From Frenet to Cartan: The Method of Moving Frames
From Frenet to Cartan: The Method of Moving Frames

Jeanne N. Clelland
To Rick, Kevin, and Valerie, who make everything worthwhile
Contents

Preface

Acknowledgments

Part 1. Background material

Chapter 1. Assorted notions from differential geometry

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§1.1. Manifolds</td>
<td>3</td>
</tr>
<tr>
<td>§1.2. Tensors, indices, and the Einstein summation convention</td>
<td>9</td>
</tr>
<tr>
<td>§1.3. Differentiable maps, tangent spaces, and vector fields</td>
<td>15</td>
</tr>
<tr>
<td>§1.4. Lie groups and matrix groups</td>
<td>26</td>
</tr>
<tr>
<td>§1.5. Vector bundles and principal bundles</td>
<td>32</td>
</tr>
</tbody>
</table>

Chapter 2. Differential forms

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§2.1. Introduction</td>
<td>35</td>
</tr>
<tr>
<td>§2.2. Dual spaces, the cotangent bundle, and tensor products</td>
<td>35</td>
</tr>
<tr>
<td>§2.3. 1-forms on \mathbb{R}^n</td>
<td>40</td>
</tr>
<tr>
<td>§2.4. p-forms on \mathbb{R}^n</td>
<td>41</td>
</tr>
<tr>
<td>§2.5. The exterior derivative</td>
<td>43</td>
</tr>
<tr>
<td>§2.6. Closed and exact forms and the Poincaré lemma</td>
<td>46</td>
</tr>
<tr>
<td>§2.7. Differential forms on manifolds</td>
<td>47</td>
</tr>
<tr>
<td>§2.8. Pullbacks</td>
<td>49</td>
</tr>
<tr>
<td>§2.9. Integration and Stokes’s theorem</td>
<td>53</td>
</tr>
<tr>
<td>§2.10. Cartan’s lemma</td>
<td>55</td>
</tr>
<tr>
<td>§2.11.</td>
<td>The Lie derivative</td>
</tr>
<tr>
<td>§2.12.</td>
<td>Introduction to the Cartan package for MAPLE</td>
</tr>
</tbody>
</table>

Part 2. Curves and surfaces in homogeneous spaces via the method of moving frames

Chapter 3. Homogeneous spaces
- §3.1. Introduction | 69 |
- §3.2. Euclidean space | 70 |
- §3.3. Orthonormal frames on Euclidean space | 75 |
- §3.4. Homogeneous spaces | 84 |
- §3.5. Minkowski space | 85 |
- §3.6. Equi-affine space | 92 |
- §3.7. Projective space | 96 |
- §3.8. MAPLE computations | 103 |

Chapter 4. Curves and surfaces in Euclidean space
- §4.1. Introduction | 107 |
- §4.2. Equivalence of submanifolds of a homogeneous space | 108 |
- §4.3. Moving frames for curves in \mathbb{E}^3 | 111 |
- §4.4. Compatibility conditions and existence of submanifolds with prescribed invariants | 115 |
- §4.5. Moving frames for surfaces in \mathbb{E}^3 | 117 |
- §4.6. MAPLE computations | 134 |

Chapter 5. Curves and surfaces in Minkowski space
- §5.1. Introduction | 143 |
- §5.2. Moving frames for timelike curves in $\mathbb{M}^{1,2}$ | 144 |
- §5.3. Moving frames for timelike surfaces in $\mathbb{M}^{1,2}$ | 149 |
- §5.4. An alternate construction for timelike surfaces | 161 |
- §5.5. MAPLE computations | 166 |

Chapter 6. Curves and surfaces in equi-affine space
- §6.1. Introduction | 171 |
- §6.2. Moving frames for curves in \mathbb{A}^3 | 172 |
- §6.3. Moving frames for surfaces in \mathbb{A}^3 | 178 |
- §6.4. MAPLE computations | 191 |
Chapter 7. Curves and surfaces in projective space 203
§7.1. Introduction 203
§7.2. Moving frames for curves in \mathbb{P}^2 204
§7.3. Moving frames for curves in \mathbb{P}^3 214
§7.4. Moving frames for surfaces in \mathbb{P}^3 220
§7.5. Maple computations 235

Part 3. Applications of moving frames

Chapter 8. Minimal surfaces in \mathbb{E}^3 and \mathbb{A}^3 251
§8.1. Introduction 251
§8.2. Minimal surfaces in \mathbb{E}^3 251
§8.3. Minimal surfaces in \mathbb{A}^3 268
§8.4. Maple computations 280

