Differential Galois Theory through Riemann-Hilbert Correspondence
An Elementary Introduction
Differential Galois Theory through Riemann-Hilbert Correspondence
An Elementary Introduction

Jacques Sauloy
This book is dedicated to the Department of Mathematics of Wuda, in particular to its director Chen Hua, and to Wenyi Chen for giving me the occasion to teach this course and Jean-Pierre Ramis for giving me the ability to do so.

The math buildings at Wuda (2012) and at Toulouse University (2013)
Contents

Foreword xiii
Preface xv
Introduction xvii
Index of notation xix

Part 1. A Quick Introduction to Complex Analytic Functions

Chapter 1. The complex exponential function 3
§1.1. The series 3
§1.2. The function exp is C-derivable 4
§1.3. The exponential function as a covering map 7
§1.4. The exponential of a matrix 8
§1.5. Application to differential equations 10
Exercises 12

Chapter 2. Power series 15
§2.1. Formal power series 15
§2.2. Convergent power series 20
§2.3. The ring of power series 22
§2.4. C-derivability of power series 23
§2.5. Expansion of a power series at a point ≠ 0 25
§2.6. Power series with values in a linear space 26
Exercises 27
Chapter 3. Analytic functions
 §3.1. Analytic and holomorphic functions
 §3.2. Singularities
 §3.3. Cauchy theory
 §3.4. Our first differential algebras
 Exercises

Chapter 4. The complex logarithm
 §4.1. Can one invert the complex exponential function?
 §4.2. The complex logarithm via trigonometry
 §4.3. The complex logarithm as an analytic function
 §4.4. The logarithm of an invertible matrix
 Exercises

Chapter 5. From the local to the global
 §5.1. Analytic continuation
 §5.2. Monodromy
 §5.3. A first look at differential equations with a singularity
 Exercises

Part 2. Complex Linear Differential Equations and their Monodromy

Chapter 6. Two basic equations and their monodromy
 §6.1. The “characters” \(z^\alpha \)
 §6.2. A new look at the complex logarithm
 §6.3. Back again to the first example
 Exercises

Chapter 7. Linear complex analytic differential equations
 §7.1. The Riemann sphere
 §7.2. Equations of order \(n \) and systems of rank \(n \)
 §7.3. The existence theorem of Cauchy
 §7.4. The sheaf of solutions
 §7.5. The monodromy representation
 §7.6. Holomorphic and meromorphic equivalences of systems
 Exercises

Chapter 8. A functorial point of view on analytic continuation: Local systems
Part 3. The Riemann-Hilbert Correspondence

Chapter 9. Regular singular points and the local Riemann-Hilbert correspondence

- §9.1. Introduction and motivation
- §9.2. The condition of moderate growth in sectors
- §9.3. Moderate growth condition for solutions of a system
- §9.4. Resolution of systems of the first kind and monodromy of regular singular systems
- §9.5. Moderate growth condition for solutions of an equation
- §9.6. Resolution and monodromy of regular singular equations

Exercises

Chapter 10. Local Riemann-Hilbert correspondence as an equivalence of categories

- §10.1. The category of singular regular differential systems at 0
- §10.2. About equivalences and isomorphisms of categories
- §10.3. Equivalence with the category of representations of the local fundamental group
- §10.4. Matricial representation

Exercises

Chapter 11. Hypergeometric series and equations

- §11.1. Fuchsian equations and systems
- §11.2. The hypergeometric series
- §11.3. The hypergeometric equation
- §11.4. Global monodromy according to Riemann
- §11.5. Global monodromy using Barnes’ connection formulas

Exercises

Chapter 12. The global Riemann-Hilbert correspondence

- §12.1. The correspondence
Part 4. Differential Galois Theory

Chapter 13. Local differential Galois theory

- §13.1. The differential algebra generated by the solutions 170
- §13.2. The differential Galois group 172
- §13.3. The Galois group as a linear algebraic group 175

Chapter 14. The local Schlesinger density theorem

- §14.1. Calculation of the differential Galois group in the semi-simple case 182
- §14.2. Calculation of the differential Galois group in the general case 186
- §14.3. The density theorem of Schlesinger in the local setting 188
- §14.4. Why is Schlesinger’s theorem called a “density theorem”? 191

Chapter 15. The universal (fuchsian local) Galois group

- §15.1. Some algebra, with replicas 194
- §15.2. Algebraic groups and replicas of matrices 196
- §15.3. The universal group 198

Chapter 16. The universal group as proalgebraic hull of the fundamental group

- §16.1. Functoriality of the representation $\hat{\rho}_A$ of $\hat{\pi}_1$ 201
- §16.2. Essential image of this functor 203
- §16.3. The structure of the semi-simple component of $\hat{\pi}_1$ 207
- §16.4. Rational representations of $\hat{\pi}_1$ 213
- §16.5. Galois correspondence and the proalgebraic hull of $\hat{\pi}_1$ 214

Chapter 17. Beyond local fuchsian differential Galois theory

- §17.1. The global Schlesinger density theorem 220
- §17.2. Irregular equations and the Stokes phenomenon 221
- §17.3. The inverse problem in differential Galois theory 226
Contents

§17.4. Galois theory of nonlinear differential equations 227

Appendix A. Another proof of the surjectivity of \(\exp : \text{Mat}_n(\mathbb{C}) \rightarrow \text{GL}_n(\mathbb{C}) \) 229

Appendix B. Another construction of the logarithm of a matrix 233

Appendix C. Jordan decomposition in a linear algebraic group 237
 §C.1. Dunford-Jordan decomposition of matrices 237
 §C.2. Jordan decomposition in an algebraic group 241

