbook on quantum mechanics, with the only difference being that I include some technical details which are typically not found there. Then there is an introduction to one-dimensional models (Sturm-Liouville operators) including generalized eigenfunction expansions (Weyl-Titchmarsh theory) and subordinacy theory from Gilbert and Pearson. These results are applied to compute the spectrum of the hydrogen atom, where again I try to provide some mathematical details not found in physics textbooks. Further topics are nondegeneracy of the ground state, spectra of atoms (the HVZ theorem), and scattering theory (the Enß method).

Prerequisites

I assume some previous experience with Hilbert spaces and bounded linear operators which should be covered in any basic course on functional analysis. However, while this assumption is reasonable for mathematics students, it might not always be for physics students. For this reason there is a preliminary chapter reviewing all necessary results (including proofs). In addition, there is an appendix (again with proofs) providing all necessary results from measure theory.

Literature

The present book is highly influenced by the four volumes of Reed and Simon [49]-[52] (see also [16]) and by the book by Weidmann [70] (an extended version of which has recently appeared in two volumes [72], 73], however, only in German). Other books with a similar scope are, for example, [16], [17], 21], [26], [28], [30], 48], [57], 63], and [65]. For those who want to know more about the physical aspects, I can recommend the classical book by Thirring [68] and the visual guides by Thaller [66, [67]. Further information can be found in the bibliographical notes at the end.

Reader's guide

There is some intentional overlap among Chapter 0, Chapter [1, and Chapter 2, Hence, provided you have the necessary background, you can start reading in Chapter 1 or even Chapter 2. Chapters 2 and 3 are key
chapters, and you should study them in detail (except for Section 2.6 which can be skipped on first reading). Chapter 4 should give you an idea of how the spectral theorem is used. You should have a look at (e.g.) the first section, and you can come back to the remaining ones as needed. Chapter 5 contains two key results from quantum dynamics: Stone's theorem and the RAGE theorem. In particular, the RAGE theorem shows the connections between long-time behavior and spectral types. Finally, Chapter 6 is again of central importance and should be studied in detail.

The chapters in the second part are mostly independent of each other except for Chapter 7, which is a prerequisite for all others except for Chapter 9 .

If you are interested in one-dimensional models (Sturm-Liouville equations), Chapter 9 is all you need.

If you are interested in atoms, read Chapter 7, Chapter 10, and Chapter 11. In particular, you can skip the separation of variables (Sections 10.3 and 10.4, which require Chapter (9) method for computing the eigenvalues of the hydrogen atom, if you are happy with the fact that there are countably many which accumulate at the bottom of the continuous spectrum.

If you are interested in scattering theory, read Chapter 7, the first two sections of Chapter 10, and Chapter 12, Chapter 5 is one of the key prerequisites in this case.

2nd edition

Several people have sent me valuable feedback and pointed out misprints since the appearance of the first edition. All of these comments are of course taken into account. Moreover, numerous small improvements were made throughout. Chapter 3 has been reworked, and I hope that it is now more accessible to beginners. Also some proofs in Section 9.4 have been simplified (giving slightly better results at the same time). Finally, the appendix on measure theory has also grown a bit: I have added several examples and some material around the change of variables formula and integration of radial functions.

Updates

The AMS is hosting a web page for this book at
where updates, corrections, and other material may be found, including a link to material on my own web site:

```
http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/
```


Acknowledgments

I would like to thank Volker Enß for making his lecture notes [20] available to me. Many colleagues and students have made useful suggestions and pointed out mistakes in earlier drafts of this book, in particular: Kerstin Ammann, Jörg Arnberger, Chris Davis, Fritz Gesztesy, Maria HoffmannOstenhof, Zhenyou Huang, Helge Krüger, Katrin Grunert, Wang Lanning, Daniel Lenz, Christine Pfeuffer, Roland Möws, Arnold L. Neidhardt, Serge Richard, Harald Rindler, Alexander Sakhnovich, Robert Stadler, Johannes Temme, Karl Unterkofler, Joachim Weidmann, Rudi Weikard, and David Wimmesberger.

My thanks for pointing out mistakes in the first edition go to: Erik Makino Bakken, Alexander Beigl, Stephan Bogendörfer, Søren Fournais, Semra Demirel-Frank, Katrin Grunert, Jason Jo, Helge Krüger, Oliver Leingang, Serge Richard, Gerardo González Robert, Bob Sims, Oliver Skocek, Robert Stadler, Fernando Torres-Torija, Gerhard Tulzer, Hendrik Vogt, and David Wimmesberger.

If you also find an error or if you have comments or suggestions (no matter how small), please let me know.

I have been supported by the Austrian Science Fund (FWF) during much of this writing, most recently under grant Y330.

Vienna, Austria
April 2014

Gerald Teschl

Fakultät für Mathematik
Oskar-Morgenstern-Platz 1
Universität Wien
1090 Wien, Austria
E-mail: Gerald.Teschl@univie.ac.at
URL: http://www.mat.univie.ac.at/~gerald/

Bibliographical notes

The aim of this section is not to give a comprehensive guide to the literature, but to document the sources from which I have learned the materials and which I have used during the preparation of this text. In addition, I will point out some standard references for further reading. In some sense, all books on this topic are inspired by von Neumann's celebrated monograph [74] and the present text is no exception.