Chapter 9. Pseudospherical surfaces and Bäcklund’s theorem 287
§9.1. Introduction 287
§9.2. Line congruences 288
§9.3. Bäcklund’s theorem 289
§9.4. Pseudospherical surfaces and the sine-Gordon equation 293
§9.5. The Bäcklund transformation for the sine-Gordon equation 297
§9.6. Maple computations 303

Chapter 10. Two classical theorems 311
§10.1. Doubly ruled surfaces in \mathbb{R}^3 311
§10.2. The Cauchy-Crofton formula 324
§10.3. Maple computations 329

Part 4. Beyond the flat case: Moving frames on Riemannian manifolds

Chapter 11. Curves and surfaces in elliptic and hyperbolic spaces 339
§11.1. Introduction 339
§11.2. The homogeneous spaces \mathbb{S}^n and \mathbb{H}^n 340
§11.3. A more intrinsic view of \mathbb{S}^n and \mathbb{H}^n 345
§11.4. Moving frames for curves in \mathbb{S}^3 and \mathbb{H}^3 348
§11.5. Moving frames for surfaces in \mathbb{S}^3 and \mathbb{H}^3 351
§11.6. Maple computations 357
Chapter 12. The nonhomogeneous case: Moving frames on Riemannian manifolds

§12.1.	Introduction	361
§12.2.	Orthonormal frames and connections on Riemannian manifolds	362
§12.3.	The Levi-Civita connection	370
§12.4.	The structure equations	373
§12.5.	Moving frames for curves in 3-dimensional Riemannian manifolds	379
§12.6.	Moving frames for surfaces in 3-dimensional Riemannian manifolds	381
§12.7.	MAPLE computations	388

Bibliography | 397 |

Index | 403 |
Perhaps the earliest example of a moving frame is the Frenet frame along a nondegenerate curve in the Euclidean space \mathbb{R}^3, consisting of a triple of orthonormal vectors (T, N, B) based at each point of the curve. First introduced by Bartels in the early nineteenth century [Sen31] and later described by Frenet in his thesis [Fre47] and Serret in [Ser51], the frame at each point is chosen based on properties of the geometry of the curve near that point, and the fundamental geometric invariants of the curve—curvature and torsion—appear when the derivatives of the frame vectors are expressed in terms of the frame vectors themselves.

In the late nineteenth century, Darboux studied the problem of constructing moving frames on surfaces in Euclidean space [Dar72a], [Dar72b], [Dar72c], [Dar72d]. In the early twentieth century, Élie Cartan generalized the notion of moving frames to other geometries (for example, affine and projective geometry) and developed the theory of moving frames extensively. A very nice introduction to Cartan’s ideas may be found in Guggenheimer’s text [Gug77].

More recently, Fels and Olver [FO98], [FO99] have introduced the notion of an “equivariant moving frame”, which expands on Cartan’s construction and provides new algorithmic tools for computing invariants. This approach has generated substantial interest and spawned a wide variety of applications in the last several years. This material will not be treated here, but several surveys of recent results are available; for example, see [Man10], [Olv10], and [Olv11a].
The goal of this book is to provide an introduction to Cartan’s theory of moving frames at a level suitable for beginning graduate students, with an emphasis on curves and surfaces in various 3-dimensional homogeneous spaces. This book assumes a standard undergraduate mathematics background, including courses in linear algebra, abstract algebra, real analysis, and topology, as well as a course on the differential geometry of curves and surfaces. (An appropriate differential geometry course might be based on a text such as [dC76], [O’N06], or [Opr07].) There are occasional references to additional topics such as differential equations, but these are less crucial.

The first two chapters contain background material that might typically be taught in a graduate differential geometry course; Chapter 1 contains general material from differential geometry, while Chapter 2 focuses more specifically on differential forms. Students who have taken such a course might safely skip these chapters, although it might be wise to skim them to get accustomed to the notation that will be used throughout the book.

Chapters 3–7 are the heart of the book. Chapter 3 introduces the main ingredients for the method of moving frames: homogeneous spaces, frame bundles, and Maurer-Cartan forms. Chapters 4–7 show how to apply the method of moving frames to compute local geometric invariants for curves and surfaces in 3-dimensional Euclidean, Minkowski, affine, and projective spaces. These chapters should be read in order (with the possible exception of Chapter 5), as they build on each other.

Chapters 8–10 show how the method of moving frames may be applied to several classical problems in differential geometry. The first half of Chapter 8, all of Chapter 9, and the last half of Chapter 10 may be read anytime after Chapter 4; the remainder of these chapters may be read anytime after Chapter 6.