Appendix D. Tannaka duality without schemes 243
 §D.1. One weak form of Tannaka duality 245
 §D.2. The strongest form of Tannaka duality 246
 §D.3. The proalgebraic hull of \(\mathbb{Z} \) 248
 §D.4. How to use tannakian duality in differential Galois theory 251

Appendix E. Duality for diagonalizable algebraic groups 255
 §E.1. Rational functions and characters 255
 §E.2. Diagonalizable groups and duality 257

Appendix F. Revision problems 259
 §F.1. 2012 exam (Wuhan) 259
 §F.2. 2013 exam (Toulouse) 260
 §F.3. Some more revision problems 263

Bibliography 267

Index 271
Nowadays differential Galois theory is a topic appearing more and more in graduate courses. There are several reasons. It mixes fundamental objects from very different areas of mathematics and uses several interesting theories. Moreover, during the last decades, mathematicians have discovered a lot of important and powerful applications of differential Galois theory. Some are quite surprising, such as some criteria for the classical problem of integrability of dynamical systems in mechanics and physics.

If differential Galois theory is a beautiful subject for a learning mathematician, it is not an easy one. There are several reference books on this topic but they are too difficult for a beginner. Jacques Sauloy’s book is a wonderful success because even if it is accessible to a graduate (or a motivated undergraduate) student, it nevertheless introduces sophisticated tools in a remarkably accessible way and gives an excellent and self-contained introduction to the modern developments of the subject. Until now, I thought that such a pedagogical presentation was impossible and I envy the young beginners for having the possibility to learn the subject in such a fantastic book.

When the French mathematician Émile Picard created differential Galois theory at the end of the nineteenth century he started from some analogies between the roots of an algebraic equation and the solutions of an algebraic linear differential equation in the complex domain, which, in general, are many-valued analytic functions. Picard built on preceding works, in particular on the work of B. Riemann on the famous hypergeometric functions of Euler and Gauss, introducing the notion of monodromy representation. After Picard and his follower Vessiot, differential Galois theory was successfully algebraized by Ellis Kolchin. Today the reference books use the purely
algebraic approach of Kolchin. Jacques Sauloy returns to the origin, working only in the complex domain and making essential use of transcendental tools as the monodromy representation and the Riemann-Hilbert correspondence. He does not at all avoid the use of algebra and of modern tools such as categories, functors, sheaves, algebraic groups, etc., but, sewing a transcendental flesh on the algebraic bones, he throws a very interesting light on the algebra. Moreover his point of view allows for a rather elementary presentation of the subject with concrete approaches and a lot of interesting examples.

The last chapter of the book (more difficult for a beginner) gives several directions where one could extend the topics presented before and gives a flavor of the richness of the theory.

Jean-Pierre Ramis, member of the French Academy of Sciences
Preface

In 2012, the University of Wuhan (nicknamed Wuda by its friends) asked me to give a course on differential Galois theory. Books have been published on the subject and courses have been given, all based on differential algebra and Picard-Vessiot theory and always with a very algebraic flavor (or sometimes even computer-algebra oriented). I did not feel competent to offer anything new in this direction. However, as a student of Jean-Pierre Ramis, I have been deeply influenced by his point of view that tagging algebraic objects with transcendental information enriches our understanding and brings not only new points of view but also new solutions. This certainly was illustrated by Ramis’ solution to the inverse problem in differential Galois theory! Note that although there has been an overwhelming trend to algebraization during the twentieth century, the opposite tendency never died, whether in algebraic geometry or in number theory. There still are function theoretic methods in some active areas of Langlands’ program! And pedagogically, I found the functional approach a nice shortcut to Tannaka theory.

On a more personal level, I remember my first advisor, Jean Giraud, an algebraist if there ever was one (he worked on the resolution of singularities in positive characteristics), sending me the beautiful 1976 article of Griffith “Variations on a theorem of Abel”, which, if my memory doesn’t fail me, conveyed a similar message. I explain better in the introduction why it could be a sensible choice to organize my course around such ideas.

The important point is that Chen Hua (the director of the math department at Wuda) and Wenyi Chen (who organized my stay there) accepted my proposition, and that the course took existence not only on paper. To Chen
Hua and Wenyi Chen my greatest thanks for that, and also to the whole math department of Wuda, in particular to the students who attended the course. There is no greater thrill than to teach to Chinese students. When I came back to France, I got the opportunity to teach the same course to master students. The background of French students is somewhat different from that of Chinese students, so this required some adaptation: I insisted less on complex function theory, that these students knew well (while my very young Chinese students had not yet studied it), and I used the time thus saved by giving more abstract algebraic formalism (for which French students have a strong taste).

In Wuda, the task of leading the exercise sessions with students was separated from the course proper. Luo Zhuangchu, a colleague and friend, took it in charge as well as the organization of the final exam. Xiexie Luo!

When my 2012 course in Wuhan ended, there was a two-week conference on differential equations, one of whose organizers was Changgui Zhang, who first had introduced me to the colleagues at Wuda. As a friend, as a coauthor and for having brought me first to China, I thank Changgui very much.

That conference was attended (as a speaker) by Michael Singer, also a friend and a colleague. Michael had an opportunity to see my course and found it interesting enough to suggest publication by the AMS. He put me in touch with Ina Mette of the AMS, who also encouraged me. So thanks to them both for giving me the motivation to transform my set of notes into a book. Ina Mette, along with another AMS staff member, Marcia C. Almeida, helped me all along the production process, for which I am grateful to them both. My thanks extend to production editor Mike Saitas, who handled the final publication steps. The drawings were first done by hand by my son Louis, then redrawn to professional standards by Stephen Gossman, one of the wizards of the AMS production team led by Mary Letourneau. Thanks to all!