General references for the first part are Akhiezer and Glazman [1], Berthier (Boutet de Monvel) [10, Blank, Exner, and Havlíček [11], Edmunds and Evans [18], Lax [32], Reed and Simon [49], Weidmann [70], [72], or Yosida [76].

Chapter 0: A first look at Banach and Hilbert spaces

As a reference for general background I can warmly recommend Kelly's classical book [33]. The rest is standard material and can be found in any book on functional analysis.

Chapter 1: Hilbert spaces

The material in this chapter is again classical and can be found in any book on functional analysis. I mainly follow Reed and Simon 49], respectively, Weidmann [70], with the main difference being that I use orthonormal sets and their projections as the central theme from which everything else is derived. For an alternate problem-based approach, see Halmos' book [27].

Chapter 2; Self-adjointness and spectrum

This chapter is still similar in spirit to [49], [70] with some ideas taken from Schechter [57].

Chapter 3: The spectral theorem

The approach via the Herglotz representation theorem follows Weidmann [70]. However, I use projection-valued measures as in Reed and Simon [49] rather than the resolution of the identity. Moreover, I have augmented the discussion by adding material on spectral types and the connections with the boundary values of the resolvent. For a survey containing several recent results, see 35 .

Chapter 4: Applications of the spectral theorem

This chapter collects several applications from various sources which I have found useful or which are needed later on. Again, Reed and Simon 49 and Weidmann [70, 73 are the main references here.

Chapter 5: Quantum dynamics

The material is a synthesis of the lecture notes by Enß [20], Reed and Simon [49], [51], and Weidmann [73]. See also the book by Amrein [3]. There are also close connections with operator semigroups and we refer to the classical monograph by Goldstein [25] for further information.

Chapter 6: Perturbation theory for self-adjoint operators

This chapter is similar to [70] (which contains more results) with the main difference being that I have added some material on quadratic forms. In particular, the section on quadratic forms contains, in addition to the classical results, some material which I consider useful but was unable to find (at least not in the present form) in the literature. The prime reference here is Kato's monumental treatise [29] and Simon's book [58]. For further information on trace class operators, see Simon's classic 61]. The idea to extend the usual notion of strong resolvent convergence by allowing the approximating operators to live on subspaces is taken from Weidmann [72].

Chapter 7: The free Schrödinger operator

Most of the material is classical. Much more on the Fourier transform can be found in Reed and Simon 50] or Grafakos [23].

Chapter 8: Algebraic methods

This chapter collects some material which can be found in almost any physics textbook on quantum mechanics. My only contribution is to provide some mathematical details. I recommend the classical book by Thirring [68] and the visual guides by Thaller [66], 67].

Chapter 9: One-dimensional Schrödinger operators

One-dimensional models have always played a central role in understanding quantum mechanical phenomena. In particular, general wisdom used to say that Schrödinger operators should have absolutely continuous spectrum plus some discrete point spectrum, while singular continuous spectrum is a
pathology that should not occur in examples with bounded V [16, Sect. 10.4]. In fact, a large part of $[\mathbf{5 2}]$ is devoted to establishing the absence of singular continuous spectrum. This was proven wrong by Pearson, who constructed an explicit one-dimensional example with singular continuous spectrum. Moreover, after the appearance of random models, it became clear that such types of exotic spectra (singular continuous or dense pure point) are frequently generic. The starting point is often the boundary behaviour of the Weyl m-function and its connection with the growth properties of solutions of the underlying differential equation, the latter being known as Gilbert and Pearson or subordinacy theory. One of my main goals is to give a modern introduction to this theory. The section on inverse spectral theory presents a simple proof for the Borg-Marchenko theorem (in the local version of Simon) from Bennewitz [9]. Again, this result is the starting point of almost all other inverse spectral results for Sturm-Liouville equations and should enable the reader to start reading research papers in this area.

Other references with further information are the lecture notes by Weidmann [71] or the classical books by Coddington and Levinson [15], Levitan [36], Levitan and Sargsjan [37], 38], Marchenko [40], Naimark [42], Pearson 46 . See also the recent monographs by Rofe-Betekov and Kholkin [55], Zettl [77] or the recent collection of historic and survey articles [4]. A compilation of exactly solvable potentials can be found in Bagrov and Gitman [6, App. I]. For a nice introduction to random models I can recommend the recent notes by Kirsch [34] or the classical monographs by Carmona and Lacroix [13] or Pastur and Figotin [45]. For the discrete analog of Sturm-Liouville and Jacobi operators, see my monograph [64].

Chapter 10; One-particle Schrödinger operators

The presentation in the first two sections is influenced by Enß [20] and Thirring [68. The solution of the Schrödinger equation in spherical coordinates can be found in any textbook on quantum mechanics. Again I tried to provide some missing mathematical details. Several other explicitly solvable examples can be found in the books by Albeverio et al. [2] or Flügge [22]. For the formulation of quantum mechanics via path integrals I suggest Roepstorff [54] or Simon [59].

Chapter 11: Atomic Schrödinger operators

This chapter essentially follows Cycon, Froese, Kirsch, and Simon [16]. For a recent review, see Simon [60]. For multi-particle operators from the viewpoint of stability of matter, see Lieb and Seiringer 41].

