Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Second Edition

About this Title

Thomas A. Ivey, College of Charleston, Charleston, SC and Joseph M. Landsberg, Texas A&M University, College Station, TX

Publication: Graduate Studies in Mathematics
Publication Year: 2016; Volume 175
ISBNs: 978-1-4704-0986-9 (print); 978-1-4704-3591-2 (online)
DOI: https://doi.org/10.1090/gsm/175
MathSciNet review: MR2003610
MSC: Primary 53-01; Secondary 58A15

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References

\def\articletitle#1\tit#1 \def\booktitle#1\booktit#1 \def\journalvol#1#1 \def\MRcite#1 \def—— \def′$’$

  • L. Ahlfors, \booktit Complex Analysis, McGraw-Hill, 1966.
  • D.N. Akhiezer, \booktit Lie group actions in complex analysis, Vieweg, 1995.
  • M. Akivis, \tit Webs and almost Grassmann structures, \jou Soviet Math. Dokl. 21 (1980), 707–709.
  • M. Akivis, V. Goldberg, \tit On the structure of submanifolds with degenerate Gauss maps, \jou Geom. Dedicata 86 (2001), 205–226.
  • I. Anderson, M. Fels, \tit Bäcklund Transformations for Darboux Integrable Differential Systems, \jou Selecta Mathematica 21 (2015), 379–448.
  • I. Anderson, M. Fels, P. Vassiliou, \tit Superposition formulas for exterior differential systems, \jou Advances in Mathematics 221 (2009), 1910–1963.
  • I. Anderson, N. Kamran, \tit The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane, \jou Duke Math. J. 87 (1997), 265–319.
  • I. Anderson, N. Kamran, P. Olver, \tit Internal, External, and Generalized Symmetries, \jou Adv. Math 100 (1993), 53–100.
  • M. Audin, J. Lafontaine (eds.), \booktit Holomorphic curves in symplectic geometry, Birkhäuser, 1994.
  • T. N. Bailey, M. G. Eastwood, and A. R. Gover, \articletitle{Thomas’s structure bundle for conformal, projective and related structures}, \jou Rocky Mountain J. Math. \journalvol{24} (1994), no. 4, 1191–1217. \MRcite{1322223 (96e:53016)}
  • W. Barth, M. Larsen, \tit On the homotopy groups of complex projective algebraic manifolds, \jou Math. Scand. 30 (1972), 88–94.
  • R. Baston, M. Eastwood, \booktit The Penrose transform. Its interaction with representation theory, Oxford University Press, 1989.
  • E. Berger, R. Bryant, P. Griffiths, \tit The Gauss equations and rigidity of isometric embeddings, \jou Duke Math. J. 50 (1983) 803–892.
  • Jonas Bergman, S. Brian Edgar, and Magnus Herberthson, \articletitle{The Bach tensor and other divergence-free tensors}, \jou Int. J. Geom. Methods Mod. Phys. \journalvol{2} (2005), no. 1, 13–21. \MRcite{2121352 (2006e:53135)}
  • A.L. Besse, \booktit Einstein Manifolds, Springer, 1987.
  • R. Bishop, \tit There is more than one way to frame a curve, \jou Am. Math. Monthly 82 (1975), 246–251.
  • A. Bobenko, \tit Exploring surfaces through methods from the theory of integrable systems: Lectures on the Bonnet Problem, preprint (1999), arXiv:math.DG/9909003
  • R. Bott, L. Tu, \booktit Differential forms in algebraic topology, Springer, 1982.
  • N. Bourbaki, \booktit Groupes et algèbres de Lie, Chap. 4–6, Hermann, 1968.
  • Simon Brendle, \articletitle{Embedded minimal tori in $S^3$ and the Lawson conjecture}, \jou Acta Math. \journalvol{211} (2013), no. 2, 177–190. \MRcite{3143888}
  • Simon Brendle and Fernando C. Marques, \articletitle{Recent progress on the Yamabe problem}, pp. 29–47 in \booktitle{Surveys in geometric analysis and relativity}, International Press, 2011. \MRcite{2906920}
  • R. Bryant, \tit Conformal and Minimal Immersions of Compact Surfaces into the 4-sphere, \jou J. Diff. Geom. 17 (1982), 455–473.
  • —, \tit Metrics with exceptional holonomy, \jou Ann. of Math. 126 (1987), 525–576.
