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Introduction

Though the natural world is an interconnected whole, our models usually
treat small pieces of that whole as if they were isolated from everything else.
For instance, in an elementary physics class, we are used to conservation
of energy and momentum for isolated systems. Isolation can be more than
just physical: we are used to the notion of separation between time and/or
spatial scales. The flow around a body inherits a characteristic length from
the body itself. At a typically much smaller characteristic distance from the
body’s surface, the flow is modified strongly by the action of viscous stresses.
This is of course the archetypal example of a boundary layer. In physical
systems exhibiting oscillations, the properties of the oscillation sometimes
change in a characteristic time much longer than the local period, and this
slow cumulative change is called modulation of the oscillations.

The mathematical models of phenomena with widely separated scales
are often singularly perturbed, meaning that the solution of the equations
doesn’t converge uniformly as the ratio of scales becomes large or small.
This is the conceptual frame of singular perturbation theory. As a practice
or art, singular perturbation theory is a body of analysis that exploits the
separation of scales in phenomena: First, describe small and large scale
happenings as if isolated or separate from each other. Then join them so
they talk to each other, and larger meanings emerge. This characterization
of singular perturbation theory begs a question: What happens if there is
a hierarchy of many scales with no clear large and small separation? Like
turbulence. Maybe this larger sphere of problems is the future of the subject.
In any case, it is beyond the pay grade of this book. So here is what this
book is going to do:

xi



xii Introduction

First and generally, like the preceding text by the author, Training Man-
ual on Transport and Fluids, there is a main text of basic material and a
subtext of worked problems that go deeper and present engaging examples.
Think of the main text as the trunk of the tree and the problems as the
branches (with many bifurcations, as you will see).

Chapter 1 is a traditional introduction based on simple, preferably ex-
actly solvable, examples of singular perturbation. We gain first impressions
of scaling, dominant balances, distinguished limits, boundary layers, match-
ing, and modulated oscillations.

All perturbation analysis is approximation, and Chapter 2 spells out
the specific sense of asymptotic approximation in which “the error is much
smaller than the smallest term we keep,” as the perturbation parameter
goes to zero. There is a brief overview of a very traditional subject: the
asymptotic expansion of integrals. The long-time analysis of the Fourier
integrals representing wavefields is a jumping-off point for a mini-course on
WKB at the end of the chapter.

Chapter 3 is a traditional presentation of matched asymptotic expansions
for ODE boundary value problems with localized small scale structure, such
as boundary layers, internal layers, derivative layers, etc. The discussion of
higher-order matching and how the overlap domain shrinks as the order of
matching increases is based on the intention to make it the simplest possible,
but no simpler.

Chapter 4 on moving internal layers introduces Chapman–Enskog asymp-
totics: There are dynamical systems in which a relatively small set of state
variables dominates the solution. If you know the evolutions of these domi-
nant variables, you know the evolution of the whole system. The flow vector
field of the dominant variables is to be determined as an asymptotic expan-
sion. Also, we construct asymptotic expansions of the other non-dominant
variables, taking the dominant variables as given. The solvability conditions
encountered in constructing the latter expansions dictate, order by order,
the flow vector field of the dominant variables. In the first Chapter 4 ex-
ample, the dominant variable is the centerline curve of the internal layer of
a director field in two dimensions, and the asymptotic construction of the
internal layer solution about this curve dictates, order by order, the dynam-
ics of the centerline curve. At leading order, we get the familiar motion by
curvature. The remaining content of Chapter 4 on projected Lagrangians is
easiest to discuss in the context of Chapter 6.

Chapter 5 is a (nearly) traditional presentation of the Prandtl bound-
ary layer theory for the Navier-Stokes equations and of the solutions of the
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boundary layer equations that can be constructed because of scaling symme-
try. The most original part of this chapter is the last problem (Problem 5.5)
on a spiral diffusion layer in a vortex flow.

Chapter 6 is the first attempt at analysis of modulated oscillations. It
starts with an expansive repertoire of elementary examples (Problems 6.1–
6.6). Even though their methodology is extremely simple (elementary exact
solutions, WKB, perturbed ODE eigenvalue problem), we can present en-
gaging examples, such as passage through resonance. The mathematical
technique in the body of this chapter is the method of two scales. The lit-
erature often refers to the multiple scale method, because we might want
to consider more than two characteristic times explicitly. It is this author’s
belief that the method of two scales is an introductory method, to be even-
tually superseded by averaging and its big brothers, which we introduce in
Chapter 7. Once you are in the realm of these methods, the need for more
than two characteristic times is moot. In Chapter 6, we’ll see how the two
scale analysis of nonlinear oscillations leads to the insight that the action in
the sense of classical mechanics is the proper variable of modulation theory.
In this sense, the two scale analysis is a precursor to the methods related to
averaging in Chapter 7. These methods start with action as a state variable
right away. The discovery of action by the method of two scales derives from
Whitham’s analysis of nonlinear waves, so the Whitham modulation theory
of waves is a core subject of Chapter 6. Finally, there is Whitham’s pack-
aging of modulation theory for nonlinear variational equations by means of
the averaged Lagrangian. Our main use of the averaged Lagrangian happens
in two places: here in Chapter 6, we apply it to the homogenization theory
of the effective diffusion tensor in a periodic medium. In the last problem
(Problem 6.15), it is shown that the Lagrangian flavor of homogenization
used in this example is equivalent to the traditional direct analysis. The
projected Lagrangian in Chapter 4 is essentially averaging the original full
Lagrangian over the internal layer. It is just like the Whitham analysis,
except that the wave has only one crest.

