Colored Operads
Colored Operads

Donald Yau
To Eun Soo and Jacqueline
Contents

Preface xiii
Acknowledgments xxi
List of Notations xxiii

Part 1. Graphs and Trees

Chapter 1. Directed Graphs 3
§1.1. Set Notations 3
§1.2. Graphs 5
§1.3. Directed Graphs 8
§1.4. Directed \((m,n)\)-Graphs 10
§1.5. Exercises 16
§1.6. Notes 17

Chapter 2. Extra Structures on Graphs 19
§2.1. Edge Coloring 19
§2.2. Vertex Decoration 20
§2.3. Input Labeling 21
§2.4. Incoming Edge Labeling 24
§2.5. Isomorphisms with Extra Structures 26
§2.6. Exercises 27
<table>
<thead>
<tr>
<th>Chapter 3. Rooted Trees</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>§3.1. Rooted Trees</td>
<td>30</td>
</tr>
<tr>
<td>§3.2. Profile of a Vertex</td>
<td>31</td>
</tr>
<tr>
<td>§3.3. Profile of a Rooted Tree</td>
<td>31</td>
</tr>
<tr>
<td>§3.4. Exceptional Edge and Corollas</td>
<td>32</td>
</tr>
<tr>
<td>§3.5. Simple Trees</td>
<td>34</td>
</tr>
<tr>
<td>§3.6. Level Trees</td>
<td>36</td>
</tr>
<tr>
<td>§3.7. Linear Graphs</td>
<td>40</td>
</tr>
<tr>
<td>§3.8. Exercises</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. Collapsing an Internal Edge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>§4.1. Motivation</td>
<td>43</td>
</tr>
<tr>
<td>§4.2. Defining the Quotient</td>
<td>44</td>
</tr>
<tr>
<td>§4.3. Examples</td>
<td>46</td>
</tr>
<tr>
<td>§4.4. Associativity</td>
<td>48</td>
</tr>
<tr>
<td>§4.5. Compatibility with Extra Structures</td>
<td>48</td>
</tr>
<tr>
<td>§4.6. Exercises</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5. Grafting of Rooted Trees</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>§5.1. Motivation</td>
<td>53</td>
</tr>
<tr>
<td>§5.2. Defining Grafting</td>
<td>54</td>
</tr>
<tr>
<td>§5.3. Examples</td>
<td>55</td>
</tr>
<tr>
<td>§5.4. Unity</td>
<td>57</td>
</tr>
<tr>
<td>§5.5. Horizontal Associativity</td>
<td>60</td>
</tr>
<tr>
<td>§5.6. Vertical Associativity</td>
<td>62</td>
</tr>
<tr>
<td>§5.7. Grafting Decomposition of Rooted Trees</td>
<td>64</td>
</tr>
<tr>
<td>§5.8. Exercises</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6. Grafting and Extra Structures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>§6.1. Edge Coloring</td>
<td>75</td>
</tr>
<tr>
<td>§6.2. Vertex Decoration</td>
<td>75</td>
</tr>
<tr>
<td>§6.3. Input Labeling</td>
<td>76</td>
</tr>
<tr>
<td>§6.4. Incoming Edge Labeling</td>
<td>77</td>
</tr>
<tr>
<td>§6.5. Canonical Vertex Labeling</td>
<td>79</td>
</tr>
<tr>
<td>§6.6. Canonical Input Labeling</td>
<td>80</td>
</tr>
<tr>
<td>§6.7. Exercises</td>
<td>82</td>
</tr>
</tbody>
</table>
Part 2. Category Theory

Chapter 7. Basic Category Theory 89
 §7.1. Categories 90
 §7.2. Functors 98
 §7.3. Natural Transformations 100
 §7.4. Equivalence 105
 §7.5. Coproducts 107
 §7.6. Products 109
 §7.7. Adjoint Functors 111
 §7.8. Exercises 116
 §7.9. Notes 119

Chapter 8. Symmetric Monoidal Categories 121
 §8.1. Motivation for Monoidal Categories 121
 §8.2. Monoidal Categories 122
 §8.3. Monoidal Functors 125
 §8.4. Mac Lane’s Theorem 128
 §8.5. Symmetry 130
 §8.6. Permuting Iterated Tensor Products 132
 §8.7. Symmetric Monoidal Closed Categories 135
 §8.8. Standing Categorical Assumptions 137
 §8.9. Exercises 139
 §8.10. Notes 140

Chapter 9. Colored Symmetric Sequences and Objects 141
 §9.1. Colors and Profiles 141
 §9.2. Permutation Category 143
 §9.3. Colored Symmetric Sequences 147
 §9.4. Colored Objects 153
 §9.5. Exercises 156
 §9.6. Notes 158

Part 3. Operads and Algebras

Chapter 10. Motivation for Colored Operads 161
 §10.1. Categories via Linear Graphs 161
 §10.2. Colored Operads via Trees 164
Chapter 15. Motivation for Partial Compositions
§ 15.1. Simplifying the Operadic Composition
§ 15.2. Operadic Composition to Partial Composition
§ 15.3. Partial Composition to Operadic Composition
§ 15.4. Associativity
§ 15.5. Unity
§ 15.6. Equivariance

Chapter 16. Colored Pseudo-Operads
§ 16.1. Partial Compositions of Profiles
§ 16.2. Defining Colored Pseudo-Operads
§ 16.3. Examples of the Axioms
§ 16.4. Colored Pseudo-Operads Are Colored Operads
§ 16.5. 1-Colored Pseudo-Operads
§ 16.6. Colored Non-Symmetric Pseudo-Operads
§ 16.7. Algebras via Partial Compositions
§ 16.8. Rooted Trees Operad
§ 16.9. Little Square Operad
§ 16.10. Exercises
§ 16.11. Notes

Part 4. Free Colored Operads

Chapter 17. Motivation for Free Colored Operads
§ 17.1. Free Monoids
§ 17.2. Heuristic Free Colored Non-Symmetric Operads
§ 17.3. Heuristic Free Colored Operads
§ 17.4. Exercises

Chapter 18. General Operadic Composition
§ 18.1. Decoration by a Colored Object
§ 18.2. Defining General Operadic Composition
§ 18.3. Associativity
§ 18.4. Exercises

Chapter 19. Free Colored Non-Symmetric Operads
§ 19.1. Entries and Structure Maps
§ 19.2. Colored Non-Symmetric Operad Structure
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§19.3. The Adjunction</td>
<td>361</td>
</tr>
<tr>
<td>§19.4. Motivation for Tree Operads</td>
<td>370</td>
</tr>
<tr>
<td>§19.5. Colored Non-Symmetric Operad Generated by a Tree</td>
<td>372</td>
</tr>
<tr>
<td>§19.6. Exercises</td>
<td>379</td>
</tr>
<tr>
<td>Chapter 20. Free Colored Operads</td>
<td>381</td>
</tr>
<tr>
<td>§20.1. Colored Non-Symmetric Operads to Colored Operads</td>
<td>382</td>
</tr>
<tr>
<td>§20.2. Symmetrization</td>
<td>389</td>
</tr>
<tr>
<td>§20.3. Free Colored Operad of a Colored Object</td>
<td>394</td>
</tr>
<tr>
<td>§20.4. Colored Operad Generated by a Tree</td>
<td>404</td>
</tr>
<tr>
<td>§20.5. Exercises</td>
<td>408</td>
</tr>
<tr>
<td>Further Reading</td>
<td>409</td>
</tr>
<tr>
<td>Bibliography</td>
<td>413</td>
</tr>
<tr>
<td>List of Main Facts</td>
<td>419</td>
</tr>
<tr>
<td>Index</td>
<td>423</td>
</tr>
</tbody>
</table>
Preface

Operads

An operad is a mathematical object for organizing operations with multiple, possibly zero, inputs and one output. An operad (Definition 11.6.1)

\[(O, \gamma, 1)\]

in a symmetric monoidal category \((M, \otimes, I)\)—for example, \(M\) may consist of sets with \(\otimes\) the Cartesian product and \(I\) the one-point set—consists of

1. objects \(O(n)\) in \(M\) with a right \(\Sigma_n\)-action for all \(n \geq 0\), where \(\Sigma_n\) is the symmetric group on \(n\) letters;
2. a unit \(1 : I \rightarrow O(1)\), where \(I\) is the \(\otimes\)-unit in \(M\);
3. an operadic composition

\[
\begin{array}{c}
O(n) \otimes O(k_1) \otimes \cdots \otimes O(k_n) \\
\text{n inputs} \quad \text{1 output} \\
\end{array} \xrightarrow[\gamma]{\text{k_1 + \cdots + k_n inputs}} \quad \begin{array}{c}
O(k_1 + \cdots + k_n) \\
\text{k_1 + \cdots + k_n inputs} \quad \text{1 output} \\
\end{array}
\]

for all \(n \geq 1, k_1, \ldots, k_n \geq 0\).