Last, my dearest thanks go to Jean-Pierre Ramis who, to a great extent, forged my understanding of mathematics.
Introduction

The course will involve only complex analytic linear differential equations. Thus, it will not be based on the general algebraic formalism of differential algebra, but rather on complex function theory.

There are two main approaches to differential Galois theory. The first one, usually called Picard-Vessiot theory, and mainly developed by Kolchin, is in some sense a transposition of the Galois theory of algebraic equations in the form it was given by the German algebraists: to a (linear) differential equation, one attaches an extension of differential fields and one defines the Galois group of the equation as the group of automorphisms compatible with the differential structure. This group is automatically endowed with a structure of an algebraic group, and one must take in account that structure to get information on the differential equation. This approach has been extensively developed, it has given rise to computational tools (efficient algorithms and software) and it is well documented in a huge literature.

A more recent approach is based on so-called “tannakian duality”. It is very powerful and can be extended to situations where the Picard-Vessiot approach is not easily extended (like q-difference Galois theory). There is less literature and it has a reputation of being very abstract. However, in some sense, the tannakian approach can be understood as an algebraic transposition of the Riemann-Hilbert correspondence. In this way, it is rooted in very concrete and down-to-earth processes: the analytic continuation of power series solutions obtained by the Cauchy theorem and the ambiguity introduced by the multivaluedness of the solutions. This is expressed by the monodromy group, a precursor of the differential Galois group, and by
the monodromy representation. The Riemann-Hilbert correspondence is the other big galoisian theory of the nineteenth century, and it is likely that Picard had it in mind when he started to create differential Galois theory. The moral of this seems to be that, as understood and/or emphasized by such masters as Galois, Riemann, Birkhoff, etc., ambiguities give rise to the action of groups and the objects subject to these ambiguities are governed and can be classified by representations of groups.

Therefore, I intend to devote the first two parts\footnote{The first audience of this course consisted of young enthusiastic and gifted Chinese students who had been especially prepared, except for complex function theory. Therefore I added a “crash course” on analytic functions at the beginning, which the reader may skip, although it also serves as an introduction to the more global aspects of the theory which are seldom taught at an elementary level.} of the course to the study of the monodromy theory of complex analytic linear differential equations and of the Riemann-Hilbert correspondence, which is, anyhow, a must for anyone who wants to work with complex differential equations. In the third part of the course, I introduce (almost from scratch) the basic tools required for using algebraic groups in differential Galois theory, whatever the approach (Picard-Vessiot or tannakian). Last, I shall show how to attach algebraic groups and their representations to complex analytic linear differential equations. Some algebraic and functorial formalism is explained when needed, without any attempt at a systematic presentation.

The course is centered on the local analytic setting and restricted to the case of regular singular (or fuchsian) equations. One can consider it as a first-semester course. To define a second-semester course following this one would depend even more on one’s personal tastes; I indicate some possibilities in Chapter\footnote{The first audience of this course consisted of young enthusiastic and gifted Chinese students who had been especially prepared, except for complex function theory. Therefore I added a “crash course” on analytic functions at the beginning, which the reader may skip, although it also serves as an introduction to the more global aspects of the theory which are seldom taught at an elementary level.} which gives some hints of what lies beyond, with sufficient bibliographical references. In the appendices that follow, I give some algebraic complements to facilitate the reader’s work and to avoid having him or her delve into the literature without necessity. Also, the course having been taught twice before a class has given rise to two written examinations and some oral complementary tests. These are reproduced in the last appendix.

Prerequisites. The main prerequisites are: linear algebra (mostly reduction of matrices); elementary knowledge of groups and of polynomials in many variables; elementary calculus in \(n \) variables, including topology of the real euclidean spaces \(\mathbb{R}^n \). Each time a more advanced result will be needed, it will be precisely stated and explained and an easily accessible reference will be given.
Exercises. Two kinds of exercises are presented: some are inserted in the main text and serve as an illustration (e.g., examples, counterexamples, explicit calculations, etc). Some come at the end of the chapters and may be either application exercises or deepening or extensions of the main text. Some solutions or hints will be posted on www.ams.org/bookpages/gsm-177.

Errata. I cannot hope to have corrected all the typographical and more substantial errors that appeared in the long process of making this book. A list of errata will be maintained on the same webpage mentioned above.

Notational conventions. Notation $A \colonequals B$ means that the term A is defined by formula B. New terminology is written in emphatic style when first defined. Note that a definition can appear in the course of a theorem, an example, an exercise, etc.

Example 0.1. The monodromy group of \mathcal{F} at the base point a is the image of the monodromy representation:

$$\text{Mon}(\mathcal{F}, a) := \text{Im} \rho_{\mathcal{F},a} \subset \text{GL}(\mathcal{F}_a).$$

We mark the end of a proof, or its absence, by the symbol \Box.

We use commutative diagrams. For instance, to say that the diagram

$$\begin{array}{ccc}
\mathcal{F}(U) & \xrightarrow{\phi_U} & \mathcal{F}'(U) \\
\rho'_V & \downarrow & \rho'_V \\
\mathcal{F}(V) & \xrightarrow{\phi_V} & \mathcal{F}'(V)
\end{array}$$

is commutative means that $\phi_V \circ \rho'_V = \rho'_V \circ \phi_U$.