Chapter 12; Scattering theory

This chapter follows the lecture notes by Enß [20] (see also [19]) using some material from Perry 47]. Further information on mathematical scattering
theory can be found in Amrein, Jauch, and Sinha [5], Baumgaertel and Wollenberg [7], Chadan and Sabatier [14, Cycon, Froese, Kirsch, and Simon [16], Komech and Kopylova [31], Newton 43], Pearson 46], Reed and Simon [51], or Yafaev [75].

Appendix A: Almost everything about Lebesgue integration

Most parts follow Rudin's book [56], respectively, Bauer [8], with some ideas also taken from Weidmann [70]. I have tried to strip everything down to the results needed here while staying self-contained. Another useful reference is the book by Lieb and Loss [39]. A comprehensive source are the two volumes by Bogachev [12].

Bibliography

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vols. I and II, Pitman, Boston, 1981.
[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2nd ed., American Mathematical Society, Providence, 2005.
[3] W. O. Amrein, Non-Relativistic Quantum Dynamics, D. Reidel, Dordrecht, 1981.
[4] W. O. Amrein, A. M. Hinz, and D. B. Pearson, Sturm-Liouville Theory: Past and Present, Birkhäuser, Basel, 2005.
[5] W. O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering Theory in Quantum Mechanics, W. A. Benajmin Inc., New York, 1977.
[6] V. G. Bagrov and D. M. Gitman, Exact Solutions of Relativistic Wave Equations, Kluwer Academic Publishers, Dordrecht, 1990.
[7] H. Baumgaertel and M. Wollenberg, Mathematical Scattering Theory, Birkhäuser, Basel, 1983.
[8] H. Bauer, Measure and Integration Theory, de Gruyter, Berlin, 2001.
[9] C. Bennewitz, A proof of the local Borg-Marchenko theorem, Commun. Math. Phys. 218, 131-132 (2001).
[10] A. M. Berthier, Spectral Theory and Wave Operators for the Schrödinger Equation, Pitman, Boston, 1982.
[11] J. Blank, P. Exner, and M. Havlíček, Hilbert-Space Operators in Quantum Physics, 2nd ed., Springer, Dordrecht, 2008.
[12] V. I. Bogachev, Measure Theory, 2 vols., Springer, Berlin, 2007.
[13] R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990.
[14] K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer, New York, 1989.
[15] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985.
[16] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators, 2nd printing, Springer, Berlin, 2008.
[17] M. Demuth and M. Krishna, Determining Spectra in Quantum Theory, Birkhäuser, Boston, 2005.
[18] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford University Press, Oxford, 1987.
[19] V. Enss, Asymptotic completeness for quantum mechanical potential scattering, Comm. Math. Phys. 61, 285-291 (1978).
[20] V. Enß, Schrödinger Operators, lecture notes (unpublished).
[21] L. D. Fadeev and O. A. Yakubovskiĭ, Lectures on Quantum Mechanics for Mathematics Students, Amer. Math. Soc., Providence, 2009.
[22] S. Flügge, Practical Quantum Mechanics, Springer, Berlin, 1994.
[23] L. Grafakos, Classical Fourier Analysis, 2nd ed., Springer, New York, 2008.
[24] I. Gohberg, S. Goldberg, and N. Krupnik, Traces and Determinants of Linear Operators, Birkhäuser, Basel, 2000.
[25] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985.
[26] S. Gustafson and I. M. Sigal, Mathematical Concepts of Quantum Mechanics, 2nd ed., Springer, Berlin, 2011.
[27] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1984.
[28] P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory, Springer, New York, 1996.
[29] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
[30] A. Komech, Quantum Mechanics: Genesis and Achievements, Springer, Dordrecht, 2013.
[31] A. Komech and E. Kopylova, Dispersion Decay and Scattering Theory, John Wiley, Hoboken, 2012.
[32] P. D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002.
[33] J. L. Kelly, General Topology, Springer, New York, 1955.
[34] W. Kirsch, An invitation to random Schrödinger operators, in Random Schrödinger Operators, M. Dissertori et al. (eds.), 1-119, Panoramas et Synthèses 25, Société Mathématique de France, Paris, 2008.
[35] Y. Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal. 142, 406-445 (1996).
[36] B. M. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.
[37] B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory, American Mathematical Society, Providence, 1975.
[38] B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers, Dordrecht, 1991.
[39] E. Lieb and M. Loss, Analysis, American Mathematical Society, Providence, 1997.
[40] V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.
[41] E. H. Lieb and R. Seiringer, Stability of Matter, Cambridge University Press, Cambridge, 2010.
[42] M. A. Naimark, Linear Differential Operators, Parts I and II, Ungar, New York, 1967 and 1968.
[43] R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed., Dover, New York, 2002.
[44] F. W. J. Olver et al., NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
[45] L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992.
[46] D. Pearson, Quantum Scattering and Spectral Theory, Academic Press, London, 1988.
[47] P. Perry, Mellin transforms and scattering theory, Duke Math. J. 47, 187-193 (1987).
[48] E. Prugovečki, Quantum Mechanics in Hilbert Space, 2nd ed., Academic Press, New York, 1981.
[49] M. Reed and B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis, rev. and enl. ed., Academic Press, San Diego, 1980.
[50] M. Reed and B. Simon, Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness, Academic Press, San Diego, 1975.
[51] M. Reed and B. Simon, Methods of Modern Mathematical Physics III. Scattering Theory, Academic Press, San Diego, 1979.
[52] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV. Analysis of Operators, Academic Press, San Diego, 1978.
[53] J. R. Retherford, Hilbert Space: Compact Operators and the Trace Theorem, Cambridge University Press, Cambridge, 1993.
[54] G. Roepstorff, Path Integral Approach to Quantum Physics, Springer, Berlin, 1994.
[55] F. S. Rofe-Beketov and A. M. Kholkin, Spectral Analysis of Differential Operators. Interplay Between Spectral and Oscillatory Properties, World Scientific, Hackensack, 2005.
[56] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.
[57] M. Schechter, Operator Methods in Quantum Mechanics, North Holland, New York, 1981.
[58] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, 1971.
[59] B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979.
[60] B. Simon, Schrödinger operators in the twentieth century, J. Math. Phys. 41:6, 3523-3555 (2000).
[61] B. Simon, Trace Ideals and Their Applications, 2nd ed., Amererican Mathematical Society, Providence, 2005.
[62] E. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, Princeton, 2003.
[63] L. A. Takhtajan, Quantum Mechanics for Mathematicians, Amer. Math. Soc., Providence, 2008.
[64] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon. 72, Amer. Math. Soc., Rhode Island, 2000.
[65] B. Thaller, The Dirac Equation, Springer, Berlin 1992.
[66] B. Thaller, Visual Quantum Mechanics, Springer, New York, 2000.
[67] B. Thaller, Advanced Visual Quantum Mechanics, Springer, New York, 2005.
[68] W. Thirring, Quantum Mechanics of Atoms and Molecules, Springer, New York, 1981.
[69] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1962.
[70] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980.
[71] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, Springer, Berlin, 1987.
[72] J. Weidmann, Lineare Operatoren in Hilberträumen, Teil 1: Grundlagen, B. G. Teubner, Stuttgart, 2000.
[73] J. Weidmann, Lineare Operatoren in Hilberträumen, Teil 2: Anwendungen, B. G. Teubner, Stuttgart, 2003.
[74] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, 1996.
[75] D. R. Yafaev, Mathematical Scattering Theory: General Theory, American Mathematical Society, Providence, 1992.
[76] K. Yosida, Functional Analysis, 6th ed., Springer, Berlin, 1980.
[77] A. Zettl, Sturm-Liouville Theory, American Mathematical Society, Providence, 2005.