  • —, \tit An introduction to Lie groups and symplectic geometry, pp. 5–181 in \booktit Geometry and quantum field theory, Amer. Math. Soc., Providence, 1995.
  • —, \booktit Rigidity and quasi-rigidity of extremal cycles in Hermitian symmetric spaces, Annals of Mathematics Studies vol. 153, Princeton, 2002.
  • R. Bryant, S.-S. Chern, P. Griffiths, \tit Exterior Differential Systems, pp. 219–338 in \booktit Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 1982.
  • R. Bryant, S.-S. Chern, R.B. Gardner, H. Goldschmidt, P. Griffiths, \booktit Exterior Differential Systems, MSRI Publications, Springer, 1990.
  • R. Bryant, P. Griffiths, \tit Characteristic Cohomology of Differential Systems (II): Conservation Laws for a Class of Parabolic Equations, \jou Duke Math. J. 78 (1995), 531–676.
  • R. Bryant, P. Griffiths, D. Grossman, \booktitle{Exterior differential systems and Euler-Lagrange partial differential equations}, University of Chicago Press, 2003. \MRcite{1985469 (2004g:58001)}
  • R. Bryant, P. Griffiths, L. Hsu, \tit Hyperbolic exterior differential systems and their conservation laws (I), \jou Selecta Mathematica (N.S.) 1 (1995), 21–112.
  • —, \tit Toward a geometry of differential equations, pp. 1–76 in \booktit Geometry, topology, and physics, International Press, 1995.
  • R. Bryant, S. Salamon, \tit On the construction of some complete metrics with exceptional holonomy, \jou Duke Math. J. 58 (1989), 829–850.
  • Andreas Čap and Jan Slovák, \booktitle{Parabolic geometries I: Background and general theory}, American Mathematical Society, 2009. \MRcite{2532439 (2010j:53037)}
  • J. Carlson, D. Toledo, \tit Generic Integral Manifolds for weight two period domains, \jou Trans. AMS 356 (2004), 2241-2249.
  • E. Cartan, \tit Sur la structure des groupes infinis de transformations, \jou Ann. Sci. Ecole Norm. Sup. 26 (1909), 93–161.
  • —, \tit Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, \jou Ann. Ecole Norm. Sup. 27 (1910), 109–192.
  • —, \tit Sur les variétés de courbure constante d’un espace euclidien ou non euclidien, \jou Bull. Soc. Math France 47 (1919) 125–160 and 48 (1920), 132–208; see also pp. 321–432 in \booktit Oeuvres Complètes Part 3, Gauthier-Villars, 1955.
  • —, \tit Sur les variétés à connexion projective, \jou Bull. Soc. Math. Fr. 52 (1924), 205–241.
  • —, \tit Sur la théorie des systèmes en involution et ses applications à la relativité, \jou Bull. Soc. Math. Fr. 59 (1931), 88–118; see also pp. 1199–1230 in \booktit Oeuvres Complètes, Part 2.
  • —, \booktit Les Systèmes Extérieurs et leurs Applications Géométriques, Hermann, 1945.
  • P. Chaput, \tit Severi varieties, \jou Math. Z. 240 (2002), 451–459.
  • S.-S. Chern, \booktit Selected Papers Vols. 1–4, Springer, 1985/1989.
  • —, \tit A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, \jou Ann. Math 45 (1944), 747–752.
  • —, \tit Pseudo-groupes continus infinis, pp. 119–136 in \jou Colloques Internationaux du Centre National de la Recherche Scientifique: Géométrie différentielle, C.N.R.S, 1953.
  • —, \booktit Complex Manifolds without Potential Theory, Springer, 1979.
  • —, \tit Deformations of surfaces preserving principal curvatures, pp. 155–163 in \booktit Differential Geometry and Complex Analysis, Springer, 1984. (See also \booktit Selected Papers, vol. IV.)
  • S.-S. Chern, R. Osserman, \tit Remarks on the Riemannian metric of a minimal submanifold, pp. 49–90 in \booktit Geometry Symposium, Utrecht 1980, Lecture Notes in Math. 894, Springer, 1981.
  • S.-S. Chern, C.-L. Terng, \tit An analogue of Bäcklund’s theorem in affine geometry, \jou Rocky Mountain Math J. 10 (1980), 105–124.