Index of notation

General notation.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matn(C), Mat${p,n}$(C)</td>
<td>Spaces of matrices</td>
</tr>
<tr>
<td>GL$_n$(C)</td>
<td>Group of invertible matrices</td>
</tr>
<tr>
<td>$\overline{D}(a,R)$, $\partial \overline{D}(a,R)$</td>
<td>Closed and open disk</td>
</tr>
<tr>
<td>$\partial D(a,R)$, $C(r,R)$</td>
<td>Circle, open annulus $r <</td>
</tr>
<tr>
<td>Sp(A)</td>
<td>Spectrum2 of a matrix</td>
</tr>
<tr>
<td>$n \gg -\infty$</td>
<td>“For n big enough”</td>
</tr>
</tbody>
</table>

2Sometimes, the spectrum is seen as a plain set and, for instance, writing 0_n as the null $n \times n$ matrix, $\text{Sp} 0_n = \{0\}$. Sometimes, it is seen as a multiset (elements have multiplicities) and then $\text{Sp} 0_n = \{0, \ldots, 0\}$ (counted n times).
\[\ln, e^x \] \hspace{1em} \text{Usual logarithm and exponential}
\[\text{Diag}(a_1, \ldots, a_n) \] \hspace{1em} \text{Diagonal matrix}
\[\mu_n \subset \mathbb{C}^* \] \hspace{1em} \text{Group of } n\text{th roots of unity}
\[\dim_{\mathbb{C}} \] \hspace{1em} \text{Dimension of a complex space}
\[\overline{D} \] \hspace{1em} \text{Closure of a set}
\[N_m \] \hspace{1em} \text{Elementary nilpotent Jordan block}
\[\langle x_1, \ldots, x_r \rangle \] \hspace{1em} \text{Group generated by } x_1, \ldots, x_r
\[[A, B] \] \hspace{1em} \text{Commutator } AB - BA \text{ of matrices}

Specific notation. They are more competely defined in the text.

Appearing in Chapter 1
\[e^z, \exp(z) \] \hspace{1em} \text{Complex exponential function}
\[JF(x, y) \] \hspace{1em} \text{Jacobian matrix}
\[I(a, \gamma) \] \hspace{1em} \text{Index of a loop relative to a point}
\[e^A, \exp(A) \] \hspace{1em} \text{Exponential of a square matrix}

Appearing in Chapter 2
\[\mathbb{C}[[z]] \] \hspace{1em} \text{Ring of formal power series}
\[v_0(f) \] \hspace{1em} \text{Valuation, or order, of a power series}
\[\mathbb{C}((z)) \] \hspace{1em} \text{Field of formal Laurent series}
\[\mathcal{O}_0 = \mathbb{C}\{z\} \] \hspace{1em} \text{Ring of convergent power series, holomorphic germs at } 0

Appearing in Chapter 3
\[\mathcal{O}_a = \mathbb{C}\{z - a\} \] \hspace{1em} \text{Ring of convergent power series in } z - a, \text{ holomorphic germs at } a
\[\mathcal{O}(\Omega) \] \hspace{1em} \text{Ring of holomorphic functions over } \Omega
\[B_n \] \hspace{1em} \text{Bernoulli numbers}
\[v_{z_0}(f) \] \hspace{1em} \text{Valuation, or order, at } z_0
\[\mathcal{M}(\Omega) \] \hspace{1em} \text{Field of meromorphic functions over a domain } \Omega
\[I(z_0, \gamma) \] \hspace{1em} \text{Index of a loop around a point}

Appearing in Chapter 4
\[\log \] \hspace{1em} \text{Complex logarithm (principal determination)}
\[M_n \] \hspace{1em} \text{Nilpotent component of a matrix}
\[M_s \] \hspace{1em} \text{Semi-simple component of a matrix}
\[M_u \] \hspace{1em} \text{Unipotent component of an invertible matrix}
Appearing in Chapter 5

\(f^\gamma \) Result of analytic continuation of \(f \) along \(\gamma \)

\(\mathcal{O}_a \) Ring of germs of continuable functions

\(\gamma_1 \cdot \gamma_2 \) Composition of two paths

\(\gamma_1 \sim \gamma_2 \) Homotopy relation among paths (or loops)

\([\gamma]\) Homotopy class of a path (or loop)

\(\Pi_1(\Omega; a, b) \) Set of homotopy classes

\(\text{Iso}_{C-algdiff} \) Set of differential algebra isomorphisms

\([\gamma_1],[\gamma_2]\) Composition of two homotopy classes

\(\text{Aut}_{C-algdiff} \) Set of differential algebra automorphisms

\(\pi_1(\Omega; a) \) Fundamental group

\(\text{Sol}(z^{-1}A, \Omega) \) Space of solutions

\(z^A \) .. \(\exp(A \log z) \)

Appearing in Chapter 6

\(z^\alpha \) .. \(\exp(\alpha \log z) \)

\(H_0 \) ... Right half-plane

\(H_{\theta_0} \) Half-plane with mediatrix at angle \(\theta_0 \)

\(IC \) ... Initial condition map

\(f|_V \) .. Restriction of function \(f \) to subset \(V \)

Appearing in Chapter 7

\(S \) ... Riemann sphere

\(\mathcal{O}(\Omega), \mathcal{M}(\Omega), \mathcal{O}(S), \mathcal{M}(S) \) As in Chapter 3 but on the Riemann sphere

\(E_a, F_a \) . Scalar differential equation with coefficients \(a_i \) and its sheaf of solutions

\(S_A, F_A \) . Vectorial differential equation with matrix \(A \) and its sheaf of solutions

\(A_a \) Vectorialization matrix for \(E_a \) (companion matrix)

\(X_f \) Vectorialization of unknown function \(f \)

\(W_n, w_n \) Wronskian matrix and determinant

\(\rho^U, F_a \) Restriction map and stalk (or fiber) for a sheaf

\(\text{Iso}(F_a, F_b) \) Set of linear isomorphisms

\(G^\circ \) Opposite group

\(\rho_{F,a}, \text{Mon}(F, a) \) Monodromy representation and group for the local system \(F \)
\(\rho_{a,z_0}, \text{Mon}(E_a,z_0)\) Monodromy representation and group for the scalar equation \(E_a\)