Glossary of notation

$A C(I)$. . . absolutely continuous functions, 95		
$B_{r}(x)$	\ldots. open ball of radius r around x, 4		
\mathfrak{B}	$=\mathfrak{B}^{1}$		
\mathfrak{B}^{n}	... Borel σ-field of $\mathbb{R}^{n}, 296$		
$\mathfrak{C}(\mathfrak{H})$	\ldots. set of compact operators, 151		
\mathbb{C}	. . . the set of complex numbers		
$C(U)$. set of continuous functions from U to \mathbb{C}		
$C_{\infty}(U)$	\ldots. set of functions in $C(U)$ which vanish at ∞		
$C(U, V)$	\ldots. set of continuous functions from U to V		
$C_{c}(U, V)$... set of compactly supported continuous functions		
$C^{\infty}(U, V)$. . . set of smooth functions		
$C_{b}(U, V)$. . set of bounded continuous functions		
$\chi_{\Omega}($.	characteristic function of the set Ω		
dim	. . . dimension of a vector space		
dist (x, Y)	$=\inf _{y \in Y}\\|x-y\\|$, distance between x and Y		
\mathfrak{D} (.)	...domain of an operator		
e	\ldots.. exponential function, $\mathrm{e}^{z}=\exp (z)$		
$\mathbb{E}(A)$	\ldots. expectation of an operator $A, 63$		
\mathcal{F}	...Fourier transform, 187		
H	. . . Schrödinger operator, 257		
H_{0}	. . . free Schrödinger operator, 197		
$H^{m}(a, b)$. . Sobolev space, 95		
$H_{0}^{m}(a, b)$. . . Sobolev space, 96		
$H^{m}\left(\mathbb{R}^{n}\right)$. . . Sobolev space, 194		
hull(.)	. . . convex hull		
	eparable Hilbert space		