  • S.-S. Chern, J.G. Wolfson, \articletitle{A simple proof of Frobenius theorem}, pp. 67–69 in \booktitle{Manifolds and Lie groups (Notre Dame, Ind., 1980)}, Birkhäuser, 1981. \MRcite{642852 (83h:58007)}
  • J. Clelland, T. Ivey, \tit Parametric Bäcklund Transformations I: Phenomenology, \jou Trans. Amer. Math. Soc. 357 (2005), 1061–1093.
  • —, \tit Bäcklund Transformations and Darboux Integrability for Nonlinear Wave Equations (with J. Clelland), \jou Asian J. Math. 13 (2009), 13–64.
  • J. Clelland, P. Vassiliou, \tit A solvable string on a Lorentzian surface, \jou Diff. Geom. Appl. 33 (2014), 177–198.
  • D. Cox, S. Katz, \booktit Mirror symmetry and algebraic geometry, AMS, 1999.
  • G. Darboux, \booktit Leçons sur la Théorie Générale des Surfaces (3rd ed.), Chelsea, 1972.
  • M. do Carmo, \booktit Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
  • M.G. Eastwood, A.R. Gover, and K. Neusser, \booktitle{Conformal differential geometry}, in preparation.
  • L. Ein, \tit Varieties with small dual varieties, I, \jou Inventiones Math. 86 (1986), 63–74.
  • —, \tit Varieties with small dual varieties, II, \jou Duke Math. J. 52 (1985), 895–907.
  • Ph. Ellia, D. Franco, \tit On codimension two subvarieties of $\mathbf P^ 5$ and $\mathbf P^ 6$, \jou J. Algebraic Geom. 11 (2002), 513–533.
  • Y. Eliashberg, L. Traynor (eds.) \booktit Symplectic Geometry and Topology, AMS, 1999.
  • L. Evans, \booktit Partial Differential Equations, AMS, 1998.
  • A.R. Forsyth, \booktit Theory of Differential Equations (Part IV): Partial Differential Equations, Cambridge University Press, 1906; also, Dover Publications, 1959.
  • G. Fubini, E. Cech, \booktit Géométrie projective différentielle des surfaces, Gauthier-Villars, 1931.
  • W. Fulton, J. Hansen, \tit A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, \jou Ann. of Math. (2) 110 (1979), 159–166.
  • W. Fulton, J. Harris, \booktit Representation theory – a first course, Springer, 1991.
  • R.B. Gardner, \tit Invariants of Pfaffian Systems, \jou Trans. A.M.S. 126 (1967), 514–533.
  • —, \booktit The Method of Equivalence and Its Applications, SIAM, 1989.
  • —, \tit Differential geometric methods interfacing control theory, pp. 117–180 in \booktit Differential Geometric Control Theory, Birkhäuser, 1983.
  • R.B. Gardner, W.F. Shadwick, \tit The GS algorithm for exact linearization, \jou IEEE Trans. Autom. Control 37 (1992), 224–230.
  • J. Gasqui, \tit Sur la résolubilité locale des équations d’Einstein, \jou Compositio Math. 47 (1982), 43–69.
  • —, \tit Formal integrability of systems of partial differential equations, pp. 21–36 in \booktit Nonlinear equations in classical and quantum field theory, Lecture Notes in Phys. 226, Springer, 1985.
  • I.M. Gel’fand, S. Fomin, \booktit Calculus of Variations, Prentice-Hall, 1963.
  • I.M. Gel’fand, M. Kapranov, A. Zelevinsky, \booktit Discriminants, resultants, and multidimensional determinants, Birkhäuser, 1994.
  • H. Goldschmidt, \tit Existence theorems for analytic linear partial differential equations, \jou Ann. of Math. 86 (1967), 246–270.
  • A.B. Goncharov, \tit Generalized Conformal Structures on Manifolds, \jou Selecta Math. Sov. 6 (1987), 307–340.
  • E. Goursat, \booktit Leçons sur l’intégration des équations aux dérivées partielles du second ordre, Gauthier-Villars, 1890.
  • —, \tit Recherches sur quelques équations aux dérivées partielles du second ordre, \jou Annales de la Faculté de Toulouse, deuxième serie 1 (1899), 31–78.