\(\rho_{A,z_0}, \text{Mon}(S_A,z_0)\) Monodromy representation and group for the vectorial equation \(S_A\)

\(F[A]\) Transform of \(A\) by the gauge matrix \(F\)

\(\chi_\lambda, M_\lambda\) Analytic continuation of a fundamental matricial solution along the loop \(\lambda\) and corresponding monodromy matrix

\(\sim_h, \sim_m\) Holomorphic and meromorphic equivalence

Appearing in Chapter \([8]\)

\(\mathcal{D}\mathcal{S}\) Category of differential systems

\(\mathcal{L}\mathcal{S}\) Category of local systems

\(\mathcal{E}\mathcal{H}\) Category of sheaves

\(\text{Ob}(\mathcal{C}), \text{Mor}_\mathcal{C}(X,Y), \text{Id}_X\) Class of objects, sets of morphisms, identity morphisms in a category

\(\mathcal{F}\) Constant sheaf

\(\rightarrow\) Funny arrow reserved for functors

\(\mathcal{R}\text{Rep}_\mathcal{C}(G), \mathcal{R}\text{Rep}_\mathcal{C}^f(G)\) Category of complex representations, of finite-dimensional complex representations, of \(G\)

Appearing in Chapter \([9]\)

\(D, \delta\) Usual and Euler differential operators

\((\alpha)_n\) Pochhammer symbols

\(F(\alpha, \beta, \gamma; z)\) Hypergeometric series

Appearing in Chapter \([10]\)

\(\mathcal{E}^{(0)}, \mathcal{E}_f^{(0)}, \mathcal{E}_f^{(0)}_{R}, \mathcal{E}_f^{(0)}_{\infty}\) Various categories of differential systems

\(\mathcal{M}_0 = \mathcal{C}(\{z\})\) Meromorphic germs at 0

Appearing in Chapter \([11]\)

\(\mathcal{B}^{\lambda}\) Analytic continuation of a basis of solutions

\(HG_{\alpha,\beta,\gamma}, HG'_{\alpha,\beta,\gamma}\) Hypergeometric equation using \(\delta\) or \(D\)

Appearing in Chapter \([12]\)

RS Regular singular (abbreviation used only in this chapter)

Appearing in Chapter \([13]\)

\(K\) Differential field, usually \(\mathcal{M}_0\)

\(\mathcal{A}(A,z_0) = K[\mathcal{X}]\) Differential, algebra generated by solutions

\(\text{Gal}(A,z_0)\) Differential Galois group computed at \(z_0\)
Index of notation

Appearing in Chapter 14

\[
\text{Mon}(A) \subset \text{Gal}(A) \subset \text{GL}_n(C) . \quad \text{Matricial realizations of the monodromy and Galois group}
\]

\[V(E) \quad \text{Algebraic subset defined by a set of equations}\]

Appearing in Chapter 15

\[\hat{\rho}_A, \hat{\pi}_1 \quad \text{Universal representation and group}\]

\[\mathcal{X}(H) \quad \text{Proalgebraic group of characters}\]

\[\iota : \pi_1 \mapsto \hat{\pi}_1 \quad \text{Canonical inclusion}\]

Appearing in Chapter 16

\[\hat{\pi}_{1,s}, \hat{\pi}_{1,u} \quad \text{Semi-simple and unipotent components of the universal group}\]

\[\mathcal{A}(F) \quad \text{Affine algebra of } F\]

\[\Gamma_\Sigma \quad \text{Group generated by } \Sigma \subset C^*\]

\[\text{lim} \quad \text{Inverse limit}\]

\[\sqrt{I_0} \quad \text{Radical of an ideal}\]

\[[\Gamma, \Gamma] \quad \text{Derived subgroup}\]

\[\Gamma^{ab} \quad \text{Abelianization of a group}\]

Appearing in Appendix A

\[M^x \quad \text{Complex powers of matrix } M\]

Appearing in Appendix B

\[\log A \quad \text{Logarithm of a matrix}\]

\[R(z, A) \quad \text{Resolvent}\]

Appearing in Appendix C

\[\phi_s, \phi_n \quad \text{Semi-simple and nilpotent components of an endomorphism}\]

\[M_s, M_u \quad \text{Semi-simple and unipotent components of an invertible matrix}\]

Appearing in Appendix D

\[G^{alg}, Z^{alg} \quad \text{Proalgebraic hull of } G, \text{ of } Z\]

\[\text{Gal}(\mathcal{C}, \omega) := \text{Aut}^{\otimes}(\omega) \quad \text{Galois group of a tannakian category}\]

\[\iota : G \to G^{alg} \quad \text{Canonical inclusion}\]

Appearing in Appendix E

\[\mathbf{X}(G) \quad \text{Group of rational characters of an algebraic group}\]
Bibliography

Bibliography

Index

C-algebra, 16
C-derivability, 23
C-derivable function, 30
C-derivative, 30
C-linear abelian category, 141
additive functor, 141
q-difference equations, 253

Abel’s radial theorem, 21
Abelian category, 141
Additive functor, 141
Affine algebra, 205
Airy function, 134
Algebraic group, 177
subset, 191
Analytic function, 29, 79
germ, 29
Analytic continuation, 67
along a path, 45
direct, 67
principle, 67
result of, 46
Annulus, 81
Anti-equivalence of categories, 108

