Nonlinear Elliptic Equations of the Second Order

Qing Han
To Yansu, Raymond, and Tommy
Contents

Preface vii

Introduction 1

Chapter 1. Linear Elliptic Equations 7

§1.1. The Maximum Principle 8

§1.2. Krylov-Safonov’s Harnack Inequality 23

§1.3. The Schauder Theory 42

Part 1. Quasilinear Elliptic Equations

Chapter 2. Quasilinear Uniformly Elliptic Equations 51

§2.1. Basic Properties 52

§2.2. Interior C^1-Estimates 55

§2.3. Global C^1-Estimates 58

§2.4. Interior $C^{1,\alpha}$-Estimates 61

§2.5. Global $C^{1,\alpha}$-Estimates 68

§2.6. Dirichlet Problems 73

Chapter 3. Mean Curvature Equations 79

§3.1. Principal Curvatures 80

§3.2. Global Estimates 87

§3.3. Interior Gradient Estimates 100

§3.4. Dirichlet Problems 105
Chapter 4. Minimal Surface Equations

<table>
<thead>
<tr>
<th>§4.1. Integral Formulas</th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>§4.2. Differential Identities</td>
<td>127</td>
</tr>
<tr>
<td>§4.3. Interior Gradient Estimates</td>
<td>136</td>
</tr>
<tr>
<td>§4.4. Interior Curvature Estimates</td>
<td>141</td>
</tr>
<tr>
<td>§4.5. Differential Identities: An Alternative Approach</td>
<td>151</td>
</tr>
</tbody>
</table>

Part 2. Fully Nonlinear Elliptic Equations

Chapter 5. Fully Nonlinear Uniformly Elliptic Equations

<table>
<thead>
<tr>
<th>§5.1. Basic Properties</th>
<th>164</th>
</tr>
</thead>
<tbody>
<tr>
<td>§5.2. Interior C^2-Estimates</td>
<td>172</td>
</tr>
<tr>
<td>§5.3. Global C^2-Estimates</td>
<td>194</td>
</tr>
<tr>
<td>§5.4. Interior $C^{2,\alpha}$-Estimates</td>
<td>200</td>
</tr>
<tr>
<td>§5.5. Global $C^{2,\alpha}$-Estimates</td>
<td>208</td>
</tr>
<tr>
<td>§5.6. Dirichlet Problems</td>
<td>213</td>
</tr>
</tbody>
</table>

Chapter 6. Monge-Ampère Equations

<table>
<thead>
<tr>
<th>§6.1. Basic Properties</th>
<th>219</th>
</tr>
</thead>
<tbody>
<tr>
<td>§6.2. Global C^2-Estimates</td>
<td>223</td>
</tr>
<tr>
<td>§6.3. Interior C^2-Estimates</td>
<td>236</td>
</tr>
<tr>
<td>§6.4. The Bernstein Problem</td>
<td>241</td>
</tr>
</tbody>
</table>

Chapter 7. Complex Monge-Ampère Equations

<table>
<thead>
<tr>
<th>§7.1. Basic Properties</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>§7.2. Global C^2-Estimates</td>
<td>258</td>
</tr>
</tbody>
</table>

Chapter 8. Generalized Solutions of Monge-Ampère Equations

<table>
<thead>
<tr>
<th>§8.1. Monge-Ampère Measures</th>
<th>278</th>
</tr>
</thead>
<tbody>
<tr>
<td>§8.2. Dirichlet Problems</td>
<td>300</td>
</tr>
<tr>
<td>§8.3. Global Hölder Estimates</td>
<td>313</td>
</tr>
<tr>
<td>§8.4. Interior $C^{1,\alpha}$-Regularity</td>
<td>325</td>
</tr>
<tr>
<td>§8.5. Interior $C^{2,\alpha}$-Regularity</td>
<td>340</td>
</tr>
</tbody>
</table>

Bibliography | 355 |

Index | 365 |
Preface

The theory of nonlinear elliptic partial differential equations of the second order has flourished in the past half-century. The pioneering work of de Giorgi in 1957 opened the door to the study of general quasilinear elliptic differential equations. Since then, the nonlinear elliptic differential equation has become a diverse subject and has found applications in science and engineering. In mathematics, the development of elliptic differential equations has influenced the development of the Riemannian geometry and complex geometry. Meanwhile, the study of elliptic differential equations in a geometric setting has provided interesting new questions with fresh insights to old problems.