Chapters 11 and 12 give a brief introduction to the method of moving frames on non-flat Riemannian manifolds and the additional issues that arise when the underlying space has nonzero curvature. These chapters may be read anytime after Chapter 4.

Exercises are embedded in the text rather than being presented at the end of each chapter. Readers are strongly encouraged to pause and attempt the exercises as they occur, as they are intended to engage the reader and to enhance the understanding of the text. Many of the exercises contain results which are important for understanding the remainder of the text; these exercises are marked with a star and should be given particular attention. (Even if you don’t do them, you should at least read them!)
A special feature of this book is that it includes guidance on how to use the mathematical software package MAPLE to perform many of the computations involved in the exercises. (If you do not have access to MAPLE, rest assured that, with very few exceptions, the exercises can be done perfectly well by hand.) The computations here make use of the custom MAPLE package \texttt{Cartan}, which was written by myself and Yunliang Yu of Duke University. The \texttt{Cartan} package can be downloaded either from the AMS webpage \url{www.ams.org/bookpages/gsm-178} or from my webpage at \url{http://euclid.colorado.edu/~jnc/Maple.html}.

(Installation instructions are included with the package.) The last section of Chapter 2 contains an introduction to the \texttt{Cartan} package, and beginning with Chapter 3 each chapter includes a section at the end describing how to use MAPLE and the \texttt{Cartan} package for some of the exercises in that chapter. Additional exercises are worked out in MAPLE worksheets for each chapter that are available on the AMS webpage.

\textbf{Remark.} As of MAPLE 16 and above, much of \texttt{Cartan}'s functionality is now available as part of the \texttt{DifferentialGeometry} package, which is included in the standard MAPLE installation and covers a wide range of applications. The two packages have very different syntax, and no attempt will be made here to translate—but interested readers are encouraged to do so!
Acknowledgments

First and foremost, my deepest thanks go to Robert Bryant—my teacher, mentor, and friend—for inviting me to teach alongside him at the Mathematical Sciences Research Institute in the summer of 1999, when I was a mere three years post-Ph.D.; for not laughing out loud when I naively mentioned the idea of turning the lecture notes into a book (although he probably should have); and for unflagging support in more ways than I can count over the years.

Thanks also to Edward Dunne and Sergei Gelfand at the American Mathematical Society for expressing interest in the project early on and for extreme patience and not losing faith in me as it dragged on for many more years than I ever imagined. I am also grateful to the anonymous reviewers for the AMS who read initial drafts of the manuscript, pointed out significant errors, and made valuable suggestions for improvements.

I am forever grateful to Bryan Kaufman and Nathaniel Bushek, who in 2009 asked if I would supervise an independent study course for them. I suggested that they work through my nascent manuscript, and they eagerly agreed, struggling through a version that consisted of little more than the original lecture notes. Their questions and suggestions were invaluable and had a major impact on the tone, content, and structure of the book. This project might have stayed forever on my to-do list if not for them. Thanks especially to Bryan for suggesting that I add the material on curves and surfaces in Minkowski space and to Sunita Vatuk for recommending the book [Ca100] on this material.
Thanks to all the other students who have worked through subsequent versions of the manuscript over the last several years: Brian Carlsen, Michael Schmidt, Edward Estrada, Molly May, Jonah Miller, Sean Peneyra, Duff Baker-Jarvis, Akaxia Cruz, Rachel Helm, Peter Joeris, Joshua Karpel, Andrew Jensen, and Michael Mahoney. These independent study courses—and the research projects that followed—have been, hands down, the most rewarding experiences of my teaching career. I hope you all enjoyed them half as much as I did! And thanks to Sunita Vatuk and George Wilkens for sitting in on some of these courses, contributing many valuable insights to our discussions, and making great suggestions for the manuscript.

I am grateful to the Mathematical Sciences Research Institute for sponsoring the 1999 Summer Graduate Workshop where I gave the lectures that were the genesis for this book; videos of the original lectures are available on MSRI’s webpage at [Cle99]. I am also grateful to the National Science Foundation for research support; portions of this book were written while I was supported by NSF grants DMS-0908456 and DMS-1206272.

Finally, profound thanks to my husband, Rick; his love and support have been constant and unwavering, and I count myself fortunate beyond all measure to have him as my best friend and partner in life.
Bibliography

1972, Déformation Infinitêmment Petite et Representation Sphérique, réimpression de la première édition de 1896.