Barnes
connection formulas, 157
contour of integration, 157
integral representation, 157
Base point, 93
Bernoulli numbers, 32
Bessel function, 134
Binomial formula (generalized), 18
Birkhoff gauge transformation, 125
Borel-Laplace transform, 224

Cartan’s lemma, 164
Category, 103
C-linear abelian, 141
anti-equivalence, 108
arrow, 103
automorphism, 105
endomorphism, 104
equivalence, 108
essential subcategory, 139
functor, 107
identity morphism, 103
invertible arrow, 105
isomorphism, 105
isomorphism of categories, 139
morphisms, 103
objects, 103
source, 103
target, 103

Cauchy
estimates, 122
existence theorem, 88
formula, 35
residue formula, 35
theory, 33

Cauchy-Riemann formulas, 24
Change of coordinates, 79
Characters of an algebraic group, 256
Index

Circle of indeterminacy of a power series, 20
Commutator (in a group), 217
Complex exponential function, 3
Complex logarithm, 39, 70
Composition of power series, 18
Conformal function, 30
Connection formulas, 153
Constant sheaf, 90, 106
Contravariant functor, 107
Convergent power series, 20
Covariant functor, 107
Covering map, 7
universal, 113
Cyclic vector, 97
lemma, 96, 117
Decomposition
Dunford (additive), 43
Dunford (multiplicative), 43, 237
Jordan, 43, 237
Derivation, 36, 128
Determination of a multivalued function, 121
Diagonalizable
algebraic group, 257
matrix, 42
Differential algebra, 36, 169, 172
automorphism, 172
generated by the solutions, 170
group of automorphisms, 174
sub-, 36, 48
Differential equation
Fuchs-Frobenius method, 132, 151
fuchsian, 147
global study, 118
hypergeometric, 151
irregular, 221
linear homogeneous scalar of order n, 81
linear homogeneous vectorial of rank n, 82
local study, 118
regular singular, 128
singularity, 50
Differential field, 169
Differential Galois group, 174
matricial realization, 176
Differential system, 82
fuchsian, 147
Direct image sheaf, 113
Disk of convergence of a power series, 20
Divergent series, 223
Divisible group, 196
Duality
Tannakian, 243
theories, 243
Dunford
additive decomposition, 43
multiplicative decomposition, 43, 237
Dunford-Jordan decomposition of endomorphisms, 237
of matrices, 237
Entire function, 29
Equivalence
holomorphic, 96
meromorphic (first definition), 96
meromorphic (new definition), 119
rational, 161
Equivalence of categories, 108
Essential singularity, 52
Essential subcategory, 139
Euler differential operator, 128
Euler series, 222
Euler-Mascheroni constant, 150
Exponential
of a complex number, 3
of a square matrix, 9
Fiber of a sheaf, 91
First kind (singularity of the -), 124