  • A. Rod Gover, \articletitle{Almost conformally Einstein manifolds and obstructions}, pp. 247–260 in \booktitle{Differential geometry and its applications}, Matfyzpress, Prague, 2005. \MRcite{2268937 (2007h:53063)}
  • —, \articletitle{Almost Einstein, Poincaré-Einstein manifolds in Riemannian signature}, \jou J. Geom. Phys. \journalvol{60} (2010), no. 2, 182–204. \MRcite{2587388 (2011j:53073)}
  • C. Robin Graham and Kengo Hirachi, \articletitle{The ambient obstruction tensor and $Q$-curvature}, pp. 59–71 in \booktitle{AdS/CFT correspondence: Einstein metrics and their conformal boundaries}, Eur. Math. Soc., Zürich, 2005. \MRcite{2160867 (2006k:53045)}
  • Mark L. Green, \tit Generic initial ideals, pp. 119–186 in \booktit Six lectures on commutative algebra (J. Elias et al, eds.), \jou Progr. Math. 166, Birkhäuser, 1998.
  • P. Griffiths, \tit Some aspects of exterior differential systems, pp. 151–173 in \booktit Complex geometry and Lie theory, Proc. Sympos. Pure Math. 53 (1991), AMS.
  • —, \booktit Exterior Differential Systems and the Calculus of Variations, Birkhäuser, 1983.
  • P. Griffiths, J. Harris, \booktit Principles of Algebraic Geometry, Wiley, 1978.
  • —, \tit Algebraic geometry and local differential geometry, \jou Ann. Sci. Ecole Norm. Sup. 12 (1979), 355–432.
  • P. Griffiths, G. Jensen, \booktit Differential systems and isometric embeddings, Princeton University Press, 1987.
  • M. Guest, \booktit Harmonic Maps, Loop Groups and Integrable Systems, Cambridge University Press, 1997.
  • V. Guillemin, \tit The integral geometry of line complexes and a theorem of Gel’fand-Graev, pp. 135–149 in \booktit The mathematical heritage of Elie Cartan, \jou Astérisque, Numero Hors Serie (1985).
  • J. Harris, \booktit Algebraic geometry, a first course, Springer, 1995.
  • Robin Hartshorne, \tit Varieties of small codimension in projective space, \jou Bull. Amer. Math. Soc. 80 (1974), 1017–1032.
  • F.R. Harvey, Spinors and Calibrations, Academic Press, 1990.
  • F.R. Harvey, H.B. Lawson, \tit Calibrated geometries, \jou Acta Math. 148 (1982), 47–157.
  • T. Hawkins, \booktit Emergence of the theory of Lie groups. An essay in the history of mathematics 1869–1926, Springer, 2000.
  • S. Helgason, \booktit Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.
  • N. Hitchin, \tit Kählerian twistor spaces, \jou Proc. London Math. Soc. (3) 43 (1981), 133–150.
  • —, \tit Complex manifolds and Einstein’s equations, pp. 73–99 in \booktit Twistor geometry and nonlinear systems, Lecture Notes in Math. 970, Springer, 1982.
  • W.V.D. Hodge, D. Pedoe, \booktit Methods of Algebraic Geometry Vol. 2, Cambridge University Press, 1954.
  • J. Humphreys, \booktit Introduction to Lie algebras and representation theory, Springer, 1972.
  • J.M. Hwang, N. Mok, \tit Uniruled projective manifolds with irreducible reductive $G$-structures, \jou J. reine angew. Math. 490 (1997), 55–64.
  • J.M. Hwang, N. Mok, \tit Rigidity of irreduicible Hermitian symmetric spaces of the compact type under Kahler deformation, \jou Invent. Math. 131 (1998), 393–418.
  • J.M. Hwang, K. Yamaguchi, \tit Characterization of Hermitian symmetric spaces by fundamental forms, \jou Duke Math. J. \journalvol{120} (2003), 621–634.
  • J. Jost, \booktit Riemannian geometry and geometric analysis, Springer, 2011.
  • Bo Ilic, J. M. Landsberg, \articletitle{On symmetric degeneracy loci, spaces of symmetric matrices of constant rank and dual varieties}, \jou Math. Ann. \journalvol{314} (1999), no. 1, 159–174. \MRcite{MR1689267 (2000e:14091)}
  • T. Ivey, \tit Surfaces with orthogonal families of circles, \jou Proc. AMS 123 (1995), 865–872.
  • F. John, \booktit Partial Differential Equations (4th ed.), Springer, 1982.
  • D. Joyce, \tit Compact Riemannian $7$-manifolds with holonomy $G_2$, I, II, \jou J. Diff. Geom. 43 (1996), 291–375.