Chapter 7 is about modulation theory of a perturbed Hamiltonian dy-
namics with one degree of freedom, based on perturbation of its action-angle
variables. This is a special case of the more general class of problems treated
by the averaging method. Our focus is a bit narrow in the interest of staying
clear and simple in a textbook. The essential idea: When a perturbation
is applied to the original Hamiltonian dynamics, the action variable tends
to undergo large, slow drifts, with a small-amplitude, rapid oscillation su-
perpositioned on top of it. The idea in this chapter is to perform a near-
identity transformation of the original action-angle variables, so the new
action has no rapid, oscillatory component. In a process very reminiscent of
the Chapman–Enskog method of Chapter 4, the governing ODE of the new
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action and the small oscillatory correctors in the near-identity transforma-
tion have intertwined asymptotic expansions. If we restrict the analysis to
leading order, the resulting modulation theory is completely equivalent to
the well-known averaging method. As we proceed to higher order, we make
ever more refined corrections to the dynamics of the new action, and it is
hoped that the characteristic time of validity of the asymptotics is increased.
This is why this book has not pursued multiple scale theory with more than
two characteristic times. The chapter closes with an analysis of dissipative
perturbations of the Kepler problem. Those of you who have donated a
coin to the gravity well exhibit in a planetarium will appreciate the result
of this analysis: you’ll know why the orbit of your dime is almost circular
just before it spirals into the “black hole” of the donation box.

Chapter 8 introduces into the perturbed Hamiltonian dynamics a fea-
ture that is expressly avoided in Chapter 7, and that is explicit periodic time
dependence of the perturbation. Why is that a big deal? If the frequency of
the unperturbed Hamiltonian orbit is sufficiently close to a rational multiple
of the perturbation frequency, formal asymptotics as in Chapter 7 predicts
resonance. A sure sign of resonance is deviations from the unperturbed or-
bit that don’t scale in direct proportion to the perturbation. They are much
larger, and their characteristic time is much longer than the perturbation
frequency. The perplexing issue is that the rational numbers are dense, so
the ability of simple asymptotics to isolate one resonance at a time seems
dubious. Chapter 8 carries out the obvious program: Just do the simple res-
onance asymptotics anyway, and compare with direct numerical solutions of
the full ODE. In the elementary cases examined, the asymptotics displays
clear robustness within the formal order of approximation and over charac-
teristic times for which the asymptotics is valid. At the end of Chapter 8 we
“look through a glass darkly” by means of a simple formal estimate: The
resonance associated with a given rational frequency ratio is felt in a narrow
band of the phase plane about a given unperturbed orbit. As the strength of
the perturbation decreases, so does the bandwidth. If the resonance associ-
ated with the rational numberM/N wants to be in the bandwidth of another
resonance, say M∗/N∗, M and N generally go to infinity as the difference
from M∗/N∗ goes to zero. If M and N are large, the formal perturbation
theory shows that the bandwidth and strength of the M/N resonance goes
to zero. In summary, when M/N is close enough so its resonance is in the
bandwidth of the M∗/N∗ resonance, the latter resonance can’t resolve it.
The great and perplexing questions about resonance at the level of rigorous
analysis remain, and no claim is made here in relation to them.
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77
naive generalizations of leading order

matching come to grief, 77
non-uniqueness resolved by matching,

105
method of two scales, 184, 197
modulated oscillation

definition, 21
modulated oscillations, 183

definition, 183
in solutions of Duffing equation, 197
in solutions of van der Pol ODE, 206
introductory example, 19
of fully nonlinear oscillator, 217
physical flavors of, 184
representation in WKB analysis, 57

modulational instability, 229, 233
monkey saddle, 52
motion by curvature, 113

Navier–Stokes equation, 154
near-identity transformation, 262

autonomous case, 262
Neumann boundary conditions, 144
no-slip condition, 155
non-uniform validity

degree of, 85
of inner and outer expansions, 76
of steepest descent asymptotics, 56

nonlinear wave equation, 123
circular fronts, 127
geometric attenuation in, 230
modulational instability, 233

normal velocity
of moving internal layer, 113

oblique solitary wave, 131
oscillations

forced, nonlinear, 292
of energy due to resonance, 287

outer expansions, 15
divergent, 35
in Prandtl’s boundary layer theory,

76, 157
of convection-diffusion problem, 77
possibly non-unique, 85, 105
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overlap domains, 78

parametric resonance, 203
passage through resonance, 187

for harmonic oscillator, 192
phase

as angle variable of action-angle
variables, 250

as natural variable of modulation
theory, 219, 247

averaging over, 271
difference, 183
in WKB form, 267
of explicit periodic time dependence,