This book is written for those who have completed their study of the linear elliptic differential equations and intend to explore the fascinating field of nonlinear elliptic differential equations. It covers two classes of nonlinear elliptic differential equations, quasilinear and fully nonlinear, and focuses on two important nonlinear elliptic differential equations closely related to geometry, the mean curvature equation and the Monge-Ampère equation.

This book presents a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order: quasilinear uniformly elliptic equations in arbitrary domains, mean curvature equations in domains with nonnegative boundary mean curvature, fully nonlinear uniformly elliptic equations in arbitrary domains, and Monge-Ampère equations in uniformly convex domains. Global solutions of these equations are also characterized. The choice of topics is influenced by my personal taste. Some topics may be viewed by others as too advanced for a graduate textbook. Among those topics are the curvature estimates for minimal surface equations, the complex Monge-Ampère equation, and the
generalized solutions of the (real) Monge-Ampère equations. Inclusion of these topics reflects their importance and their connections to many of the most active current research areas.

There is an inevitable overlap with the successful monograph by Gilbarg and Trudinger. This book, designed as a textbook, is more focused on basic materials and techniques. Many results in this book are presented in special forms. For example, the quasilinear and fully nonlinear uniformly elliptic differential equations studied in this book are not in their most general form. The study of these equations serves as a prerequisite to the study of the mean curvature equation and the Monge-Ampère equation, respectively. More notably, our discussion of the Monge-Ampère equations is confined to the pure Monge-Ampère equations, instead of the Monge-Ampère type equations.

This book is based on one-semester courses I taught at Peking University in the spring of 2011 and at the University of Notre Dame in the fall of 2011. Part of it was presented in the Special Lecture Series at Peking University in the summer of 2007, in the Summer School in Mathematics at the University of Science and Technology of China in the summer of 2008, and in a graduate course at Beijing International Center of Mathematical Research in the spring of 2010.

During the writing of the book, I benefitted greatly from comments and suggestions of many friends, colleagues, and students in my classes. Chuanqiang Chen, Xumin Jiang, Weiming Shen, and Yue Wang read the manuscript at various stages. Chuanqiang Chen and Jingang Xiong helped write Chapter 8. Bo Guan, Marcus Khuri, Xinan Ma, and Yu Yuan provided valuable suggestions on the arrangement of the book.

It is with pleasure that I record here my gratitude to my thesis advisor, Fanghua Lin, who guided me into the fascinating world of elliptic differential equations more than twenty years ago.

I am grateful to Arlene O'Sean, my editor at the American Mathematical Society, for reading the manuscript and guiding the effort to turn it into a book. Last but not least, I thank Sergei Gelfand at the AMS for his help in bringing the book to press.

The research related to this book was partially supported by grants from the National Science Foundation.

Qing Han
Bibliography

[78] Heinz, E., Über die Differentialungleichung $0 < \alpha \leq rt - s^2 \beta < \infty$, Math. Z., 72(1959/1960), 107–126.

Index

Aleksandrov’s maximum principle, 27
auxiliary functions, [14]

barrier functions
for linear equations, [15]

Bernstein methods, 55, 59, 94, 100, 176
179, 183, 186
Bernstein theorems
minimal surface equations, 144
Monge-Ampère equations, 250
boundary C^2-estimates
for complex Monge-Ampère
equations, 261
for fully nonlinear equations, 196
for Monge-Ampère equations, 224
boundary gradient estimates
for linear equations, 18
for mean curvature equations, 89
for quasilinear equations, 58
boundary Hölder estimates
for linear equations, 19
boundary Hölder estimates of normal
derivatives
for linear equations, 38

Calderon-Zygmund decomposition, 30
Codazzi equations, 132
comparison principles
for complex Monge-Ampère
equations, 257
for fully nonlinear equations, 169
for generalized solutions, 301
for linear equations, 101 183
for Monge-Ampère equations, 222
for quasilinear equations, 52
complex Monge-Ampère equations, 256
boundary C^2-estimates, 261
comparison principles, 257
global C^2-estimates, 273
global gradient estimates, 259
contact sets, 23
convex domains, 279
strictly convex domains, 310
convex functions, 278
locally convex functions, 278
strictly convex functions, 278
uniformly convex functions, 220
curvature estimates for minimal surface
equations
integral estimates, 143
pointwise estimates, 145
defining functions, 223 258
distance functions, 84
divergence, 116
domains, 3
doubling condition, 322
dyadic cubes, 30