  • D. Joyce, \tit Compact $8$-manifolds with holonomy $\textrm {Spin}(7)$, \jou Invent. Math. 123 (1996), 507–552.
  • M. Juráš, I. Anderson, \tit Generalized Laplace invariants and the method of Darboux, \jou Duke Math. J. 89 (1997), 351–375.
  • E. Kähler, \booktit Einfürhung in die Theorie der Systeme von Differentialgleichungen, Teubner, 1934.
  • N. Kamran, \tit An elementary introduction to exterior differential systems, pp. 151–173 in \booktit Geometric approaches to differential equations, Cambridge University Press, 2000.
  • S. Kleiman, \tit Tangency and duality, pp. 163–225 in \booktit Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., 1986.
  • M. Kline, \booktit Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972.
  • A. Knapp, \booktit Lie groups beyond an introduction, Birkhäuser, 1996.
  • S. Kobayashi, K. Nomizu, \booktit Foundations of Differential Geometry, Vols. 1,2, Wiley, 1963/1969.
  • S. Kobayashi, T. Ochiai, \tit Holomorphic structures modeled after compact Hermitian symmetric spaces, pp. 207–222 in \booktit Manifolds and Lie groups, Birkhäuser, 1981.
  • Bertram Kostant, \articletitle{Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold}, \jou Trans. Amer. Math. Soc. \journalvol{80} (1955), 528–542. \MRcite{0084825 (18,930a)}
  • J.Krasil’shchick, A.M. Vinogradov (eds.), \booktit Symmetries and conservation laws for differential equations of mathematical physics, American Math. Society, 1999.
  • Wolfgang Kühnel and Hans-Bert Rademacher, \articletitle{Einstein spaces with a conformal group}, \jou Results Math. \journalvol{56} (2009), no. 1-4, 421–444. \MRcite{2575870 (2011c:53094)}
  • M. Kuranishi, \tit Lectures on exterior differential systems, Tata Institute, Bombay, 1962.
  • —, \tit CR geometry and Cartan geometry, Forum Math. 7 (1995), 147–205.
  • J.M. Landsberg, \tit Minimal submanifolds defined by first-order systems of PDE, \jou J. Diff. Geom. 36 (1992), 369–415.
  • —, \tit On second fundamental forms of projective varieties, \jou Inventiones Math. 117 (1994), 303–315.
  • —, \tit On degenerate secant and tangential varieties and local differential geometry, \jou Duke Mathematical Journal 85 (1996), 605–634.
  • —, \tit Differential-geometric characterizations of complete intersections, \jou J. Diff. Geom. 44 (1996), 32–73.
  • —, \tit Introduction to $G$-structures via three examples, pp. 133–149 in \booktit Web theory and related topics, World Scientific, 2001,
  • —, \tit Exterior differential systems: a geometric approach to pde, pp. 77–101 in \booktit Topology and Geometry, Proc. Workshop Pure Math. vol. 17, Korean Academic Council, 1998.
  • —, \tit On the infinitesimal rigidity of homogeneous varieties, \jou Compositio Math. 118 (1999), 189–201.
  • —, \tit Is a linear space contained in a submanifold? - On the number of derivatives needed to tell, \jou J. reine angew. Math. 508 (1999), 53–60.
  • —, \booktit Algebraic geometry and projective differential geometry, Lecture Notes Series, vol. 45, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1999.
  • —, \articletitle{Lines on projective varieties}, \jou J. Reine Angew. Math. \journalvol{562} (2003), 1–3. \MRcite{2 011 327}
  • —, \tit Griffiths-Harris rigidity of compact Hermitian symmetric spaces, \jou J. Diff. Geom. 74 (2006), 395–405.
  • —, \articletitle{The border rank of the multiplication of $2\times 2$ matrices is seven}, \jou J. Amer. Math. Soc. \journalvol{19} (2006), no. 2, 447–459. \MRcite{MR2188132 (2006j:68034)}
  • —, \booktitle{Tensors: geometry and applications}, American Mathematical Society, Providence, RI, 2012. \MRcite{2865915}
  • J.M. Landsberg, L. Manivel, \tit The projective geometry of Freudenthal’s magic square, \jou J. Algebra 239 (2001), 477–512.
  • —, \tit Construction and classification of complex simple Lie algebras via projective geometry, \jou Selecta Math. (N.S.) 8 (2002), 137–159.