This data is assumed to satisfy some associativity, unity, and equivariance axioms. The key point is that the object \(O(n)\) parametrizes operations with \(n\) inputs and 1 output.

The name operad was coined by May in [May72], where operads were used to study iterated loop spaces. About a decade before [May72], Stasheff’s study of loop spaces [Sta63] already had some of the essential ideas for an operad. At about the same time as the publication of [May72], the
operadic actions on loop spaces also appeared in the work of Boardman and Vogt [BV73], who were using the more general concept of props by Adams and Mac Lane [Mac65]. Also, Kelly [Kel72] was studying a categorical structure closely related to operads called clubs. It was recognized almost immediately [Kel05] that operads are monoids with respect to the circle product and that they could be defined in any bicomplete symmetric monoidal closed categories.

Operads are now standard tools in homotopy theory. Furthermore, they have applications in string topology, algebraic deformation theory, category and higher category theory, homotopical algebras, combinatorics of trees, and vertex operator algebras. Outside of pure mathematics, operads are important in some aspects of mathematical physics, computer science, biology, and other sciences. The appendix entitled Further Reading has some relevant references.

Colored Operads

For some recent applications, it is necessary to have a more general form of an operad, called a colored operad or a symmetric multicategory. Without the symmetric group action, multicategories were defined by Lambek [Lam69] a few years before [May72]. Suppose \mathcal{C} is a non-empty set whose elements are called colors. A \mathcal{C}-colored operad O (Definition 11.2.1) consists of objects

$$O(d, c_1, \ldots, c_n)$$

for $d, c_1, \ldots, c_n \in \mathcal{C}, n \geq 0$,

parametrizing operations with n inputs indexed by the colors c_1, \ldots, c_n and one output indexed by the color d. There are colored versions of the Σ-action and an operadic composition that is only defined when the colors match. For each color, there is a colored unit. This data is supposed to satisfy colored versions of the operad axioms. So what is called an operad above is a 1-colored operad, where the color set \mathcal{C} consists of a single color.

Here are a few ways in which colored operads arise.

1. A small category \mathcal{C}—that is, a category with a set of objects—is a colored operad O in which the set of objects of \mathcal{C} forms the color set \mathcal{C}. The hom-set $\mathcal{C}(x, y)$ is the object $O(y)$. We will discuss these colored operads in Section 12.3.

2. Every planar rooted tree T freely generates a colored operad $\Sigma_p(T)$, which we will define in (20.4.2). The colored operad $\Sigma_p(T)$ is important in the study of ∞-operads [MW07].
(3) For some applications in algebraic K-theory \cite{EM06, EM09}, general colored operads are needed.

(4) In the realm of knot theory, a suitably parametrized version of the set of planar tangles is a colored operad \cite{Jon12}.

(5) Applications in other sciences \cite{Spi13, Spi14}, such as wiring diagrams, also require general colored operads as opposed to 1-colored operads.

Purpose

This book is an introduction to colored operads and their algebras in symmetric monoidal categories. Various free colored operad functors are discussed in complete detail and in full generality. The reasons for our choices of topics and setting are as follows.

(1) We discuss the more general colored operads instead of 1-colored operads because many recent applications—such as those in ∞-operads, knot theory, and wiring diagrams—require colored operads.

(2) We work at the generality of symmetric monoidal categories because colored operads are most naturally defined on them. Depending on one’s intended applications, one may want to work with sets, topological spaces, modules or chain complexes over a commutative ring, or other objects. Symmetric monoidal categories are general enough to include all of these examples and many more.

(3) We discuss free colored operads in detail and in full generality because they are extremely important in several areas, including algebraic deformations, homotopical algebra, higher category theory, and higher algebra.

Audience and Prerequisite

The intended audience of this book includes students and researchers in mathematics, physics, computer science, and other sciences where operads and colored operads are used. Since this book is intended for a broad audience, the mathematical prerequisite is kept to a minimum. Specifically:

(1) The reader is assumed to be familiar with basic concepts of sets and functions, as discussed in, for example, \cite{Yau13} (1.1 and 1.2).

(2) The reader is assumed to be comfortable with basic proof techniques, including mathematical induction. Such concepts are covered in most books about the introduction to advanced undergraduate level mathematics, such as \cite{Vel06, Woh11}.
Some knowledge of permutations and categories is certainly useful but not required. These concepts and many others will be recalled in this book.

In a few instances, we mention some objects—such as topological spaces—that are neither defined nor discussed at length in this book. In those cases, we provide an appropriate reference for the reader to consult.

Features

With a broad audience in mind, here are a few features of this book.

(1) **Motivation.** A lot of space in this book is devoted to motivating definitions and constructions that might be difficult to digest for beginners. Every major concept is thoroughly motivated before it is defined. For example:

- Section 4.1 provides motivation for collapsing an internal edge in a rooted tree.
- Section 5.1 provides motivation for grafting of rooted trees.
- Section 8.1 provides motivation for a monoidal category.
- Section 13.1 provides motivation for an algebra over a colored operad.
- Chapters 10, 15, and 17 are entirely devoted to motivating colored operads, partial compositions in a colored operad, and free colored operads, respectively.

Other such discussion designed to motivate an upcoming definition or construction is clearly marked as Motivation.

(2) **Graphical Illustrations.** Rooted trees are a special kind of graphs that play an important role in the theory of colored operads. Part 1 provides a leisurely but rigorous introduction to graphs and rooted trees. There are many figures of graphs and rooted trees throughout this book. They are designed to help the reader visualize the objects being discussed. In total there are more than 100 graphical illustrations. Many of the more complicated definitions and constructions are motivated using these illustrations.

(3) **Exercises.** There are about 150 exercises, collected at the end of almost every chapter. Unless stated otherwise, a text cross-reference to an exercise is to that exercise in the same chapter. For example, the mention of Exercise (2) on page 8 refers to Exercise (2) in Chapter 1. Some of these are routine exercises, but some are more substantial. Many of the longer exercises have hints and outlines. Some of the exercises explore topics that are not treated in the main text. For example, the colored coendomorphism operad and coalgebras over a colored operad are only considered in the exercises in Chapter 13.
Related Literature

There are several excellent monographs about 1-colored operads. Both \cite{KM95} and \cite{LV12} deal with 1-colored operads in an algebraic setting, namely modules and chain complexes over a commutative ring. The book \cite{MSS02} deals with 1-colored operads in a symmetric monoidal category and has ample discussion of applications. Compared to \cite{KM95, LV12, MSS02}, this book is different in several ways.

(1) The most prominent difference is that our main focus is on colored operads, instead of 1-colored operads. Of course, colored operads include 1-colored operads. Whenever we have an important concept about colored operads, we will also state the 1-colored and the colored non-symmetric versions. So everything in this book does apply in the 1-colored case.

(2) This book is designed for a broad audience with no prior knowledge of operads, category theory, or graph theory. Our mathematical prerequisite is minimal, and our discussion goes at a leisurely pace. As a result, we do not go as deeply into the theory as the books \cite{KM95, LV12, MSS02}. However, we do discuss free colored operads in complete detail and in full generality in Part 4.

(3) Just like \cite{MSS02} but unlike \cite{KM95, LV12}, we work in the general setting of symmetric monoidal categories. Part 3 of this book is devoted to elementary category theory.

One may use this book as a springboard for more advanced literature on operads, such as \cite{Fre09, KM95, LV12, MSS02, MT10}. One may also use this book alongside the monographs \cite{Spi14, Men15}, both of which discuss applications of colored operads in sets.