Euclidean norms, 3
existence for Dirichlet problems
for complex Monge-Ampère
equations, 276
for fully nonlinear equations, 214 216
for generalized solutions, 308 313
for linear equations, 131 146
Index

for mean curvature equations, 105
 for Monge-Ampère equations, 235
 for quasilinear equations, 73, 75
exterior sphere condition, 15
first fundamental forms, 80
fully nonlinear equations
 boundary C^2-estimates, 195
 comparison principles, 169
 concavity, 165
 global C^2-estimates, 199
 global $C^{2,\alpha}$-estimates, 208
 global gradient estimates, 194
 interior C^2-estimates, 179, 186
 interior $C^{1,\alpha}$-estimates, 174
 interior $C^{2,\alpha}$-estimates, 200
 interior gradient estimates, 176, 183
 Liouville theorems, 167
 global Hölder estimates
 for fully nonlinear equations, 199
 for quasilinear equations, 72
 gradient estimates, 8
 global Hölder estimates
 for generalized solutions, 313, 314
Gauss curvatures, 81
Gauss equations, 132
generalized solutions, 296
 comparison principles, 304
 Dirichlet problems in convex domains, 308
 Dirichlet problems in strictly convex domains, 313
 global L^∞-estimates, 320
 global Hölder estimates, 313, 314
 interior $C^{1,\alpha}$-estimates, 339
 interior $C^{2,\alpha}$-estimates, 353
 strict convexity, 353
 global C^2-estimates
 for complex Monge-Ampère equations, 273
 for fully nonlinear equations, 199
 for Monge-Ampère equations, 228
 global $C^{1,\alpha}$-estimates
 for quasilinear equations, 68
 global $C^{2,\alpha}$-estimates
 for fully nonlinear equations, 208
 for quasilinear equations, 72
 global L^∞-estimates
 for generalized solutions, 320
 for linear equations, 14
 for mean curvature equations, 87
 for quasilinear equations, 58
 global estimates on modulus of continuity
 for linear equations, 16
 for mean curvature equations, 98
 global gradient estimates
 for complex Monge-Ampère equations, 239
 for fully nonlinear equations, 199
 for mean curvature equations, 94
 for Monge-Ampère equations, 228
 for quasilinear equations, 59
 global Hölder estimates
 for fully nonlinear equations, 179, 186
 for complex Monge-Ampère equations, 233
 for fully nonlinear equations, 194
 for mean curvature equations, 94
 for Monge-Ampère equations, 228
 for quasilinear equations, 59
 global Hölder estimates
 for generalized solutions, 313, 314
 gradients, 8
Harnack inequalities, 35
Hausdorff distance, 325
Hessian matrices, 8
Hopf lemma, 10
integration by parts, 117
interior C^2-estimates
 for fully nonlinear equations, 179, 186
 for complex Monge-Ampère equations, 237
 for fully nonlinear equations, 174
 for generalized solutions, 339
 for quasilinear equations, 61
 interior $C^{2,\alpha}$-estimates
 for fully nonlinear equations, 200
 for generalized solutions, 353
 for quasilinear equations, 67
interior gradient estimates
 for fully nonlinear equations, 176, 183
 for mean curvature equations, 100
 for minimal surface equations, 137
 for quasilinear equations, 55
 interior Hölder estimates
 for linear equations, 37
 for fully nonlinear equations, 170
 for Monge-Ampère equations, 228
 for quasilinear equations, 59
 interior Hölder estimates
 for linear equations, 37
 interior sphere condition, 12
John lemma, 242, 316
Laplace-Beltrami operators, 117, 130
Legendre transforms, 287
level sets, 245
Levi-Civita connections, 129
linear equations
 Aleksandrov’s maximum principle, 27
 barrier functions, 15
 boundary gradient estimates, 15
 boundary Hölder estimates, 19
 boundary Hölder estimates of normal derivatives, 58
 boundary Schauder estimates, 45
 comparison principles, 10
quasilinear equations, 52
uniqueness for Dirichlet problems
for fully nonlinear equations, 170
for linear equations, 10
for quasilinear equations, 53

Vitali covering lemma, 128

weak Harnack inequalities, 81
Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics.

This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.