Partial Differential Equations
An Accessible Route through Theory and Applications
Partial Differential Equations
An Accessible Route through Theory and Applications

András Vasy

Graduate Studies in Mathematics
Volume 169

American Mathematical Society
Providence, Rhode Island
This book was based on lecture notes for the Math 220/CME 303 course at Stanford University and they benefited a great deal from feedback from the students in these classes. These notes were also the basis of the notes for the Fourier transform component of the Math 172 course at Stanford University; again, comments from the students were beneficial for their development.

The author gratefully acknowledges partial support from NSF grants DMS-1068742 and DMS-1361432 during the writing of this book.

2010 Mathematics Subject Classification. Primary 35-01.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-169
Contents

Preface ix

Chapter 1. Introduction 1
 §1. Preliminaries and notation 1
 §2. Partial differential equations 6
 Additional material: More on normed vector spaces and metric spaces 10
 Problems 15

Chapter 2. Where do PDE come from? 19
 §1. An example: Maxwell’s equations 19
 §2. Euler-Lagrange equations 21
 Problems 25

Chapter 3. First order scalar semilinear equations 29
 Additional material: More on ODE and the inverse function theorem 38
 Problems 43

Chapter 4. First order scalar quasilinear equations 45
 Problems 52

Chapter 5. Distributions and weak derivatives 55
 Additional material: The space L^1 68
 Problems 74

Chapter 6. Second order constant coefficient PDE: Types and d’Alembert’s solution of the wave equation 81
Contents

1. Classification of second order PDE 81
2. Solving second order hyperbolic PDE on \(\mathbb{R}^2 \) 85

Problems 90

Chapter 7. Properties of solutions of second order PDE: Propagation, energy estimates and the maximum principle 93

1. Properties of solutions of the wave equation: Propagation phenomena 93
2. Energy conservation for the wave equation 97
3. The maximum principle for Laplace’s equation and the heat equation 100
4. Energy for Laplace’s equation and the heat equation 103

Problems 108

Chapter 8. The Fourier transform: Basic properties, the inversion formula and the heat equation 113

1. The definition and the basics 113
2. The inversion formula 118
3. The heat equation and convolutions 121
4. Systems of PDE 123
5. Integral transforms 126

Additional material: A heat kernel proof of the Fourier inversion formula 127

Problems 130

Chapter 9. The Fourier transform: Tempered distributions, the wave equation and Laplace’s equation 133

1. Tempered distributions 133
2. The Fourier transform of tempered distributions 136
3. The wave equation and the Fourier transform 138
4. More on tempered distributions 140

Problems 141

Chapter 10. PDE and boundaries 147

1. The wave equation on a half space 147
2. The heat equation on a half space 150
3. More complex geometries 153
4. Boundaries and properties of solutions 154
5. PDE on intervals and cubes 155
This book is intended as an introduction to partial differential equations (PDE) for advanced undergraduate mathematics students or beginning graduate students in applied mathematics, the natural sciences and engineering. The assumption is that the students either have some background in basic real analysis, such as norms, metric spaces, ODE existence and uniqueness, or they are willing to learn the required material as the course goes on, with this material provided either in the text of the chapters or in the notes at the end of the chapters. The goal is to teach the students PDE in a mathematically complete manner, without using more advanced mathematics, but with an eye toward the larger PDE world that requires more background. For instance, distributions are introduced early because, although conceptually challenging, they are, nowadays, the basic language of PDE and they do not require a sophisticated setup (and they prevent one from worrying too much about differentiation!). Another example is that L^2-spaces are introduced as completions, their elements are shown to be distributions, and the L^2-theory of the Fourier series is developed based on this. This avoids the necessity of having the students learn measure theory and functional analysis, which are usually prerequisites of more advanced PDE texts, but which might be beyond the time constraints of students in these fields.

As for the aspects of PDE theory covered, the goal is to cover a wide range of PDE and emphasize phenomena that are general, beyond the cases which can be studied within the limitations of this book. While first order scalar PDE can be covered in great generality, beyond this the basic tools give more limited results, typically restricted to constant coefficient PDE. Nonetheless, when plausible, more general tools and results, such as energy estimates, are discussed even in the variable coefficient setting. At the end of
the book these are used to show solvability of elliptic non-constant coefficient PDE via duality based arguments with the text also providing the basic Hilbert space tools required (Riesz representation).

In terms of mathematical outlook, this book is more advanced than Strauss’s classic text \cite{6}—but does not cover every topic Strauss covers—though it shares its general outlook on the field. It assumes much less background than Evans’ \cite{1} or Folland’s \cite{2} text; Folland’s book covers many similar topics but with more assumption on the preparation of the students. For an even more advanced text see Taylor’s book \cite{7} (which has some overlaps with this book) which, however, in a sense has a similar outlook on the field: this would be a good potential continuation for students for a second PDE course. This text thus aims for a middle ground; it is hoped that this will bring at least aspects of modern PDE theory to those who cannot afford to go through a number of advanced mathematics courses to reach the latter.