Contents

This book is divided into four parts:

Part 1. Graphs and Trees: Chapters 1–6

Part 2. Category Theory: Chapters 7–9

Part 3. Operads and Algebras: Chapters 10–16

Part 4. Free Colored Operads: Chapters 17–20

Part 1 and Part 2 can be read independently. Part 3 uses both Part 1 and Part 2, and Part 4 uses all three previous parts. Within each part, the chapters are essentially cumulative. We now provide a brief description of each part and each chapter.
Part 1. Graphs and Trees: Chapters 1–6

Rooted trees are a special type of graphs that play several roles in the theory of colored operads. First, they are useful for visualizing definitions and constructions. Second, they provide examples of colored operads, some of which are important in combinatorics and \(\infty \)-operads. Furthermore, some constructions, such as the free colored operad functors in Part 4, directly employ rooted trees. Assuming no prior knowledge of graph theory, in Part 1 we develop from scratch the relevant concepts of graphs and rooted trees. The material in Part 1 is used repeatedly in Part 3 and Part 4.

In Chapter 1 we introduce directed graphs with specified inputs and outputs, called directed \((m,n)\)-graphs.

In Chapter 2 we discuss extra structures on graphs, including edge coloring, vertex decoration, input labeling, and incoming edge labeling.

In Chapter 3 we introduce rooted trees, which are special kinds of directed \((m,1)\)-graphs. We discuss several important classes of rooted trees, including exceptional edge, corollas, simple trees, level trees, and linear graphs. All of these rooted trees will be referred to in later chapters.

In Chapter 4 we discuss the construction of collapsing an internal edge in a rooted tree. This construction is important in Part 4 when we discuss the general operadic composition in a colored non-symmetric operad.

In Chapter 5 we discuss grafting of rooted trees and observe that grafting is unital and associative. It is then observed that every rooted tree admits a grafting decomposition into corollas. This decomposition is used in several constructions in later chapters.

In Chapter 6 we discuss how the extra structures on graphs in Chapter 2 are extended to the grafting of two rooted trees.

Part 2. Category Theory: Chapters 7–9

To learn about colored operads, it is important that one knows a little bit of category theory. The most natural setting on which a colored operad can be defined is a symmetric monoidal category. Moreover, in order to discuss free colored operads in Part 4, we need the concept of adjoint functors. Assuming no prior knowledge of category theory, the main purpose of Part 2 is to discuss some basic category theory so that colored operads, free colored operads, and so forth can be properly discussed in Part 3 and Part 4.

In Chapter 7 we introduce the most basic concepts of category theory, including categories, functors, natural transforma-
tions, equivalence, isomorphism of categories, coproducts, products, and adjoint functors. For the purpose of this book, the most important examples of categories are in Example 7.3.14. These are very common categories on which colored operads are defined. They are referred to multiple times in later chapters.

In Chapter 8 we discuss symmetric monoidal categories. These are categories equipped with a form of multiplication, somewhat similar to the tensor product of vector spaces. In the majority of the rest of this book, we work over a symmetric monoidal category satisfying some natural conditions as stated in Assumption 8.8.1.

In Chapter 9 we introduce colored symmetric sequences and colored objects. Every colored operad has an underlying colored symmetric sequence, which captures its equivariant structure. For a fixed non-empty set of colors, colored symmetric sequences form a diagram category. Colored objects are needed to discuss algebras over a colored operad and some forgetful functors about colored operads.

Part 3. Operads and Algebras: Chapters 10–16

The main purposes of Part 3 are

1. to introduce colored operads and their algebras in a symmetric monoidal category;
2. to discuss partial compositions.

These partial compositions provide another way to define a colored operad and are used multiple times in Part 4.

In Chapter 10 we provide motivation for the definition of a colored operad. As a warm-up exercise, first we discuss how the axioms of a category can be understood via linear graphs. Using categories as a model, we then discuss how switching from linear graphs to level trees naturally leads to a colored operad. The main point is that the definition of a colored operad—the operadic composition and the associativity axiom in particular—can be easily visualized using a few pictures of level trees.

In Chapter 11 we first define colored operads in a symmetric monoidal category. Then we construct the change-of-base category adjunction. We also state the special cases of a 1-colored operad, where the color set contains a single element, and of a colored non-symmetric operad, where there is no equivariant structure.

In Chapter 12 we consider colored operads that are concentrated in arity 1. In the 1-colored case, these are monoids. In the general colored case, these are small enriched categories.

In Chapter 13 we define algebras over a colored operad in a symmetric monoidal category and discuss the colored endomorphism
operad. The latter provides a different way to define an algebra over a colored operad as a map of colored operads. This second definition of an operadic algebra is useful in applications when one wishes to transfer an operadic algebra structure along a map.

In Chapter 14 we discuss a few examples of algebras over a colored operad, including the initial and the terminal object in the category of algebras. The (colored) operads for monoids, monoid maps, and colored monoids are described in detail.

In Chapter 15 we provide motivation for the partial compositions in a colored operad. The main point is that partial compositions correspond to simple trees. Using simple trees we explain how one can anticipate the definition of the partial compositions.

In Chapter 16 we introduce colored pseudo-operads, which have partial compositions rather than an operadic composition. Partial compositions are in some ways simpler than an operadic composition because the former are binary operations. The main observation is that the two concepts, colored operads and colored pseudo-operads, are in fact equivalent. Near the end of this chapter, we discuss the colored rooted trees operad and the little square operad.

Part 4. Free Colored Operads: Chapters 17–20

The main purpose of Part 4 is to discuss the free colored operad functors. There are three such functors, depending on which forgetful functor is considered.

In Chapter 17 we provide motivation for the various free colored operad functors. The main point is that these functors are closely related to rooted trees. As a warm-up exercise, we discuss the free monoid functor in detail. The constructions of the free colored operad functors in later chapters follow similar steps as the monoid case.

In Chapter 18 we introduce the general operadic composition in a colored non-symmetric operad. The domain of the general operadic composition is parametrized by a planar rooted tree. The main observation is that the general operadic composition is associative with respect to grafting of rooted trees. This observation is an essential ingredient in the construction of the free colored non-symmetric operad functor.

In Chapter 19 we consider the left adjoint of the forgetful functor from colored non-symmetric operads to colored objects. This left adjoint is called the free colored non-symmetric operad functor. Near the end of this chapter, we discuss the free colored non-symmetric operad generated by a planar rooted tree. This colored operad is an important construction in the theory of ∞-operads.
In Chapter 20 we first consider the left adjoint of the forgetful functor from colored operads to colored non-symmetric operads. This left adjoint is called the symmetrization functor. Next we consider the left adjoint of the forgetful functor from colored operads all the way down to colored objects. This left adjoint is called the free colored operad functor. Near the end of this chapter, we describe the free colored operad generated by a planar rooted tree.

In an appendix entitled Further Reading, we list some references about operads, loosely divided into different topics.

Acknowledgments

I would like to thank Peter May and Michael Batanin for pointing out some very useful references. I would also like to thank the anonymous referees for their helpful suggestions.