288
of forcing of Duffing oscillations, 197
of harmonic oscillator with varying

frequency, 19
of nonlinear oscillations, 217
of nonlinear waves, 227
of periodic forcing, 292
of slowly varying harmonic oscillator,

184
of wavefield, 57
oscillation is 2π-periodic in the phase,

184
phase diagram

of nonlinear boundary value problem,
93

phase locking, 296, 311
annulus of phase locked trajectories,

313
Poincaré

analysis of nonlinear oscillations, 223
polynomial equation

singularly perturbed, 1, 4
power series

convergent, 31
divergent, 34
expansion of an integral, 38

Prandtl boundary layer theory, 151
pressure, 153

force per unit mass, 153
projected Lagrangian, 123
pure resonance

definition, 288

radiation damping, 5
radiation reaction, 4

breakdown of standard model, 6
force, 4

reduced equation, 2

of convection-diffusion ODE, 14
of outer limit, 12

reduced Lagrangian
of two-dimensional solitary wave, 132

relative error, 31
relaxation

of kink position, 113
resonance, 185

as energy beats, 287
asymptotic isolation of, 308, 315
generalized, 307
geometry of, 295
internal, 185
modulation theory of generalized

resonance, 309, 312
modulation theory of resonance, 290
nonlinear, 287
of bouncing ball, 299
of rebounds off a vibrating wall, 302
resolution of, 318
resonance Hamiltonian, 300
resonance orbits, 297

resonance annulus, 313
resonance manifold (or hypersurface),

317
Reynolds number, 74

definition, 157
Riemann invariant, 135, 137

saddle points
simultaneous contributions from

multiple saddle points, 51
their role in steepest descent method,

48
Schrödinger equation, 50, 59, 62

as a model of modulational
instability, 238

nonlinear, 236
secular terms, 23

suppression of, 285
singular perturbation, 1

as “practice” first and “field of
knowledge” second, 85

preview of real-world examples, 84
solid body rotation, 156
solitary wave in two dimensions, 131
steepest descent method, 48
steepest descent path, 48
Stirling approximation

to n!, 34, 43
Stokes expansion

of nonlinear oscillator, 253, 254
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strain flow, 172
strain rate, 172
stream function, 155

vorticity as a source of the stream
function, 156

streamlines, 73
as integral curves of velocity field, 155
as level curves of stream function, 155
of flow about the wedge, 75

time inversion symmetry
of nonlinear oscillator, 252

timelike surface, 125

uniform motion
of angle variable, 248

uniformly valid expansion
definition, 16

van der Pol ODE
analyzed by near-identity

transformation, 267
approach to limit cycle, 25
forced, 206

variational boundary value problem,
112

variational operator, 112
viscosity

dynamic, 154
kinematic, 154

viscous stress tensor, 153
vortex layer

due to separated boundary layer, 173
vorticity, 155

as source of stream function, 156
definition, 156
measures local rotation of flow, 156

wave packets as beats in spacetime, 188
wave propagation

in non-uniform medium, 62
waves

nonlinear, 227
wedge flow with source, 74, 174
wet water

as actual viscous fluid, 73
wrap-around trajectories

in the phase plane of resonance
modulation equation, 296
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This book is the testimony of a physical scientist whose language is singular perturba-
tion analysis. Classical mathematical notions, such as matched asymptotic expansions, 
projections of large dynamical systems onto small center manifolds, and modulation 
theory of oscillations based either on multiple scales or on averaging/transformation 
theory, are included. The narratives of these topics are carried by physical examples: 
Let’s say that the moment when we “see” how a mathematical pattern fits a physical 
problem is like “hitting the ball.” Yes, we want to hit the ball. But a powerful stroke 
includes the follow-through. One intention of this book is to discern in the structure 
and/or solutions of the equations their geometric and physical content. Through 
analysis, we come to sense directly the shape and feel of phenomena.

The book is structured into a main text of fundamental ideas and a subtext of 
problems with detailed solutions. Roughly speaking, the former is the initial contact 
between mathematics and phenomena, and the latter emphasizes geometric and 
physical insight. It will be useful for mathematicians and physicists learning singular 
perturbation analysis of ODE and PDE boundary value problems as well as the full 
range of related examples and problems. Prerequisites are basic skills in analysis and 
a good junior/senior level undergraduate course of mathematical physics.