Since PDE theory necessarily relies on basic real analysis as we recall, more advanced topics develop as we progress. Good references for further real analysis background are Simon’s book \cite{4} for multivariable calculus and basic real analysis topics, and Johnsonbaugh and Pfaffenberger \cite{3} for the metric space material.

The chapters have many concrete PDE problems, but some of them also have some more abstract real analysis problems. The latter are not necessary for a good understanding of the main material, but give a more advanced overview.

The last two chapters of the text are more advanced than the rest of the book. They cover solvability by duality arguments and variational problems. While no additional background is required since the basic Hilbert space arguments are provided, the reader will probably find these chapters more difficult. However, these chapters do show that even sophisticated PDE theory is within reach after working through the previous chapters!

In practice, in a 10-week quarter at Stanford most of the (main chapter) material in Chapters \cite{1}--\cite{4} is covered in a very fast-paced manner. In a semester it should be possible to cover the whole book at a fast pace, or most of the book at a more moderate pace.
Bibliography

Index

Abel summability, 214
amplitude, 236
asymptotic expansion, 229

Bessel functions, 222
Bessel's inequality, 192
bounded linear map, 3
bounded set, 14
bump function, 57
Burgers' equation, 19

the space C^0, 1
the space C^1, 5
the space C^ℓ, 5
Cantor's diagonal argument, 274
Cauchy sequence, 38
Cauchy sequence in normed space, 194
Cesáro summability, 214
characteristic coordinates, 89
characteristic curves, 30
characteristic triangle, 94
characteristics, 46
closed sets, 13
closure, 13
compact set, 14
compactly supported functions, 56
complete normed space, 193
complete metric space, 38
complete orthogonal set, 192
completion, 69
constant coefficient PDE, 6
continuous map in metric spaces, 12
continuous map in normed spaces, 10
contraction mapping, 38
convergence, 3
convergence of distributions, 61
convolution, 123
d'Alembert's solution, 87
damped wave equation, 110
degenerate PDE, 83
delta distribution, 59
dense subspace, 188
density of test functions, 62
differentiable function, 41
directional derivative, 20
Dirichlet boundary conditions, 7
Dirichlet kernel, 215
disk, 173
distance function, 12
distribution, 58
distributional derivatives, 63
domain of dependence, 93
domain of influence, 95
dual vector space Z^* of Z, 249
Duhamel's principle, 160
eigenvalue, 188
eigenvalue equation, 171
eigenvector, 188
elliptic operator, 146
elliptic regularity, 146
elliptic second order PDE, 84
energy conservation, 98
energy estimate, 104
Index

Radon transform, 132
Rankine-Hugoniot jump condition, 76
rarefaction wave, 77
Rayleigh quotient, 265
rectangle, 177
reflection of singularities, 155
Rellich's lemma, 208
Riesz’ lemma, 255
right inverse, 246
Robin boundary conditions, 110
Schrödinger equation, 131
Schwartz functions, 116
sector, 177
semilinear PDE, 7
separation of variables, 169
sequential continuity, 12
sesquilinear map, 182
shock wave, 76
singular support, 95
Sobolev space, 257
spectral methods, 171
stationary phase, 237
stationary points, 237
subsequence, 14
support, 56
symmetric operator, 188
Taylor’s theorem, 15
tempered distribution, 135
test functions, 57
torus, 197
transpose operator, 65
trial functions, 67
triangle inequality, 8
ultrahyperbolic second order PDE, 84
uniform convergence, 201
uniform with all derivatives
 convergence, 201
uniformly continuous map, 14
wave equation, 6
weak solution, 65
weak-* topology, 91
Weierstrass M-test, 202
Weyl’s law, 274
X-ray transform, 126
Selected Published Titles in This Series