Donald Yau
List of Notations

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Notation</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>3</td>
<td>empty set</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>S</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$S^{\times n}$</td>
<td>3</td>
<td>set of n-tuples of elements in S</td>
</tr>
<tr>
<td></td>
<td>S^2</td>
<td>3</td>
<td>set of unordered pairs in S not of the form ${x,x}$ for $x \in S$</td>
</tr>
<tr>
<td></td>
<td>$x \mapsto f(x)$</td>
<td>4</td>
<td>the image of x is $f(x)$</td>
</tr>
<tr>
<td></td>
<td>Id_S, Id</td>
<td>4</td>
<td>identity function</td>
</tr>
<tr>
<td></td>
<td>$g \circ f$</td>
<td>4</td>
<td>composition of functions</td>
</tr>
<tr>
<td></td>
<td>\cong</td>
<td>4</td>
<td>bijection/isomorphism</td>
</tr>
<tr>
<td></td>
<td>$S \subseteq T$</td>
<td>4</td>
<td>S is a subset of T</td>
</tr>
<tr>
<td></td>
<td>$T \setminus S$</td>
<td>4</td>
<td>set difference</td>
</tr>
<tr>
<td></td>
<td>$S \cap T$</td>
<td>4</td>
<td>intersection</td>
</tr>
<tr>
<td></td>
<td>$S_1 \times \cdots \times S_n$</td>
<td>4</td>
<td>product</td>
</tr>
<tr>
<td></td>
<td>$\prod_{i=1}^n S_i$</td>
<td>4</td>
<td>product</td>
</tr>
<tr>
<td></td>
<td>$S_1 \sqcup \cdots \sqcup S_n$</td>
<td>5</td>
<td>coproduct/disjoint union</td>
</tr>
<tr>
<td></td>
<td>$\bigcup_{i=1}^n S_i$</td>
<td>5</td>
<td>coproduct/disjoint union</td>
</tr>
<tr>
<td></td>
<td>$x \sim y$</td>
<td>5</td>
<td>x and y are identified</td>
</tr>
<tr>
<td></td>
<td>(V,E)</td>
<td>5</td>
<td>graph with abstract vertices V and edges E</td>
</tr>
<tr>
<td></td>
<td>${x,y}$</td>
<td>5</td>
<td>an edge with abstract end-vertices x and y</td>
</tr>
<tr>
<td></td>
<td>(x_0,\ldots,x_l)</td>
<td>6</td>
<td>a path in a graph</td>
</tr>
<tr>
<td></td>
<td>(x,y)</td>
<td>8</td>
<td>an edge with initial vertex x and terminal vertex y</td>
</tr>
<tr>
<td></td>
<td>$\text{in}(v)$</td>
<td>9</td>
<td>set of incoming edges of v</td>
</tr>
<tr>
<td></td>
<td>$\text{out}(v)$</td>
<td>9</td>
<td>set of outgoing edges of v</td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>$(V, E, \text{in}_G, \text{out}_G)$</td>
<td>10</td>
<td>directed (m,n)-graph with inputs in$_G$ and outputs out$_G$</td>
<td></td>
</tr>
<tr>
<td>$\forall t_G$</td>
<td>11</td>
<td>set of vertices in G</td>
<td></td>
</tr>
<tr>
<td>Int_G</td>
<td>11</td>
<td>set of internal edges in G</td>
<td></td>
</tr>
<tr>
<td>\uparrow</td>
<td>16</td>
<td>exceptional edge</td>
<td></td>
</tr>
<tr>
<td>${\ast}$</td>
<td>20</td>
<td>one-element set</td>
<td></td>
</tr>
<tr>
<td>$[m]$</td>
<td>21</td>
<td>the set ${1,\ldots,m}$, empty if $m = 0$</td>
<td></td>
</tr>
<tr>
<td>(S, \leq)</td>
<td>22</td>
<td>ordered set</td>
<td></td>
</tr>
<tr>
<td>inprof(v)</td>
<td>31</td>
<td>incoming profile of v</td>
<td></td>
</tr>
<tr>
<td>inprof(T)</td>
<td>32</td>
<td>input profile of T</td>
<td></td>
</tr>
<tr>
<td>C_m</td>
<td>33</td>
<td>m-corolla</td>
<td></td>
</tr>
<tr>
<td>$T_m^n(j)$</td>
<td>35</td>
<td>simple tree</td>
<td></td>
</tr>
<tr>
<td>$\text{lev}(v)$</td>
<td>36</td>
<td>level of v</td>
<td></td>
</tr>
<tr>
<td>$\text{max}(S)$</td>
<td>36</td>
<td>maximum element in a finite set S of integers</td>
<td></td>
</tr>
<tr>
<td>L_k</td>
<td>40</td>
<td>k-level linear graph</td>
<td></td>
</tr>
<tr>
<td>T/e</td>
<td>45</td>
<td>T with internal edge e collapsed</td>
<td></td>
</tr>
<tr>
<td>$T_1 \circ_e T_2$</td>
<td>55</td>
<td>grafting of T_1 and T_2 along e</td>
<td></td>
</tr>
<tr>
<td>$\kappa_1 \circ_e \kappa_2$</td>
<td>76</td>
<td>induced \mathcal{C}-coloring</td>
<td></td>
</tr>
<tr>
<td>$\lambda_1 \circ_e \lambda_2, \lambda_1 \circ_j \lambda_2$</td>
<td>78</td>
<td>induced input labeling</td>
<td></td>
</tr>
<tr>
<td>$\Psi_1 \circ_e \Psi_2$</td>
<td>80</td>
<td>induced incoming edge labeling</td>
<td></td>
</tr>
<tr>
<td>β_T</td>
<td>81</td>
<td>canonical vertex labeling of T</td>
<td></td>
</tr>
<tr>
<td>λ_T</td>
<td>82</td>
<td>canonical input labeling of T</td>
<td></td>
</tr>
<tr>
<td>$\text{Ob}(\mathcal{C})$</td>
<td>90</td>
<td>class of objects in a category</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{C}(a, b), \mathcal{C}(a; b)$</td>
<td>90</td>
<td>morphism set with domain a and codomain b</td>
<td></td>
</tr>
<tr>
<td>$1_a, \text{Id}_a$</td>
<td>90</td>
<td>identity morphism of a</td>
<td></td>
</tr>
<tr>
<td>\circ</td>
<td>90</td>
<td>composition in a category</td>
<td></td>
</tr>
<tr>
<td>$f : a \rightarrow b$</td>
<td>91</td>
<td>morphism $f \in \mathcal{C}(a,b)$</td>
<td></td>
</tr>
<tr>
<td>$a \xrightarrow{f} b$</td>
<td>91</td>
<td>morphism $f \in \mathcal{C}(a,b)$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>91</td>
<td>empty category</td>
<td></td>
</tr>
<tr>
<td>Σ_n</td>
<td>93</td>
<td>symmetric group on n letters</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>93</td>
<td>category of groups</td>
<td></td>
</tr>
<tr>
<td>Ab</td>
<td>93</td>
<td>category of abelian groups</td>
<td></td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ring</td>
<td>93</td>
<td>category of rings</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>93</td>
<td>category of topological spaces</td>
<td></td>
</tr>
<tr>
<td>dis(C)</td>
<td>94</td>
<td>discrete category associated to C</td>
<td></td>
</tr>
<tr>
<td>C<sup>op</sup></td>
<td>96</td>
<td>opposite category of C</td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>96</td>
<td>simplicial category</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>96</td>
<td>totally ordered set {0 < 1 < \cdots < n}</td>
<td></td>
</tr>
<tr>
<td>C<sup>S</sup>, Π<sub>S</sub>C</td>
<td>97</td>
<td>product category</td>
<td></td>
</tr>
<tr>
<td>Π<sub>s∈S</sub>C<sub>s</sub></td>
<td>97</td>
<td>product category</td>
<td></td>
</tr>
<tr>
<td>Id<sub>C</sub></td>
<td>98</td>
<td>identity functor on C</td>
<td></td>
</tr>
<tr>
<td>G<sub>ab</sub></td>
<td>99</td>
<td>abelianization</td>
<td></td>
</tr>
<tr>
<td>C ≅ D</td>
<td>99</td>
<td>isomorphism of categories</td>
<td></td>
</tr>
<tr>
<td>C<sup>D</sup>, Fun(D, C)</td>
<td>103</td>
<td>diagram category</td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>103</td>
<td>category of sets</td>
<td></td>
</tr>
<tr>
<td>Mod(R)</td>
<td>104</td>
<td>category of left R-modules</td>
<td></td>
</tr>
<tr>
<td>Chain(R)</td>
<td>104</td>
<td>category of chain complexes of left R-modules</td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>104</td>
<td>category of small categories</td>
<td></td>
</tr>
<tr>
<td>CHau</td>
<td>104</td>
<td>category of compactly generated Hausdorff spaces</td>
<td></td>
</tr>
<tr>
<td>SSet</td>
<td>105</td>
<td>category of simplicial sets</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>106</td>
<td>groupoid associated to (\Sigma_{n+1})</td>
<td></td>
</tr>
<tr>
<td>Set<sub>n</sub></td>
<td>106</td>
<td>groupoid of totally ordered sets with (n+1) elements</td>
<td></td>
</tr>
<tr>
<td>Π<sub>s∈S</sub>x<sub>s</sub></td>
<td>107</td>
<td>coproduct of objects ({x_s}_{s∈S})</td>
<td></td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>108</td>
<td>initial object in a category</td>
<td></td>
</tr>
<tr>
<td>Π<sub>s∈S</sub>x<sub>s</sub></td>
<td>109</td>
<td>product of objects ({x_s}_{s∈S})</td>
<td></td>
</tr>
<tr>
<td>(\ast)</td>
<td>109</td>
<td>terminal object in a category</td>
<td></td>
</tr>
<tr>
<td>X × Y</td>
<td>110</td>
<td>product of two objects</td>
<td></td>
</tr>
<tr>
<td>(F_R)</td>
<td>113</td>
<td>free left R-module functor</td>
<td></td>
</tr>
<tr>
<td>(M^G)</td>
<td>118</td>
<td>category of objects in (M) equipped with a left (G)-action</td>
<td></td>
</tr>
<tr>
<td>(\otimes)</td>
<td></td>
<td>monoidal product</td>
<td></td>
</tr>
<tr>
<td>X<sup>\otimes 0</sup>, X<sup>\otimes \emptyset</sup></td>
<td>124</td>
<td>empty tensor product</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>125</td>
<td>discrete category with one object</td>
<td></td>
</tr>
<tr>
<td>(ξ_{X,Y})</td>
<td>130</td>
<td>symmetry isomorphism</td>
<td></td>
</tr>
<tr>
<td>((i,j))</td>