i	\ldots complex unity, $\mathrm{i}^{2}=-1$
II	. . . identity operator
$\operatorname{Im}($.	... imaginary part of a complex number
inf	. . . infimum
$\operatorname{Ker}(A)$. . kernel of an operator A, 27
$\mathfrak{L}(X, Y)$. . set of all bounded linear operators from X to Y,29
$\mathfrak{L}(X)$	$=\mathfrak{L}(X, X)$
$L^{p}(X, d \mu)$. . Lebesgue space of p integrable functions, 31
$L_{l o c}^{p}(X, d \mu)$. locally p integrable functions, 36
$L_{c}^{p}(X, d \mu)$	\ldots. . compactly supported p integrable functions
$L^{\infty}(X, d \mu)$. . Lebesgue space of bounded functions, 32
$L_{\infty}^{\infty}\left(\mathbb{R}^{n}\right)$	\ldots.. Lebesgue space of bounded functions vanishing at ∞
$\ell^{p}(\mathbb{N})$	\ldots. . Banach space of p summable sequences, 15
$\ell^{2}(\mathbb{N})$... Hilbert space of square summable sequences, 21
$\ell^{\infty}(\mathbb{N})$	\ldots. Banach space of bounded summable sequences, 16
λ	... a real number
$m_{a}(z)$. . Weyl m-function, 235
$M(z)$... Weyl M-matrix, 246
max	... maximum
\mathcal{M}	. . . Mellin transform, 287
μ_{ψ}	. . . spectral measure, 108
\mathbb{N}	\ldots.. the set of positive integers
\mathbb{N}_{0}	$=\mathbb{N} \cup\{0\}$
$o(x)$... Landau symbol little-o
$O(x)$. . . Landau symbol big-O
Ωa Borel set
$\Omega_{ \pm}$. . . wave operators, 283
$P_{A}($.	\ldots..family of spectral projections of an operator $A, 108$
$P_{ \pm}$	\ldots. . projector onto outgoing/incoming states, 286
\mathbb{Q}	. . the set of rational numbers
$\mathfrak{Q}($.	...f. form domain of an operator, 109
$R(I, X)$...set of regulated functions, 132
$R_{A}(z)$	\ldots. . resolvent of $A, 83$
$\operatorname{Ran}(A)$	\ldots. .range of an operator $A, 27$
$\operatorname{rank}(A)$	$=\operatorname{dim} \operatorname{Ran}(A)$, rank of an operator $A, 151$
$\operatorname{Re}($.	. . . real part of a complex number
$\rho(A)$	\ldots. . resolvent set of $A, 83$
\mathbb{R}	. the set of real numbers
$S(I, X)$. . . set of simple functions, 132
$\mathcal{S}\left(\mathbb{R}^{n}\right)$	\ldots. set of smooth functions with rapid decay, 187
$\operatorname{sign}(x)$	$=x /\|x\|$ for $x \neq 0$ and 0 for $x=0$; sign function

$\sigma(A) \quad \ldots$ spectrum of an operator $A, 83$
$\sigma_{a c}(A) \quad \ldots$ absolutely continuous spectrum of A, 119
$\sigma_{s c}(A) \quad \ldots$ singular continuous spectrum of $A, 119$
$\sigma_{p p}(A) \quad \ldots$ pure point spectrum of A, 119
$\sigma_{p}(A) \quad \ldots$ point spectrum (set of eigenvalues) of $A, 115$
$\sigma_{d}(A) \quad \ldots$ discrete spectrum of $A, 170$
$\sigma_{e s s}(A) \quad \ldots$ essential spectrum of $A, 170$
$\operatorname{span}(M) \quad \ldots$ set of finite linear combinations from M, 17
sup ...supremum
$\operatorname{supp}(f) \quad \ldots$ support of a function $f, 8$
$\operatorname{supp}(\mu) \quad \ldots$ support of a measure $\mu, 301$
$\mathbb{Z} \quad \ldots$ the set of integers
$z \quad$...a complex number
$\sqrt{z} \quad \ldots$ square root of z with branch cut along $(-\infty, 0]$
$z^{*} \quad$... complex conjugation
$A^{*} \quad \ldots$ adjoint of $A, 67$
$\bar{A} \quad$...closure of $A, 72$
$\hat{f} \quad=\mathcal{F} f$, Fourier transform of $f, 187$
$\check{f} \quad=\mathcal{F}^{-1} f$, inverse Fourier transform of f, 189
$|x| \quad=\sqrt{\sum_{j=1}^{n}\left|x_{j}\right|^{2}}$ Euclidean norm in \mathbb{R}^{n} or \mathbb{C}^{n}
$|\Omega| \quad$... Lebesgue measure of a Borel set Ω
||. \| ... norm in the Hilbert space \mathfrak{H}, 21
$\|\cdot\|_{p} \quad \ldots$ norm in the Banach space $L^{p}, 30$
$\langle., .$.$\rangle \quad ...scalar product in \mathfrak{H}, 21$
$\mathbb{E}_{\psi}(A) \quad=\langle\psi, A \psi\rangle$, expectation value, 64
$\Delta_{\psi}(A)=\mathbb{E}_{\psi}\left(A^{2}\right)-\mathbb{E}_{\psi}(A)^{2}$, variance, [64
$\Delta \quad$... Laplace operator, 197
$\partial \quad$...gradient, 188
$\partial_{\alpha} \quad \ldots$ derivative, 187
$\oplus \quad \ldots$ orthogonal sum of vector spaces or operators, [52, 89
$\otimes \quad$...tensor product, 53, 143
$M^{\perp} \quad \ldots$ orthogonal complement, 49
$A^{\prime} \quad .$. complement of a set
$\left(\lambda_{1}, \lambda_{2}\right)=\left\{\lambda \in \mathbb{R} \mid \lambda_{1}<\lambda<\lambda_{2}\right\}$, open interval
$\left[\lambda_{1}, \lambda_{2}\right] \quad=\left\{\lambda \in \mathbb{R} \mid \lambda_{1} \leq \lambda \leq \lambda_{2}\right\}$, closed interval
$\psi_{n} \rightarrow \psi \quad \ldots$ norm convergence, 14
$\psi_{n} \rightharpoonup \psi \ldots$ weak convergence, 55
$A_{n} \rightarrow A \quad \ldots$ norm convergence
$A_{n} \xrightarrow{s} A \quad \ldots$ strong convergence, 57
$A_{n} \rightharpoonup A \ldots$ weak convergence, 56
$A_{n} \xrightarrow{n r} A \ldots$ norm resolvent convergence, 179
$A_{n} \xrightarrow{s r} A \ldots$ strong resolvent convergence, 179