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Differential Equations</td>
<td>András Vasy</td>
<td>2015</td>
</tr>
<tr>
<td>Expansion in Finite Simple Groups of Lie Type</td>
<td>Terence Tao</td>
<td>2015</td>
</tr>
<tr>
<td>A Course on Large Deviations with an Introduction to Gibbs Measures</td>
<td>Firas Rassoul-Agha and Timo Seppäläinen</td>
<td>2015</td>
</tr>
<tr>
<td>Introduction to Tropical Geometry</td>
<td>Diane Maclagan and Bernd Sturmfels</td>
<td>2015</td>
</tr>
<tr>
<td>A Course in Analytic Number Theory</td>
<td>Marius Overholt</td>
<td>2014</td>
</tr>
<tr>
<td>The Role of Nonassociative Algebra in Projective Geometry</td>
<td>John R. Faulkner</td>
<td>2014</td>
</tr>
<tr>
<td>Dynamical Systems and Linear Algebra</td>
<td>Fritz Colonius and Wolfgang Kliemann</td>
<td>2014</td>
</tr>
<tr>
<td>Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators</td>
<td>Gerald Teschl</td>
<td>2014</td>
</tr>
<tr>
<td>Functional Analysis</td>
<td>Markus Haase</td>
<td>2014</td>
</tr>
<tr>
<td>An Introduction to the Representation Theory of Groups</td>
<td>Emmanuel Kowalski</td>
<td>2014</td>
</tr>
<tr>
<td>A Course in Complex Analysis and Riemann Surfaces</td>
<td>Wilhelm Schlag</td>
<td>2014</td>
</tr>
<tr>
<td>Hilbert’s Fifth Problem and Related Topics</td>
<td>Terence Tao</td>
<td>2014</td>
</tr>
<tr>
<td>An Introduction to Extremal Kähler Metrics</td>
<td>Gábor Székelyhidi</td>
<td>2014</td>
</tr>
<tr>
<td>Introduction to 3-Manifolds</td>
<td>Jennifer Schultens</td>
<td>2014</td>
</tr>
<tr>
<td>The Joys of Haar Measure</td>
<td>Joe Diestel and Angela Spalsbury</td>
<td>2013</td>
</tr>
<tr>
<td>Mathematics of Probability</td>
<td>Daniel W. Stroock</td>
<td>2013</td>
</tr>
<tr>
<td>Introduction to Smooth Ergodic Theory</td>
<td>Luis Barreira and Yakov Pesin</td>
<td>2013</td>
</tr>
<tr>
<td>Matrix Theory</td>
<td>Xingzhi Zhan</td>
<td>2013</td>
</tr>
<tr>
<td>Combinatorial Game Theory</td>
<td>Aaron N. Siegel</td>
<td>2013</td>
</tr>
<tr>
<td>The K-book</td>
<td>Charles A. Weibel</td>
<td>2013</td>
</tr>
<tr>
<td>Lecture Notes on Functional Analysis</td>
<td>Alberto Bressan</td>
<td>2013</td>
</tr>
<tr>
<td>Higher Order Fourier Analysis</td>
<td>Terence Tao</td>
<td>2012</td>
</tr>
<tr>
<td>A Course in Abstract Analysis</td>
<td>John B. Conway</td>
<td>2012</td>
</tr>
<tr>
<td>Ordinary Differential Equations and Dynamical Systems</td>
<td>Gerald Teschl</td>
<td>2012</td>
</tr>
<tr>
<td>Knowing the Odds</td>
<td>John B. Walsh</td>
<td>2012</td>
</tr>
<tr>
<td>Semiclassical Analysis</td>
<td>Maciej Zworski</td>
<td>2012</td>
</tr>
<tr>
<td>Ordinary Differential Equations</td>
<td>Luis Barreira and Claudia Valls</td>
<td>2012</td>
</tr>
<tr>
<td>Regularity of Free Boundaries in Obstacle-Type Problems</td>
<td>Arshak Petrosyan, Henrik Shahgholian, and Nina Ural'tseva</td>
<td>2012</td>
</tr>
<tr>
<td>Linear and Quasi-linear Evolution Equations in Hilbert Spaces</td>
<td>Pascal Cherrier and Albert Milani</td>
<td>2012</td>
</tr>
<tr>
<td>Analytic Number Theory</td>
<td>Jean-Marie De Koninck and Florian Luca</td>
<td>2012</td>
</tr>
<tr>
<td>Hyperbolic Partial Differential Equations and Geometric Optics</td>
<td>Jeffrey Rauch</td>
<td>2012</td>
</tr>
<tr>
<td>Topics in Random Matrix Theory</td>
<td>Terence Tao</td>
<td>2012</td>
</tr>
<tr>
<td>Lie Superalgebras and Enveloping Algebras</td>
<td>Ian M. Musson</td>
<td>2012</td>
</tr>
<tr>
<td>Gröbner Bases in Commutative Algebra</td>
<td>Viviana Ene and Jürgen Herzog</td>
<td>2011</td>
</tr>
<tr>
<td>Classical Methods in Ordinary Differential Equations</td>
<td>Stuart P. Hastings and J. Bryce McLeod</td>
<td>2012</td>
</tr>
</tbody>
</table>

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.
This text on partial differential equations is intended for readers who want to understand the theoretical underpinnings of modern PDEs in settings that are important for the applications without using extensive analytic tools required by most advanced texts. The assumed mathematical background is at the level of multivariable calculus and basic metric space material, but the latter is recalled as relevant as the text progresses.

The key goal of this book is to be mathematically complete without overwhelming the reader, and to develop PDE theory in a manner that reflects how researchers would think about the material. A concrete example is that distribution theory and the concept of weak solutions are introduced early because while these ideas take some time for the students to get used to, they are fundamentally easy and, on the other hand, play a central role in the field. Then, Hilbert spaces that are quite important in the later development are introduced via completions which give essentially all the features one wants without the overhead of measure theory.

There is additional material provided for readers who would like to learn more than the core material, and there are numerous exercises to help solidify one’s understanding. The text should be suitable for advanced undergraduates or for beginning graduate students including those in engineering or the sciences.