130
Forgetful functor, 113
Formal
Laurent series, 17
power series, 19
Free group, 147
Fuchs criterion, 130
Fuchs-Frobenius method, 182, 161
Fuchsian
differential system, 145
scalar differential equation, 147
singularity, 124, 130
Full complement of solutions, 86
Function
C-derivable, 30
Airy, 134
analytic, 29, 70
Bessel, 134
conformal, 30
entire, 29
Gamma, 134, 149
<table>
<thead>
<tr>
<th>Index</th>
<th>273</th>
</tr>
</thead>
<tbody>
<tr>
<td>holomorphic,</td>
<td>30, 79</td>
</tr>
<tr>
<td>matrix-valued,</td>
<td>50</td>
</tr>
<tr>
<td>meromorphic,</td>
<td>33, 79</td>
</tr>
<tr>
<td>multivalued,</td>
<td>57, 121</td>
</tr>
<tr>
<td>Functor</td>
<td></td>
</tr>
<tr>
<td>C-linear additive,</td>
<td>141</td>
</tr>
<tr>
<td>anti-equivalence of categories,</td>
<td>108</td>
</tr>
<tr>
<td>covariant,</td>
<td>107</td>
</tr>
<tr>
<td>equivalence of categories,</td>
<td>108</td>
</tr>
<tr>
<td>faithful,</td>
<td>108</td>
</tr>
<tr>
<td>forgetful,</td>
<td>113</td>
</tr>
<tr>
<td>full,</td>
<td>108</td>
</tr>
<tr>
<td>fully faithful,</td>
<td>108</td>
</tr>
<tr>
<td>natural transformation,</td>
<td>140</td>
</tr>
<tr>
<td>quasi-inverse,</td>
<td>141</td>
</tr>
<tr>
<td>Fundamental</td>
<td></td>
</tr>
<tr>
<td>matricial solution,</td>
<td>85</td>
</tr>
<tr>
<td>system of solutions,</td>
<td>85</td>
</tr>
<tr>
<td>Fundamental group,</td>
<td>49</td>
</tr>
<tr>
<td>representation,</td>
<td>110</td>
</tr>
<tr>
<td>wild,</td>
<td>222</td>
</tr>
<tr>
<td>Gamma function,</td>
<td>124, 149</td>
</tr>
<tr>
<td>Gauge transformation,</td>
<td>95</td>
</tr>
<tr>
<td>Birkhoff,</td>
<td>125</td>
</tr>
<tr>
<td>shearing,</td>
<td>125</td>
</tr>
<tr>
<td>Generalized Laurent series,</td>
<td>33, 80</td>
</tr>
<tr>
<td>Germ</td>
<td></td>
</tr>
<tr>
<td>analytic,</td>
<td>29</td>
</tr>
<tr>
<td>of a function at a point,</td>
<td>22</td>
</tr>
<tr>
<td>of a section of a sheaf,</td>
<td>91</td>
</tr>
<tr>
<td>Global section,</td>
<td>92</td>
</tr>
<tr>
<td>Group</td>
<td></td>
</tr>
<tr>
<td>abelianized,</td>
<td>217</td>
</tr>
<tr>
<td>derived subgroup,</td>
<td>217</td>
</tr>
<tr>
<td>divisible,</td>
<td>196</td>
</tr>
<tr>
<td>free,</td>
<td>147</td>
</tr>
<tr>
<td>linear algebraic,</td>
<td>177</td>
</tr>
<tr>
<td>monodromy,</td>
<td>92, 94</td>
</tr>
<tr>
<td>opposite,</td>
<td>92, 110</td>
</tr>
<tr>
<td>proalgebraic,</td>
<td>212</td>
</tr>
<tr>
<td>universal,</td>
<td>199, 201</td>
</tr>
<tr>
<td>Growth of solutions,</td>
<td>121, 128</td>
</tr>
<tr>
<td>Hilbert’s basis theorem,</td>
<td>179</td>
</tr>
<tr>
<td>Holomorphic</td>
<td></td>
</tr>
<tr>
<td>equivalence,</td>
<td>96</td>
</tr>
<tr>
<td>function,</td>
<td>90, 79</td>
</tr>
<tr>
<td>Holomorphic functional calculus,</td>
<td>238</td>
</tr>
<tr>
<td>Homotopy,</td>
<td>48</td>
</tr>
<tr>
<td>class,</td>
<td>49</td>
</tr>
<tr>
<td>differentiable,</td>
<td>61</td>
</tr>
<tr>
<td>Homotopy, homotopic,</td>
<td>12</td>
</tr>
<tr>
<td>Hypergeometric</td>
<td></td>
</tr>
<tr>
<td>equation,</td>
<td>151</td>
</tr>
<tr>
<td>equation (monodromy),</td>
<td>153</td>
</tr>
<tr>
<td>series,</td>
<td>135, 149</td>
</tr>
<tr>
<td>Ideal,</td>
<td>152</td>
</tr>
<tr>
<td>radical,</td>
<td>216</td>
</tr>
<tr>
<td>Index of a loop,</td>
<td>8, 35</td>
</tr>
<tr>
<td>Indicial equation,</td>
<td>132</td>
</tr>
<tr>
<td>Inductive ordered set,</td>
<td>196</td>
</tr>
<tr>
<td>Initial condition,</td>
<td>50</td>
</tr>
<tr>
<td>map,</td>
<td>95</td>
</tr>
<tr>
<td>Inverse limit</td>
<td></td>
</tr>
<tr>
<td>of an inverse system of commutative groups,</td>
<td>209</td>
</tr>
<tr>
<td>universal property,</td>
<td>213</td>
</tr>
<tr>
<td>Inverse system of commutative groups,</td>
<td>209</td>
</tr>
<tr>
<td>Irregular differential equations,</td>
<td>221</td>
</tr>
<tr>
<td>Isomorphism of sheaves,</td>
<td>98</td>
</tr>
<tr>
<td>Jordan decomposition,</td>
<td>13, 237</td>
</tr>
<tr>
<td>in a linear algebraic group,</td>
<td>241</td>
</tr>
<tr>
<td>Jordan theorem,</td>
<td>165</td>
</tr>
<tr>
<td>Laurent series</td>
<td></td>
</tr>
<tr>
<td>formal,</td>
<td>17</td>
</tr>
<tr>
<td>generalized,</td>
<td>33, 80</td>
</tr>
<tr>
<td>Leibniz rule,</td>
<td>30, 128</td>
</tr>
<tr>
<td>Linear algebraic group,</td>
<td>177</td>
</tr>
<tr>
<td>Local system,</td>
<td>90, 106</td>
</tr>
<tr>
<td>category,</td>
<td>105</td>
</tr>
<tr>
<td>trivializing open set,</td>
<td>90</td>
</tr>
<tr>
<td>Logarithm</td>
<td></td>
</tr>
<tr>
<td>complex,</td>
<td>89, 70</td>
</tr>
<tr>
<td>local determination,</td>
<td>10</td>
</tr>
<tr>
<td>of an invertible matrix,</td>
<td>42, 233</td>
</tr>
<tr>
<td>principal determination,</td>
<td>40</td>
</tr>
<tr>
<td>Logarithmic derivative,</td>
<td>17</td>
</tr>
<tr>
<td>Loop index,</td>
<td>8, 35</td>
</tr>
<tr>
<td>Matricial</td>
<td></td>
</tr>
<tr>
<td>fundamental solution,</td>
<td>85</td>
</tr>
<tr>
<td>differential Galois group,</td>
<td>176</td>
</tr>
<tr>
<td>monodromy group,</td>
<td>94</td>
</tr>
<tr>
<td>monodromy representation,</td>
<td>94</td>
</tr>
<tr>
<td>solutions,</td>
<td>82</td>
</tr>
<tr>
<td>Matrix</td>
<td></td>
</tr>
<tr>
<td>diagonalizable,</td>
<td>42</td>
</tr>
<tr>
<td>logarithm,</td>
<td>42</td>
</tr>
</tbody>
</table>
semi-simple, 42
unipotent, 43
Matrix-valued function, 50
Meromorphic
equivalence (first definition), 96
equivalence (new definition), 119
function, 53 79
Moderate growth, 121 128
Monodromy, 47
global (according to Riemann), 153
group, 92 94
group (explicit generators), 153
of regular singular equations, 132
principle, 16
representation, 73 82 94
Morphism, see also Category
Morphisms of a category, 103 104
Multivalued function, 57 121
determination, 121
Natural transformation, 140
Newton binomial formula (generalized), 18
Objects of a category, 103 104
Opposite group, 92
Order of a formal power series, 17
Order of a pole, 82
Path lifting property, 7
Pochhammer symbols, 135 149
Pole, 32
order, 32
Polynomial map, 206
Power series
C-derivability, 23
circle of indeterminacy, 20
composition, 18
convergent, 20
disk of convergence, 20
expansion, 20
formal, 15
order, 17
radius of convergence, 20
reciprocation, 20
substitution, 18
valuation, 17
Preliminary theorem of Birkhoff, 166
Primitive (of a function), 84
Principle of analytic continuation, 81
67
Principle of conservation of algebraic
and differential relations, 48 169
182
Principle of monodromy, 46
Proalgebraic
group, 212
hull, 199 201 245
hull of Z, 248
Quasi-inverse functor, 141
Radical ideal, 216
Radius of convergence of a power series, 20
Ramis density theorem, 222
Rational
equivalence, 161
functions on an algebraic group, 255
morphism, 204 206
representation, 213
Reciprocation, 20
Regular map, 206
Regular singular
differential equation, 123 128
differential system, 123
point, 123 128
Removable singularity, 32
Replica, 184
Representation
conjugate, 100
equivalent, 100
intertwining, 111
isomorphic, 100
linear, 100
monodromy, 78 92 94
morphism, 111
of the fundamental group, 110
rational, 213
reducible, 157
Residue, 35
Cauchy formula, 35
Resolvent, 235
Resonancies, 125
Restriction map, 72 89
Resummation of a divergent series, 220
Riemann sphere, 77
Riemann-Hilbert correspondence
algebraic, 194
global, 162 163
local, 119 127
Schlesinger density theorem, 181
global, 221
local, 188