<td>132</td>
<td>transposition</td>
<td></td>
</tr>
<tr>
<td>X<sup>\otimes n</sup></td>
<td>133</td>
<td>iterated tensor product</td>
<td></td>
</tr>
<tr>
<td>(\otimes_{j=1}^n X_j)</td>
<td>133</td>
<td>iterated tensor product</td>
<td></td>
</tr>
<tr>
<td>Hom<sub>M</sub></td>
<td>135</td>
<td>internal hom</td>
<td></td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>141</td>
<td>set of colors</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>141</td>
<td>C-profile (c_1, \ldots, c_n)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>c</td>
<td>$</td>
<td>141</td>
</tr>
<tr>
<td>\emptyset</td>
<td>141</td>
<td>empty C-profile</td>
<td></td>
</tr>
<tr>
<td>$\text{Prof}(C)$</td>
<td>142</td>
<td>set of C-profiles</td>
<td></td>
</tr>
<tr>
<td>(a, b)</td>
<td>142</td>
<td>concatenation of C-profiles</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>142</td>
<td>set of non-negative integers</td>
<td></td>
</tr>
<tr>
<td>σ_a</td>
<td>143</td>
<td>left permutation</td>
<td></td>
</tr>
<tr>
<td>$a \sigma$</td>
<td>143</td>
<td>right permutation</td>
<td></td>
</tr>
<tr>
<td>$\Sigma(C)$</td>
<td>143</td>
<td>groupoid of C-profiles</td>
<td></td>
</tr>
<tr>
<td>$\Sigma(C)^\text{op}$</td>
<td>143</td>
<td>opposite groupoid of C-profiles</td>
<td></td>
</tr>
<tr>
<td>$[a]$</td>
<td>144</td>
<td>orbit of a C-profile</td>
<td></td>
</tr>
<tr>
<td>$\Sigma_{[a]}$</td>
<td>144</td>
<td>permutation category of $[a]$</td>
<td></td>
</tr>
<tr>
<td>$\text{Orb}(\Sigma(C))$</td>
<td>144</td>
<td>set of orbits in $\Sigma(C)$</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>145</td>
<td>groupoid of ${\ast}$-profiles</td>
<td></td>
</tr>
<tr>
<td>$\text{Seq}^\Sigma(C)(M)$</td>
<td>148</td>
<td>C-colored symmetric sequences</td>
<td></td>
</tr>
<tr>
<td>$\text{Seq}^{\Sigma(M)}$</td>
<td>148</td>
<td>1-colored symmetric sequences</td>
<td></td>
</tr>
<tr>
<td>$X^{(c)}_{\mathcal{C}}$</td>
<td>148</td>
<td>(c)-entry of X</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>149</td>
<td>vertical notation for $(c; d)$</td>
<td></td>
</tr>
<tr>
<td>$(c; d)$</td>
<td>150</td>
<td>vertical notation for $([c]; d)$</td>
<td></td>
</tr>
<tr>
<td>${X_c}_{c \in C}$</td>
<td>153</td>
<td>C-colored object</td>
<td></td>
</tr>
<tr>
<td>M_C</td>
<td>153</td>
<td>category of C-colored objects in M</td>
<td></td>
</tr>
<tr>
<td>$M_{\text{Prof}(C) \times C}$</td>
<td>154</td>
<td>category of $(\text{Prof}(C) \times C)$-colored objects in M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notation</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(k_1, \ldots, k_n)$</td>
<td>173</td>
<td>block permutation</td>
</tr>
<tr>
<td>$\tau_1 \oplus \cdots \oplus \tau_n$</td>
<td>174</td>
<td>block sum</td>
</tr>
<tr>
<td>γ</td>
<td>176</td>
<td>operadic composition</td>
</tr>
<tr>
<td>1_C</td>
<td>176</td>
<td>C-colored unit</td>
</tr>
<tr>
<td>$\text{Operad}^{\Sigma(C)}(M)$</td>
<td>180</td>
<td>category of C-colored operads</td>
</tr>
<tr>
<td>$\text{Operad}^{\Sigma(M)}$</td>
<td>185</td>
<td>initial C-colored operad</td>
</tr>
<tr>
<td>T</td>
<td>185</td>
<td>terminal C-colored operad</td>
</tr>
<tr>
<td>$\text{Operad}^{\Sigma(M)}$</td>
<td>190</td>
<td>category of 1-colored operads</td>
</tr>
<tr>
<td>$\text{Operad}^{\Omega(C)}(M)$</td>
<td>198</td>
<td>category of C-colored non-Σ operads</td>
</tr>
<tr>
<td>$\text{Operad}^{\Omega(M)}$</td>
<td>198</td>
<td>category of 1-colored non-Σ operads</td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ch. 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>204</td>
<td>category of monoids</td>
</tr>
<tr>
<td>Mon(C)</td>
<td>207</td>
<td>category of monoids in C</td>
</tr>
<tr>
<td>Mon$^\mathcal{C}$ (C)</td>
<td>210</td>
<td>category of \mathcal{C}-colored monoids in C</td>
</tr>
<tr>
<td>Ch. 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X_{\mathcal{C}}$</td>
<td>217</td>
<td>$X_{c_1} \otimes \cdots \otimes X_{c_n}$</td>
</tr>
<tr>
<td>Alg(O)</td>
<td>219</td>
<td>category of O-algebras</td>
</tr>
<tr>
<td>End(X)</td>
<td>226</td>
<td>\mathcal{C}-colored endomorphism operad</td>
</tr>
<tr>
<td>Ch. 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\emptyset^0</td>
<td>238</td>
<td>initial O-algebra</td>
</tr>
<tr>
<td>\ast^0</td>
<td>238</td>
<td>terminal O-algebra</td>
</tr>
<tr>
<td>As</td>
<td>241</td>
<td>operad for monoids</td>
</tr>
<tr>
<td>2</td>
<td>247</td>
<td>category with two objects and one non-identity morphism</td>
</tr>
<tr>
<td>As2</td>
<td>249</td>
<td>2-colored operad for monoid maps</td>
</tr>
<tr>
<td>As$^\mathcal{C}$</td>
<td>255</td>
<td>\mathcal{C}^2-colored non-Σ operad for \mathcal{C}-colored monoids in M</td>
</tr>
<tr>
<td>CMon(M)</td>
<td>259</td>
<td>category of commutative monoids</td>
</tr>
<tr>
<td>Com</td>
<td>259</td>
<td>operad for commutative monoids</td>
</tr>
<tr>
<td>Ch. 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a \circ_i b$</td>
<td>276</td>
<td>\circ_i of \mathcal{C}-profiles</td>
</tr>
<tr>
<td>$\sigma \circ_i \tau$</td>
<td>276</td>
<td>\circ_i-permutation</td>
</tr>
<tr>
<td>\circ_i</td>
<td>278</td>
<td>comp-i composition</td>
</tr>
<tr>
<td>Operad$^\Sigma(\mathcal{C})$ (M)</td>
<td>281</td>
<td>category of \mathcal{C}-colored pseudo-operads</td>
</tr>
<tr>
<td>Operad$^\Sigma$ (M)</td>
<td>295</td>
<td>category of 1-colored pseudo-operads</td>
</tr>
<tr>
<td>Operad$^\Omega(\mathcal{C})$ (M)</td>
<td>297</td>
<td>category of \mathcal{C}-colored non-Σ pseudo-operads</td>
</tr>
<tr>
<td>Algo (O)</td>
<td>300</td>
<td>category of O-algebras</td>
</tr>
<tr>
<td>Tree$^\mathcal{C}$ ($^{d_i}_\mathcal{C}$)</td>
<td>302</td>
<td>set of isomorphism classes of \mathcal{C}-colored rooted trees with input labeling and profile ($^{d_i}_\mathcal{C}$)</td>
</tr>
<tr>
<td>Tree$^\mathcal{C}$</td>
<td>304</td>
<td>\mathcal{C}-colored rooted trees operad</td>
</tr>
<tr>
<td>I</td>
<td>306</td>
<td>closed interval $[0, 1]$</td>
</tr>
<tr>
<td>I^2</td>
<td>306</td>
<td>standard unit square $[0, 1] \times 2$</td>
</tr>
<tr>
<td>J^2</td>
<td>306</td>
<td>interior of the standard unit square</td>
</tr>
<tr>
<td>$C_2(n)$</td>
<td>308</td>
<td>nth space of the little square operad</td>
</tr>
<tr>
<td>C_2</td>
<td>308</td>
<td>the little square operad</td>
</tr>
<tr>
<td>C_n</td>
<td>316</td>
<td>the little n-cube operad</td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Ch. 18 $[T, \kappa, \Psi], [T]$</td>
<td>336</td>
<td>isomorphism class of a \mathcal{C}-colored planar rooted tree</td>
</tr>
<tr>
<td>Tree$_p^{\mathcal{C}}(d)$</td>
<td>337</td>
<td>set of isomorphism classes of \mathcal{C}-colored planar rooted trees with profile (d)</td>
</tr>
<tr>
<td>Tree$_p(n)$</td>
<td>337</td>
<td>set of isomorphism classes of 1-colored planar rooted trees with n inputs</td>
</tr>
<tr>
<td>$X(v)$</td>
<td>337</td>
<td>X-decoration of a vertex v</td>
</tr>
<tr>
<td>$X[T]$</td>
<td>337</td>
<td>X-decoration of $[T]$</td>
</tr>
<tr>
<td>$\gamma[T]$</td>
<td>331</td>
<td>$[T]$-shaped composition</td>
</tr>
<tr>
<td>Ch. 19 U^Ω</td>
<td>351</td>
<td>forgetful functor from colored non-Σ operads to colored objects</td>
</tr>
<tr>
<td>F^Ω</td>
<td>353</td>
<td>free colored non-Σ operad functor</td>
</tr>
<tr>
<td>X_T</td>
<td>372</td>
<td>colored object of a planar rooted tree</td>
</tr>
<tr>
<td>$\Omega_p(T)$</td>
<td>373</td>
<td>free colored non-Σ operad generated by T</td>
</tr>
<tr>
<td>Ch. 20 U_1</td>
<td>382</td>
<td>forgetful functor from colored operads to colored non-Σ operads</td>
</tr>
<tr>
<td>F_1</td>
<td>382</td>
<td>symmetrization functor</td>
</tr>
<tr>
<td>U^Σ</td>
<td>395</td>
<td>forgetful functor from colored operads to colored objects</td>
</tr>
<tr>
<td>Tree$_{ip}^{\mathcal{C}}(d)$</td>
<td>396</td>
<td>set of isomorphism classes of \mathcal{C}-colored planar rooted trees with an input planar labeling and profile (d)</td>
</tr>
<tr>
<td>F^Σ</td>
<td>398</td>
<td>free colored operad functor</td>
</tr>
<tr>
<td>$\Sigma_p(T)$</td>
<td>404</td>
<td>free colored operad generated by T</td>
</tr>
</tbody>
</table>
Bibliography