  • —, \tit On the projective geometry of homogeneous varieties, \jou Commentari Math. Helv. 78 (2003), 65–100.
  • J.M. Landsberg, C. Robles, \tit Fubini-Griffiths-Harris rigidity and Lie algebra cohomology, \jou Asian J. Math. \journalvol{16} (2012), 561–586.
  • H.B. Lawson, M. Michelsohn, \booktit Spin geometry, Princeton University Press, 1989.
  • R. Lazarsfeld, \booktit Positivity in algebraic geometry, Volume I, Springer, 2004.
  • Claude R. LeBrun, \articletitle{Ambi-twistors and Einstein’s equations}, \jou Classical and Quantum Gravity \journalvol{2} (1985), no. 4, 555–563. \MRcite{795101 (87b:32059)}
  • Claude LeBrun and Simon Salamon, \articletitle{Strong rigidity of positive quaternion-Kähler manifolds}, \jou Invent. Math. \journalvol{118} (1994), no. 1, 109–132. \MRcite{95k:53059}
  • M. van Leeuwen, \tit LiE, a computer algebra package, available at http://young.sp2mi.univ-poitiers.fr/$\sim$marc/LiE/.
  • S. L’vovsky, \tit On Landsberg’s criterion for complete intersections, \jou Manuscripta Math. 88 (1995), 185–189.
  • B. Malgrange, \tit L’involutivité générique des systèmes différentiels analytiques, \jou C. R. Acad. Sci. Paris, Ser. I 326 (1998), 863–866.
  • R. Mayer, \tit Coupled contact systems and rigidity of maximal dimensional variations of Hodge structure, \jou Trans. AMS 352 (2000), 2121–2144.
  • R. McLachlan, \tit A Gallery of Constant-Negative-Curvature Surfaces, \jou Math. Intelligencer 16 (1994), 31–37.
  • M. Melko, I. Sterling, \tit Integrable systems, harmonic maps and the classical theory of surfaces, pp. 129–144 in \booktit Harmonic Maps and Integrable Systems, Vieweg, 1994.
  • J. Milnor, \booktit Topology from the differentiable viewpoint, U. Virginia Press, 1965.
  • —, \booktitle{ Morse theory}, Princeton University Press, 1963. \MRcite{0163331 (29 #634)}
  • J. Milnor, J.D. Stasheff, \booktitle{Characteristic classes}, Princeton University Press, 1974. \MRcite{0440554 (55 #13428)}
  • D. Mumford, \booktit Algebraic Geometry I: Complex projective varieties, Springer, 1976.
  • R. Muñoz, \tit Varieties with degenerate dual variety, \jou Forum Math. 13 (2001), 757–779.
  • I. Nakai, \tit Web geometry and the equivalence problem of the first order partial differential equations, pp. 150–204 in \booktit Web theory and related topics, World Scientific, 2001.
  • Z. Nie, \tit On characteristic integrals of Toda field theories, \jou J. Nonlinear Math. Phys. 21 (2014), 120–131.
  • T. Ochiai, \tit Geometry associated with semisimple flat homogeneous spaces, \jou Trans. AMS 152 (1970), 159–193.
  • C. Okonek, M. Schneider, H. Spindler, \booktit Vector bundles on complex projective spaces, Progress in Mathematics 3, Birkhauser, 1980.
  • P. Olver, \booktit Applications of Lie Groups to Differential Equations (2nd ed.), Springer, 1993.
  • —, \booktit Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.
  • G. Pappas, J. Lygeros, D. Tilbury, S. Sastry, \tit Exterior differential systems in control and robotics, pp. 271–372 in \booktit Essays on mathematical robotics, Springer, 1998.
  • J. Piontkowski, \tit Developable varieties of Gauss rank 2, \jou Internat. J. Math. 13 (2002), 93–110.
  • Y. S. Poon, S. M. Salamon, \tit Quaternionic Kähler $8$-manifolds with positive scalar curvature, \jou Journal of Differential Geometry 33 (1991), 363–378.
  • Z. Ran, \tit On projective varieties of codimension $2$ \jou Invent. Math. 73 (1983), 333–336.
  • —, \articletitle{The (dimension $+2$)-secant lemma}, \jou Invent. Math. \journalvol{106} (1991), no. 1, 65–71. \MRcite{92j:14055}
  • C. Rogers, \tit Bäcklund transformations in soliton theory, pp. 97–130 in \booktit Soliton theory: a survey of results (A. P. Fordy, ed.), St. Martin’s Press, 1990.