Index

a.e., see also almost everywhere
absolue value of an operator, 138
absolute convergence, 20
absolutely continuous
function, 95
measure, 331
spectrum, 119
accumulation point, 4
adjoint operator, 546
algebra, 295
almost everywhere, 302
angular momentum operator, 210
B.L.T. theorem, 28

Baire category theorem, 38
ball
closed, 6
open, 4
Banach algebra, 29
Banach space, 14
Banach-Steinhaus theorem, 39
base, 5
basis, 17
orthonormal, 47
spectral, 106
Bessel function, 204
modified, 202
spherical, 267
Bessel inequality, 45
bijective, 8
Bolzano-Weierstraß theorem, 12
Borel
function, 308
measure, 298
regular, 298
set, 296
σ-algebra, 296
transform, 107, 112
boundary condition
Dirichlet, 224
Neumann, 224
periodic, 224
boundary point, 4
bounded
operator, 27
sesquilinear form, 26
set, 11
C-real, 93
canonical form of compact operators, 161
Cantor
function, 338
measure, 339
set, 302
Cauchy sequence, 7
Cauchy-Schwarz-Bunjakowski
inequality, 22
Cayley transform, 91
Cesàro average, 150
characteristic function, 312
Chebyshev inequality, 339
closable
form, 80
operator, 72
closed
ball, 6
form, 80
operator, 72
set, 6
closed graph theorem, 75
closure, 6
essential, 117
cluster point, 4
commute, 136
compact, 9
locally, 12
sequentially, 11
complete, 714
completion, 26
configuration space, 64
conjugation, 93
conserved quantity, 138
continuous, 8
convergence, 6
convolution, 191
core, 71
cover, 9
C^{*} algebra, 55
cyclic vector, 106
dense, 7
dilation group, 259
Dirac measure, 301317
Dirac operator, 149215
Dirichlet boundary condition, 224
discrete set, 4
discrete topology, 固
distance, 312
distribution function, 298
Dollard theorem, 200
domain, 27 6466
dominated convergence theorem, 316
Dynkin system, 303
Dynkin's $\pi-\lambda$ theorem, 303
eigenspace, 132
eigenvalue, 83
multiplicity, 132
eigenvector, 83
element
adjoint, 55
normal, 55
positive, 55
self-adjoint, 55
unitary, 55
equivalent norms, 24]
essential
closure, 117
range, 84
spectrum, 170
supremum, 32
expectation, 63
Exponential Herglotz representation, 129
extension, 67
Extreme value theorem, 12
finite intersection property, 9
first resolvent formula, 85
form, 80
bound, 175
bounded, 2682
closable, 80
closed, 80
core, 81
domain, 77109
hermitian, 80
nonnegative, 80
semi-bounded, 80
Fourier
series, 47
transform, 150,187
Friedrichs extension, 80
Fubini theorem, 320
function
absolutely continuous, 95
open, 8
fundamental theorem of calculus, 135

317

gamma function, 328
Gaussian wave packet, 209
gradient, 188
Gram-Schmidt orthogonalization, 48
graph, 72
graph norm, 72
Green's function, 202
ground state, 272
Hamiltonian, 65
Hankel operator, 169
Hankel transform, 203
harmonic oscillator, 212
Hausdorff space, 5
Heine-Borel theorem, 11
Heisenberg picture, 154
Heisenberg uncertainty principle, 193
Hellinger-Toeplitz theorem, 76
Herglotz
function, 107
representation theorem, 120
Hermite polynomials, 213
hermitian
form, 80
operator, 67
Hilbert space, 21, 43
separable, 47
Hölder's inequality, 16, 32
homeomorphism, 8
HVZ theorem, 278
hydrogen atom, 258
ideal, 55
identity, 29
induced topology, 5
injective, 7
inner product, 21
inner product space, 21
integrable, 315
integral, 312
interior, 6
interior point, 4
intertwining property, 284
involution, 55
ionization, 278
isolated point, 4
Jacobi operator, 76
Kato-Rellich theorem, 159
kernel, 27
KLMN theorem, 175
Kuratowski closure axioms, 6
λ-system, 303
l.c., see also limit circle
l.p., see also limit point