[Cha08] F. Chapoton, Operads and algebraic combinatorics of trees, Sém. Loth. de Combinatoire 58 (2008), Article B58c.

[Mac63] S. Mac Lane, Natural associativity and commutativity, Rice University Studies 49 (1963), 28–46.

Bibliography

List of Main Facts

<table>
<thead>
<tr>
<th>Reference</th>
<th>Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>p.16</td>
</tr>
<tr>
<td>3.4.1</td>
<td>A directed connected forest can always be drawn with all the edges pointing upward.</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Up to isomorphisms, the exceptional edge \uparrow is the only rooted tree with no root vertex.</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Up to isomorphisms, corollas are the only rooted trees with one vertex.</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Up to isomorphisms, the simple trees $T_m^n(j)$ are the only rooted trees with two vertices.</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Collapsing internal edges is associative.</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Grafting is unital.</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Grafting is horizontally associative.</td>
</tr>
<tr>
<td>5.7.15</td>
<td>Every rooted tree has a grafting decomposition.</td>
</tr>
</tbody>
</table>

Part 2	**p.117**
7.1.17	A group is a 1-object groupoid.
7.4.4	Equivalence is strictly weaker than isomorphism.
7.7.6	Free module is a left adjoint.
7.7.11	Left adjoints are characterized by a universal property.
p.117	Adjunctions can be composed.
p.117	Every small non-empty groupoid decomposes into a coproduct of maximal connected subgroupoids.
List of Main Facts

<table>
<thead>
<tr>
<th>Reference</th>
<th>Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.1</td>
<td>Every monoidal category is equivalent to a strict monoidal category via strong monoidal functors.</td>
</tr>
<tr>
<td>8.7.6</td>
<td>Set, Mod(R), Chain(R), Cat, CHau, and SSet are symmetric monoidal closed categories.</td>
</tr>
<tr>
<td>9.2.11</td>
<td>The permutation category Σ_{a} is the maximal connected subgroupoid of $\Sigma(\mathcal{C})$ containing a.</td>
</tr>
<tr>
<td>9.2.11</td>
<td>The groupoid $\Sigma(\mathcal{C})$ of \mathcal{C}-profiles is the coproduct of the permutation categories.</td>
</tr>
<tr>
<td>9.3.10</td>
<td>The category $\text{Seq}^{\Sigma(\mathcal{C})}(M)$ of \mathcal{C}-colored symmetric sequences splits as a product of $M^{\Sigma(\mathcal{C})}_{\text{op}} \times {d}$.</td>
</tr>
<tr>
<td>9.3.18</td>
<td>The category $\text{Seq}^{\Sigma}(M)$ of 1-colored symmetric sequences splits as a product of M^{Σ}_{op}.</td>
</tr>
<tr>
<td>p. 156</td>
<td>The forgetful functor from $\text{Seq}^{\Sigma(\mathcal{C})}(M)$ to $M^{\text{Prof}(\mathcal{C}) \times \mathcal{C}}$ has a left adjoint.</td>
</tr>
</tbody>
</table>

Part 3

11.4.1	The category $\text{Operad}^{\Sigma(\mathcal{C})}(M)$ of \mathcal{C}-colored operads has an initial object.
11.4.6	$\text{Operad}^{\Sigma(\mathcal{C})}(M)$ has a terminal object.
11.5.1	Every symmetric monoidal functor extends to a functor between the respective categories of \mathcal{C}-colored operads.
12.2.6	A monoid is equivalent to a 1-colored operad concentrated in arity 1.
12.3.8	A \mathcal{C}-colored monoid is equivalent to a \mathcal{C}-colored operad concentrated in arity 1.
13.9.1	An \mathcal{O}-algebra is equivalent to a map $\mathcal{O} \longrightarrow \text{End}(X)$ of \mathcal{C}-colored operads.
(13.10.4)	An \mathcal{O}-algebra map f is equivalent to a map $\mathcal{O} \longrightarrow \text{End}(f)$ of \mathcal{C}-colored operads.
14.1.1	$\text{Alg}(O)$ has an initial object.
14.1.2	$\text{Alg}(O)$ has a terminal object.
14.2.18	There is a 1-colored operad As whose algebras are monoids.
14.3.9	There is a 2-colored operad As^2 whose algebras are monoid maps.
14.4.7	There is a $\mathcal{C} \times 2$-colored non-Σ operad $As^{\mathcal{C}}$ whose algebras are \mathcal{C}-colored monoids.
p. 259	There is a 1-colored operad Com whose algebras are commutative monoids.
List of Main Facts

Reference Fact
p. 261 Left modules over a monoid X are equivalent to algebras over the 1-colored operad of X.

p. 262 Bimodules over a monoid X are equivalent to algebras over a 1-colored operad $O_{X,X}$.

p. 263 For a \mathcal{C}-colored operad O and a small category D, there is a colored operad O^D whose algebras are D-diagrams of O-algebras.

p. 263 There is a colored operad of 1-colored operads.

p. 263 There is a colored operad of \mathcal{C}-colored operads.