  • C. Rogers, W. Schief, \booktit Bäcklund and Darboux Transformations, Cambridge University Press, 2002.
  • C. Rogers, W. Shadwick, \booktit Bäcklund Transformations and Their Applications, Academic Press, 1982.
  • E. Sato, \tit Uniform vector bundles on a projective space, \jou J. Math. Soc. Japan 28 (1976), 123–132.
  • B. Segre, \tit Bertini forms and Hessian matrices, \jou J. London Math. Soc. 26 (1951), 164–176.
  • C. Segre, \tit Preliminari di una teoria delle varietà luoghi di spazi, \jou Rend. Circ. Mat. Palermo XXX (1910), 87–121.
  • W. Shadwick, \tit The KdV Prolongation Algebra, \jou J. Math. Phys. 21 (1980), 454–461.
  • R. Sharpe, \booktit Differential geometry: Cartan’s generalization of Klein’s Erlangen program, Springer, 1997.
  • G.F. Simmons, \booktit Differential Equations, with Applications and Historical Notes, McGraw-Hill, 1972.
  • M. Spivak, \booktit Calculus on Manifolds, Benjamin, 1965.
  • —, \booktit A Comprehensive Introduction to Differential Geometry (3rd ed.), Publish or Perish, 1999.
  • O. Stormark, \booktit Lie’s Structural Approach to PDE Systems, Encyclopedia of Mathematics and its Applications, v. 80, Cambridge University Press, 2000.
  • V. Strassen, \tit Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math. 413 (1991), 127-180.
  • S. Sternberg, \booktit Lectures on differential geometry, Chelsea, 1983.
  • D.J. Struik, \booktit Lectures on Classical Differential Geometry (2nd ed.), Addison-Wesley, 1961; Dover, 1988.
  • A. Terracini, \tit Alcune questioni sugli spazi tangenti e osculatori ad una varieta, I, II, III, \jou Atti della Societa dei Naturalisti e Matematici Torino 49 (1914), 214–247.
  • E. Tevelev, \tit Projectively dual varieties of homogeneous spaces, pp. 183–225 in \booktit Surveys in geometry and number thoery: reports on contemporary Russian mathematics, London Math. Soc. Lecture Notes vol. 338, Cambridge, 2007.
  • T.Y. Thomas, \articletitle{Announcement of a projective theory of affinely connected manifolds}, \jou Proc. Nat. Acad. Sci. \journalvol{11} (1925), no. 11, 588–589.
  • P.J. Vassiliou, \tit Darboux Integrability and Symmetry, \jou Trans. AMS 353 (2001), 1705–1739.
  • M. Wadati, H. Sanuki, and K. Konno, \tit Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, \jou Progr. Theoret. Phys. 53 (1975), 419–436.
  • E. Vessiot, \tit Sur les équations aux dérivées partielles du second ordre intégrables par la methode de Darboux, \jou J. Math Pures Appl. 18 (1939), 1–61 and 21 (1942), 1–66.
  • H. Wahlquist, F. Estabrook, \tit Prolongation structures of nonlinear evolution equations, \jou J. Math. Phys. 16 (1975), 1–7.
  • —, \tit Prolongation structures, connection theory and Bäcklund transformations, pp. 64–83 in \booktit Nonlinear evolution equations solvable by the spectral transform, Res. Notes in Math., vol. 26, Pitman, 1978.
  • F. Warner, \booktit Foundations of differentiable manifolds and Lie groups, Springer, 1983.
  • K. Yamaguchi, \tit Differential Systems Associated with Simple Graded Lie Algebras, pp. 413–494 in \booktit Progress in Differential Geometry, Adv. Stud. Pure Math., vol 22., Math. Soc. Japan, 1993.
  • D. Yang, \tit Involutive hyperbolic differential systems, \jou A.M.S. Memoirs # 370 (1987).
  • K. Yang, \booktit Exterior differential systems and equivalence problems, Kluwer, 1992.
  • F. Zak, \booktit Tangents and Secants of Algebraic Varieties, Translations of mathematical monographs vol. 127, AMS, 1993.
  • M.Y. Zvyagin, \tit Second order equations reducible to $z_{xy}=0$ by a Bäcklund transformation, \jou Soviet Math. Dokl. 43 (1991) 30–34.