Section
 global, 92
 of a sheaf, 89

Sectors, 124

Semi-simple matrix, 42

Sheaf, 72, 89
 category, 116
 constant, 90, 106
 direct image, 113
 fiber, 91
 isomorphism, 98
 of complex linear spaces, 89
 of solutions, 89
 section, 89
 stalk, 91

Shearing gauge transformation, 125

Simply connected domain, 55, 37

Singularity
 essential, 32
 fuchsian, 124, 130
 of a differential equation, 50
 of the first kind, 124, 130
 regular, 123, 128
 removable, 32

Stalk of a sheaf, 91

Stereographic projection, 78

Stokes
 operators, 222
 phenomenon, 221

Sub-differential algebra, 36, 48

Subdivision of an interval, 45

Substitution in a power series, 18

Symbolic calculus, 233

Tannaka duality
 strong, 246
 weak, 245

Tannaka-Krein theorem, 244

Taylor series of a C-derivable function, 25

Trivializing open set, 90

Unipotent matrix, 43

Universal covering, 113

Universal group, 199, 201

Valuation of a formal power series, 17

Wild fundamental group, 222

Wronskian, 76
 determinant, 83
Selected Published Titles in This Series

177 Jacques Sauloy, Differential Galois Theory through Riemann-Hilbert Correspondence, 2016
174 Alexander Kirillov Jr., Quiver Representations and Quiver Varieties, 2016
173 Lan Wen, Differentiable Dynamical Systems, 2016
171 Qing Han, Nonlinear Elliptic Equations of the Second Order, 2016
170 Donald Yau, Colored Operads, 2016
169 András Vasy, Partial Differential Equations, 2015
168 Michael Aizenman and Simone Warzel, Random Operators, 2015
167 John C. Neu, Singular Perturbation in the Physical Sciences, 2015
166 Alberto Torchinsky, Problems in Real and Functional Analysis, 2015
164 Terence Tao, Expansion in Finite Simple Groups of Lie Type, 2015
162 Firas Rassoul-Agha and Timo Seppäläinen, A Course on Large Deviations with an Introduction to Gibbs Measures, 2015
161 Diane Maclagan and Bernd Sturmfels, Introduction to Tropical Geometry, 2015
160 Marius Overholt, A Course in Analytic Number Theory, 2014
158 Fritz Colonius and Wolfgang Kliemann, Dynamical Systems and Linear Algebra, 2014
156 Markus Haase, Functional Analysis, 2014
155 Emmanuel Kowalski, An Introduction to the Representation Theory of Groups, 2014
154 Wilhelm Schlag, A Course in Complex Analysis and Riemann Surfaces, 2014
153 Terence Tao, Hilbert’s Fifth Problem and Related Topics, 2014
152 Gábor Székelyhidi, An Introduction to Extremal Kähler Metrics, 2014
151 Jennifer Schultens, Introduction to 3-Manifolds, 2014
150 Joe Diestel and Angela Spalsbury, The Joys of Haar Measure, 2013
148 Luis Barreira and Yakov Pesin, Introduction to Smooth Ergodic Theory, 2013
147 Xingzhi Zhan, Matrix Theory, 2013
146 Aaron N. Siegel, Combinatorial Game Theory, 2013
143 Alberto Bressan, Lecture Notes on Functional Analysis, 2013
142 Terence Tao, Higher Order Fourier Analysis, 2012
141 John B. Conway, A Course in Abstract Analysis, 2012
140 Gerald Teschl, Ordinary Differential Equations and Dynamical Systems, 2012
139 John B. Walsh, Knowing the Odds, 2012
138 Maciej Zworski, Semiclassical Analysis, 2012
137 Luis Barreira and Claudia Valls, Ordinary Differential Equations, 2012

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.
Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality.

Since the book studies only complex analytic linear differential equations, the main prerequisites are complex function theory, linear algebra, and an elementary knowledge of groups and of polynomials in many variables. A large variety of examples, exercises, and theoretical constructions, often via explicit computations, offers first-year graduate students an accessible entry into this exciting area.