Lagrange identity, 218
Laguerre polynomial, 267
generalized, 268
Lebesgue
decomposition, 333
measure, 301
point, 335
Lebesgue-Stieltjes measure, 298
Legendre equation, 262
lemma
Riemann-Lebesgue, 191
Lidskij trace theorem, 168
limit circle, 223
limit point, 4,223
Lindelöf theorem, 9
linear
functional, 2950
operator, 27
linearly independent, 17
Liouville normal form, 222
localization formula, 279
lower semicontinuous, 309
maximum norm, 14
Mean ergodic theorem, 155
mean-square deviation, 64
measurable function, 307
set, 297
space, 296
measure, 296
absolutely continuous, 331
complete, 306
finite, 297
growth point, 112
Lebesgue, 301
minimal support, 338
mutually singular, 331
product, 319
projection-valued, 100
space, 297
spectral, 108
support, 301
topological support, 301
Mellin transform, 287
metric space, 3
Minkowski's inequality, 32
mollifier, 35
momentum operator, 208
monotone convergence theorem, 313
Morrey inequality, 196
multi-index, 187
order, 187
multiplicity spectral, 107
mutually singular measures, 331
neighborhood, 4
Neumann
boundary condition, 224
function
spherical, 267
series, 85
Nevanlinna function, 107
Noether theorem, 208
norm, 14 operator, 27
norm resolvent convergence, 179
normal, 12 55, $69,76,104$
normalized, 22, 44
normed space, 14
nowhere dense, 38
null space, 27
observable, 63
ONB, see also orthonormal basis
one-parameter unitary group, 65
ONS, see also orthonormal set
onto, 8
open
ball, 4
function, 8
set, 4
operator
adjoint, $54 \boxed{67}$
bounded, 27
bounded from below, 79
closable, 72
closed, 72
closure, 72
compact, 151
domain, 27,66
finite rank, 151
hermitian, 67
Hilbert-Schmidt, 163
linear, 2766
nonnegative, $[77$
normal, 69, 76, 104
positive, 77
relatively bounded, 157
relatively compact, 152
self-adjoint, 68
semi-bounded, 79
strong convergence, 56
symmetric, 67
unitary, 45, 65
weak convergence, 57
orthogonal, 22, 44
complement, 49
polynomials, 264
projection, 50
sum, 52
orthonormal
basis, 47
set, 44
orthonormal basis, 47
oscillating, 255
outer measure, 304
parallel, 22,44
parallelogram law, 23
parity operator, 111
Parseval relation, 47
partial isometry, 139
partition of unity, 13
perpendicular, 22,44
phase space, 64
π-system, 303
Plücker identity, 222
Plancherel identity, 190
polar coordinates, 325
polar decomposition, 139
polarization identity, [23, 45, 67
position operator, 207
positivity
improving, 272
preserving, [272
premeasure, 297
probability density, 63
probability measure, 297
product measure, 319
product topology, 9
projection, 55
proper metric space, 12
pseudometric, 3
pure point spectrum, 119
Pythagorean theorem, 22, 44
quadrangle inequality, [13
quadratic form, 67 see also form
quasinorm, 20
Radon measure, 311
Radon-Nikodym
derivative, 332
theorem, 332
RAGE theorem, 153
Rajchman measure, 155
range, 27
essential, 84
rank, 151
Rayleigh-Ritz method, 140
reducing subspace, 90
regulated function, 132
relative σ-algebra, 296
relative topology, 5
relatively compact, 9152
resolution of the identity, 101
resolvent, 83
convergence, 179
formula
first, 85
second, 159
Neumann series, 85
set, 83
Riesz lemma, 50
Ritz method, 140
scalar product, 21
scattering operator, 284
scattering state, 284
Schatten p-class, 165
Schauder basis, 17
Schrödinger equation, 65
Schur criterion, 34
Schwartz space, 187
second countable, 5
second resolvent formula, 159
self-adjoint, 55
essentially, 71
seminorm, 14
separable, 718
series
absolutely convergent, 20
sesquilinear form, 21
bounded, 26
parallelogram law, 25
polarization identity, 26
short range, 289
σ-algebra, 296
σ-finite, 297
simple function, 132,312
simple spectrum, 107
singular values, 161
singularly continuous
spectrum, 119
Sobolev space, 95194
span, 17
spectral
basis, 106
ordered, 118
mapping theorem, 118
measure maximal, 118
theorem, 109
compact operators, 160
vector, 106
maximal, 118
spectrum, 83
absolutely continuous, 119
discrete, 170
essential, 170
pure point, 119
singularly continuous, 119
spherical coordinates, 260325
spherical harmonics, 263
spherically symmetric, 194
*-ideal, 55
*-subalgebra, 55
stationary phase, 288
Stieltjes inversion formula, 107, 134
Stone theorem, 147
Stone's formula, 134
Stone-Weierstraß theorem, 60
strong convergence, 56
strong resolvent convergence, 179
Sturm comparison theorem, 254
Sturm-Liouville equation, 217
regular, 218
subcover, 9
subordinacy, 243
subordinate solution, 243
subspace
reducing, 90
subspace topology, 5
superposition, 64
supersymmetric quantum mechanics, 215
support, 8
measure, 301
surjective, 8
Temple's inequality, 142
tensor product, 53
theorem
B.L.T., 28

Bair, 38
Banach-Steinhaus, 39
Bolzano-Weierstraß, 12
closed graph, 75
Dollard, 200
dominated convergence, 316
Dynkin's $\pi-\lambda, 303$
Fatou, 314, 316
Fatou-Lebesgue, 316
Fubini, 320
fundamental thm. of calculus, 317
Heine-Borel, 11
Hellinger-Toeplitz, 76
Herglotz, 120
HVZ, 278
Jordan-von Neumann, 23
Kato-Rellich, 159
KLMN, 175
Kneser, 255