16.4.1 Colored operads are equivalent to colored pseudo-operads.

16.5.12 1-colored operads are equivalent to 1-colored pseudo-operads.

16.6.6 Colored non-Σ operads are equivalent to colored non-Σ pseudo-operads.

16.7.8 O-algebra in its original sense is equivalent to O-algebra when O is regarded as a \mathcal{C}-colored pseudo-operad.

16.8.9 There is a \mathcal{C}-colored operad $\text{Tree}_1^\mathcal{C}$ in Set whose elements are isomorphism classes of \mathcal{C}-colored rooted trees with an input labeling.

Part 4

17.1.15 There is a free monoid functor.

18.3.2 The general operadic composition is associative with respect to grafting.

19.3.7 The forgetful functor from \mathcal{C}-colored non-Σ operads to $(\text{Prof}(\mathcal{C}) \times \mathcal{C})$-colored objects admits a left adjoint F^Ω.

19.5.4 Every planar rooted tree T generates a colored non-Σ operad $\Omega_p(T)$ in Set.

19.5.7 Each non-empty entry of $\Omega_p(T)$ contains one element.

20.2.6 The forgetful functor from \mathcal{C}-colored operads to \mathcal{C}-colored non-Σ operads admits a left adjoint F_1, the symmetrization functor.

20.3.22 The forgetful functor from \mathcal{C}-colored operads to $(\text{Prof}(\mathcal{C}) \times \mathcal{C})$-colored objects admits a left adjoint F^Σ, the free \mathcal{C}-colored operad functor.

20.4.2 Every planar rooted tree T generates a colored operad $\Sigma_p(T)$ in Set.

20.4.4 Each non-empty entry of $\Sigma_p(T)$ contains one element.
Index

1-colored operad, 193
1-colored pseudo-operad, 293
1-colored symmetric sequence, 148

0, 91
1, 111
2, 247

abelian group, 93
abelianization, 99
abstract end-vertices, 5
abstract vertex, 5
adjacent, 5
adjacent transposition, 132
adjoint, 135
adjunction, 112
free-forgetful, 113
algebra
1-colored operad, 222
as a map, 234
colored non-Σ operad, 221
colored operad, 217
colored pseudo-operad, 209
initial, 238
terminal, 238
algebraic K-theory, 410
$\text{Alg}(O)$, 219
$\text{Alg}_2(O)$, 219
anti-symmetry, 22
As, 241
As^2, 255
As^3, 249
associativity
1-colored operad, 194
1-colored operadic algebra, 223
1-colored pseudo-operad, 293
category, 91
collapsing an internal edge, 48
colored operad, 177
colored operadic algebra, 218
colored pseudo-operad, 299
colored pseudo-operadic algebra, 300
enriched category, 210
general operadic composition, 338
grafting, 63, 64
group, 92
monoid, 204
monoid in a monoidal category, 206
set product, 122
vector space tensor product, 122
associativity isomorphism, 123
bijection, 4
bimodule, 262
block permutation, 173
block sum, 174
canonical edge coloring, 20
canonical input labeling, 82
canonical vertex labeling, 81
Cat, 103
category, 90
diagram, 103
differential graded, 211
Index

discrete, \(94\)
empty, \(91\)
enriched, \(209\)
finite, \(94\)
graphical motivation, \(161\)
monoidal, \(123\)
of modules, \(104\)
of rings, \(93\)
of chain complexes, \(104\)
of compactly generated Hausdorff spaces, \(104\)
of groups, \(93\)
of sets, \(103\)
of simplicial sets, \(105\)
of small categories, \(104\)
of topological spaces, \(93\)
opposite, \(96\)
product, \(97\)
simplicial, \(96\) \(211\)
small, \(94\)
topological, \(211\)
chain complex, \(104\)
chain map, \(104\)
\(\text{Chain}(R), \(104\)
change-of-base
1-colored operad, \(196\)
colored non-\(\Sigma\) operad, \(198\)
colored operad, \(190\)
\(\text{CHau}, \(104\)
closed interval, \(306\)
coalgebra, \(232\)
codomain, \(90\)
coendomorphism operad, \(254\)
collapsing an internal edge, \(15\)
associativity, \(48\)
induced coloring, \(49\)
induced incoming edge labeling, \(50\)
induced input labeling, \(49\)
motivation, \(43\)
color, \(141\)
colored exceptional edge, \(35\)
colored monoid, \(210\)
colored object, \(153\)
colored operad, \(176\)
change-of-base, \(190\)
graphical motivation, \(164\)
initial, \(185\)
map, \(180\)
non-\(\Sigma\), \(197\)
terminal, \(188\)
colored pseudo-operad, \(278\)

non-\(\Sigma\), \(296\)
colored rooted trees operad, \(304\)
colored symmetric sequence, \(148\)
decomposition, \(149\)
coloring, \(20\)
combinatorics, \(112\)
combinatorics of trees, \(112\)
commutative diagram, \(23\) \(100\)
commutative monoid, \(289\)
commutative operad, \(259\)
commutator subgroup, \(99\)
comp-i
1-colored operad, \(296\)
1-colored pseudo-operad, \(293\)
\(\mathcal{C}\)-profiles, \(276\)
colored operad, \(278\) \(291\)
permutation, \(276\)
composition, \(90\)
functor, \(98\)
natural transformation, \(102\)
composition of functions, \(4\)
computer science, \(412\)
concatenation, \(142\)
concentrated in arity \(n\), \(149\)
connected graph, \(6\)
connected groupoid, \(95\)
coproduct, \(107\)
coproduct of sets, \(5\)
coproduct summand, \(108\)
corolla, \(33\)
general, \(74\)
cycle, \(6\)
decoration
rooted tree, \(337\) \(397\)
vertex, \(337\)
deformation theory, \(410\)
Deligne’s Conjecture, \(409\)
diagram category, \(103\)
difference of sets, \(4\)
differential, \(104\)
differential graded category, \(211\)
directed graph, \(8\)
iso- morphism, \(9\)
directed \((m,n)-\text{graph}, \(10\)
directed path, \(16\)
discrete category, \(94\)
disjoint interiors, \(307\)
disjoint sets, \(4\)
disjoint union, \(5\)
domain, \(90\)

domain, \(90\)
dumbbell graph, 15

edge, 5
 external, 11
 input, 11
 internal, 11
 orientation, 8
 output, 11
edge coloring, 20
 canonical, 20
empty category, 91
empty profile, 141
empty set, 3
empty tensor product, 124
endomorphism object
 mixed, 232
 relative, 232
endomorphism operad
 1-colored, 229
 colored, 226
enriched category, 209
equivalence, 105
equivariance
 1-colored operadic algebra, 223
 1-colored pseudo-operad, 294
 colored operadic algebra, 248
 colored pseudo-operad, 280
 of 1-colored operad, 195
 of colored operad, 178
equivariant structure map, 151
evaluation map, 136
exceptional edge, 156 338
 colored, 333
 external, 11
finite category, 94
finite graph, 5
finite product, 109
finite set, 3
first internal edge, 341
forest, 6
forgetful functor, 99 112
free colored non-Σ operad entries, 352
functor, 360
 generated by T, 373
left adjoint, 363
 motivation, 327
free colored operad entries, 398
 generated by T, 405
left adjoint, 400