Lebesgue, 316
Lebesgue decomposition, 333
Levi, 313
Lindelöf, 9
monotone convergence, 313
Noether, 208
Plancherel, 190
Pythagorean, 22, 44
Radon-Nikodym, 332
RAGE, 153
Riesz, 50
Schur, 34
Sobolev embedding, 196
spectral, 109
spectral mapping, 118
Stone, 147
Stone-Weierstraß, 60
Sturm, 254
Tonelli, 321
Urysohn, 12
virial, 259
Weidmann, 253
Weierstraß, 12, 19
Weyl, 171
Wiener, 150, 194
Tonelli theorem, 321
topological space, 4
topology
base, 5
product, 9
total, 18
trace, 167
class, 167
trace operator, 96
trace topology, 5
triangle inequality, 3, 14
inverse, 3, 14
trivial topology, 4
Trotter product formula, 155
uncertainty principle, 192, 208
uniform boundedness principle, 39
uniformly convex space, 25
unit sphere, 326
unit vector, 22, 44
unitary, 5565
unitary group, 65
generator, 65
strongly continuous, 65
weakly continuous, 147
upper semicontinuous, 309
Urysohn lemma, 12

Vandermonde determinant, 20
variance, 64
virial theorem, 259
Vitali set, 303
wave
function, 63
operators, 283
wave equation, 148
weak
Cauchy sequence, 56
convergence, 55
derivative, 96,195
Weierstra $ß$ approximation, 19
Weierstra $ß$ theorem, 12
Weyl
M-matrix, 246
circle, 230
relations, 208
sequence, 86 singular, 171
theorem, 171
Weyl-Titchmarsh m-function, 235
Wiener covering lemma, 334
Wiener theorem, 150
Wronskian, 218
Young inequality, 191

Selected Published Titles in This Series

157 Gerald Teschl, Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators, Second Edition, 2014
156 Markus Haase, Functional Analysis, 2014
155 Emmanuel Kowalski, An Introduction to the Representation Theory of Groups, 2014
154 Wilhelm Schlag, A Course in Complex Analysis and Riemann Surfaces, 2014
152 Gábor Székelyhidi, An Introduction to Extremal Kähler Metrics, 2014
151 Jennifer Schultens, Introduction to 3-Manifolds, 2014
150 Joe Diestel and Angela Spalsbury, The Joys of Haar Measure, 2013
149 Daniel W. Stroock, Mathematics of Probability, 2013
148 Luis Barreira and Yakov Pesin, Introduction to Smooth Ergodic Theory, 2013
147 Xingzhi Zhan, Matrix Theory, 2013
146 Aaron N. Siegel, Combinatorial Game Theory, 2013
145 Charles A. Weibel, The K-book, 2013
144 Shun-Jen Cheng and Weiqiang Wang, Dualities and Representations of Lie Superalgebras, 2012
143 Alberto Bressan, Lecture Notes on Functional Analysis, 2013
142 Terence Tao, Higher Order Fourier Analysis, 2012
141 John B. Conway, A Course in Abstract Analysis, 2012
140 Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, 2012
139 John B. Walsh, Knowing the Odds, 2012
138 Maciej Zworski, Semiclassical Analysis, 2012
137 Luis Barreira and Claudia Valls, Ordinary Differential Equations, 2012
136 Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, 2012
135 Pascal Cherrier and Albert Milani, Linear and Quasi-linear Evolution Equations in Hilbert Spaces, 2012
134 Jean-Marie De Koninck and Florian Luca, Analytic Number Theory, 2012
133 Jeffrey Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, 2012
132 Terence Tao, Topics in Random Matrix Theory, 2012
131 Ian M. Musson, Lie Superalgebras and Enveloping Algebras, 2012
130 Viviana Ene and Jürgen Herzog, Gröbner Bases in Commutative Algebra, 2011
129 Stuart P. Hastings and J. Bryce McLeod, Classical Methods in Ordinary Differential Equations, 2012
128 J. M. Landsberg, Tensors: Geometry and Applications, 2012
127 Jeffrey Strom, Modern Classical Homotopy Theory, 2011
126 Terence Tao, An Introduction to Measure Theory, 2011
125 Dror Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, 2011
123 Gregory Eskin, Lectures on Linear Partial Differential Equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic Groups and Differential Galois Theory, 2011
121 Tobias Holck Colding and William P. Minicozzi II, A Course in Minimal Surfaces, 2011
120 Qing Han, A Basic Course in Partial Differential Equations, 2011
119 Alexander Korostelev and Olga Korosteleva, Mathematical Statistics, 2011

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrödinger operators.
Part I of the book is a concise introduction to the spectral theory
 of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrödinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory.

This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics.

Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature.

This new edition has additions and improvements throughout the book to make the presentation more student friendly.

The book is written in a very clear and compact style. It is well suited for self-study and includes numerous exercises (many with hints).

-Zentralblatt MATH

The author presents this material in a very clear and detailed way and supplements it by numerous exercises. This makes the book a nice introduction to this exciting field of mathematics.
-Mathematical Reviews