motivation, 380
free functor, 113
free module, 113
free monoid, 328
free probability, 112
free-forgetful adjunction, 118
full subcategory, 94
full subgroupoid, 95
function, 4
 composition, 4
 identity, 4
 inverse, 4
functor, 98
 forgetful, 99
 monoidal, 125
 symmetric monoidal, 131
general corolla, 74
general grafting, 73
general operadic composition, 343
 associativity, 348
Goodwillie’s calculus, 410
grafting, 58
 decomposition, 67
 horizontal associativity, 63
 induced coloring, 76
 induced incoming edge labeling, 80
 induced input labeling, 78
 induced vertex decoration, 76
 motivation, 54
 unity, 61
 vertical associativity, 64
graph, 5
 connected, 6
 directed, 5
 dumbbell, 15
 finite, 5
 isomorphism, 7
 lollipop, 15
 non-empty, 5
 noon, 16
 presentation, 6
group, 92
 abelian, 93
 as one-object groupoid, 95
 symmetric, 93
group homomorphism, 92
groupoid, 95
groupoid of \mathcal{C}-profiles, 143

height, 16
Hexagon Axiom, 131
Index

higher category, 411
identified edge, 56
identity function, 4
identity functor, 98
identity morphism, 90
identity natural transformation, 102
image, 4
inclusion, 107
incoming edge, 8
incoming edge labeling, 24
incoming profile, 31
indexing category, 103
induced coloring
collapsing an internal edge, 49
grafting, 76
induced incoming edge labeling
collapsing an internal edge, 50
grafting, 80
induced input labeling
collapsing an internal edge, 49
grafting, 78
induced vertex decoration, 76
initial colored operad, 185
initial object, 108
initial vertex, 8
input, 11
input color, 148
input edge, 11
input labeling, 21
comp-j, 78
input profile, 32, 148
interior, 306
internal edge, 11
internal hom, 135
intersection, 4
inverse, 4
group, 92
isomorphism, 95
categories, 99
directed graphs, 9
directed \((m,n)\)-graphs, 11
extra structure, 26
graphs, 7
ordered sets, 22
planar, 30
rooted trees, 30
iterated tensor product, 133
Koszul duality, 410
lax monoidal category, 124
lax monoidal functor, 127
left action, 118
left adjoint, 112
universal property, 115
left module, 260
left permutation
of iterated tensor product, 133
of profile, 143
length of path, 6
length of profile, 141
level of a vertex, 36
level tree, 36
linear graph, 40
as iterated grafting, 54
little \(n\)-cube operad, 310
little square, 307
little square operad, 310
lollipop graph, 15
loop spaces, 409
\([m]\), 21
Mac Lane’s Theorem, 128
map, 4, 91
1-colored operadic algebras, 223
1-colored operads, 196
1-colored pseudo-operads, 294
colored monoids, 210
colored non-\(\Sigma\) operads, 197
colored operadic algebras, 219
colored operads, 180
colored pseudo-operads, 280
groups, 92
monoids, 203
monoids in a monoidal category, 207
ordered sets, 22
model category, 411
\(\text{Mod}(R)\), 104
\(\text{Mon}\), 204
\(\text{Mon}(C)\), 207
monoid, 203
commutative, 259
free, 323
monoid in a monoidal category, 206
monoidal category, 123
lax, 124
Mac Lane’s Theorem, 128
motivation, 121
strict, 124
symmetric, 130
monoidal functor, 125
lax, 127
Index

strong, 127
symmetric, 131
morphism, 90
identity, 90
multicategory, Siv 200 411
multigraph, 7

n, 106
n., 96
natural isomorphism, 101
natural transformation, 101
identity, 102
non-empty graph, 5
non-unital operad, 201
noon graph, 16

object, 90
operad
 1-colored, 193
 1-colored pseudo, 293
 ∞-, 372 411
 coalgebra, 234
 colored, 176
 colored non-Σ, 197
 colored non-Σ pseudo, 296
 colored pseudo, 278
 concentrated in arity 1, 207 211
 cyclic, 409
 for colored monoids, 255
 for colored operads, 269
 for diagrams of algebras, 263
 for monoid maps, 249
 for monoids, 241
 for morphisms, 262
 for operads, 263
 little n-cube, 316
 little square, 309
 pre-history, 109
 operadic cohomology, 410
 operadic composition, 176
 of 1-colored operad, 193
Operad\(\Omega(\mathcal{C})\)(M), 198
Operad\(\Omega(\mathcal{E})\)(M), 293
Operad\(\Sigma(\mathcal{E})\)(M), 180
Operad\(\hat{\Sigma}(\mathcal{E})\)(M), 281
Operad\(\Sigma(M), 196
Operad\(\hat{\Sigma}(M), 295
opposite groupoid of \mathcal{E}\)-profiles, 143
opposite category, 96
Orb, 144
orbit, 144
ordered set, 22
ordering, 22
outgoing color, 31
outgoing edge, 8
output, 11
output color, 32 148
output edge, 11
partial composition, 278
 1-colored pseudo-operad, 293
 motivation, 267
path, 8
directed, 16
length, 6
Pentagon Axiom, 123
permutation, 93
permutation category, 144
permuted corolla, 170
planar isomorphism, 30
planar level tree, 30
planar rooted tree, 30
planar simple tree, 34
planar structure, 30
planar tangles, 410
presentation, 6
product, 109
product category, 97
product of sets, 3 4
profile, 141 148
profile of a rooted tree, 92
profile of a vertex, 51
\text{prof}(T), 32
\text{prof}(v), 31
projection, 109
prop, 7 110
pullback, 233
quotient set, 5
random matrices, 412
reflexivity, 22
right action, 132
right adjoint, 112
right module, 261
right permutation, 143
root edge, 30
root vertex, 30
rooted tree, 30
isomorphism, 30
planar, 30
profile, 32
Seq\(\Sigma(M), 148
Seq^\mathcal{E}(M), 148
set
- coproduct, 5
- difference, 4
- disjoint, 4
- empty, 3
- ordered, 22
- product, 3
- quotient, 5
- totally ordered, 22

Set
- $\Sigma_{\{1\}}$, 141
- $\Sigma(C)$, 143
- simple tree, 34
 - as iterated grafting, 58
- simplicial category, 96
- small category, 94
- small coproduct, 108

SSet
- standard unit square, 306
- strict monoidal category, 124
- strong monoidal functor, 127
- subcategory, 94
 - full, 94
 - subgroupoid, 94
- subset, 4
- symmetric group, 93
- symmetric monoidal category, 150
- symmetric monoidal closed category, 135
- symmetric monoidal functor, 131
- symmetrization
 - colored operad, 384
 - entries, 382
 - functor, 388
 - left adjoint, 390
- symmetry isomorphism, 130

[T]-shaped composition, 341
- tensor unit, 123
- terminal colored operad, 188
- terminal object, 109
- terminal vertex, 8
- topological category, 211
- total ordering, 22
- totality, 22
- totally ordered set, 22
- trail, 6
- transitivity, 22
- transposition, 22
- tree of life, 412
- Tree, 304

unit
- 1-colored endomorphism operad, 230
- 1-colored operad, 194
- 1-colored pseudo-operad, 203
- colored endomorphism operad, 227
- colored monoid, 209
- colored operad, 176
- colored pseudo-operad, 279
- monoid, 203
- monoid in a monoidal category, 206
- unital operad, 204

unity
- 1-colored operad, 195
- 1-colored operadic algebra, 228
- 1-colored pseudo-operad, 204
- category, 91
- colored operad, 178
- colored operadic algebra, 218
- colored pseudo-operad, 280
- enriched category, 210
- grafting, 61
- group, 92
- monoid, 203
- monoid in a monoidal category, 206
- vector space tensor product, 122
- universal property, 115

vertex
- 111
- profile, 31
- vertex decoration, 20
- vertex operator algebra, 410

wheeled operad, 7
- wheeled prop, 7
- wiring diagram, 412
The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality.

The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.