Index

0-form, 42
1-form, 35
 on \(\mathbb{R}^n \), 40–41
 on a manifold, 47

\(\mathbb{A}^n \), see Equi-affine space
Adapted frame field, 109
 on a surface in \(\mathbb{E}^3 \), 118
 on a surface in \(\mathbb{A}^3 \), 178
 on a surface in \(\mathbb{P}^3 \), 221
 on a timelike surface in \(\mathbb{M}^{1,2} \), 150
 equi-affine principal adapted frame field on an elliptic surface in \(\mathbb{A}^3 \), 186
null adapted frame field
 on a hyperbolic surface in \(\mathbb{A}^3 \), 190
 on a hyperbolic surface in \(\mathbb{P}^3 \), 232
 on a timelike surface in \(\mathbb{M}^{1,2} \), 162
principal adapted frame field
 on a surface in \(\mathbb{E}^4 \), 123
 on a timelike surface in \(\mathbb{M}^{1,2} \), 155

Affine connection, see Connection
Affine geometry, 92
Affine Grassmannian, 288, 324
Affine transformation, 93
Arc length, see Curve, arc length
Area functional
 on surfaces in \(\mathbb{E}^3 \), 252
 equi-affine, on surfaces in \(\mathbb{A}^3 \), 269
Area measure, 324
Associated family of a minimal surface in \(\mathbb{E}^3 \), 207
Bäcklund transformation
 for Liouville’s equation, 302, 303
 for pseudospherical surfaces, 290
 for the sine-Gordon equation, 288
 298
Bäcklund’s theorem, 287, 290
Bäcklund, Albert, 290
Baker-Jarvis, Duff, xv
Bartels, Martin, xvi
Bianchi, Luigi, 290
Blaschke representation for an elliptic equi-affine minimal surface in \(\mathbb{A}^3 \), 275
Blaschke, Wilhelm, 178, 274
Bonnet’s theorem
 for a surface in \(\mathbb{E}^3 \)
 existence, 127
 uniqueness, 124
 for a surface in \(\mathbb{S}^3 \) or \(\mathbb{H}^3 \), 354
 for a timelike surface in \(\mathbb{M}^{1,2} \), 155
Bryant, Robert, xv
Bushek, Nathaniel, xv
Canonical isomorphism
 for dual spaces, 36
 for tangent spaces, 16, 50, 76, 339, 367
Carlsen, Brian, xv
Cartan package for Maple, xiii, 59, 66
 &* command, 60
 d command, 60
 Forder command, 60
 Form command, 59
makebacksub command, 63
pick command, 62
ScalarForm command, 63
Simf command, 61
WedgeProduct command, 60
Cartan structure equations, see Structure equations
Cartan’s formula for exterior derivative, 48
Cartan's formula for Lie derivative, 58
Cartan, Élie, 70, 223, 233, 383
Cartan-Janet isometric embedding theorem, 383
Catenoid, 128, 260
associated family, 268
conjugate surface, 268
Weierstrass-Enneper representation, 268
Cauchy-Crofton formula, 324, 327
Cauchy-Riemann equations, 264
Chain rule, 24
Chern, Shiing-Shen, 297
Clelland, Richard, xvii
Codazzi equations
for a surface in \(E^3\), 127
for a surface in \(S^3\), 353, 354
for a surface in \(H^3\), 353, 354
for a timelike surface in \(M^{1,2}\), 156
for a submanifold of \(E^{n+m}\), 379
Column vector, see Vector, column vector
Commutative diagram, 129
Compatibility equations
for a surface in \(E^3\), 127
for a surface in \(S^3\) or \(H^3\), 353
for a timelike surface in \(M^{1,2}\), 156
for an elliptic surface in \(A^3\), 158
for an elliptic surface in \(E^3\), 227, 231
for a hyperbolic surface in \(E^3\), 235
for a submanifold of \(E^{n+m}\), 379
Complex analytic function, see Holomorphic function
Complex structure, 264
Conformal parametrization of a surface, 265
Conformal structure
on a hyperbolic surface in \(F^3\), 232
on an elliptic surface in \(F^3\), 223
Conic section, 177, 212
Conjugate surface of a minimal surface in \(E^3\), 207
Connection, 33
compatibility with a metric, 371
curvature tensor, 376
flat connection on \(E^n\), 366
Levi-Civita, see Levi-Civita connection
on a vector bundle, 366
on the tangent bundle, 366, 370
horizontal tangent space, 367
vertical tangent space, 366
symmetric, 371
torsion-free, 371
Connection forms
on the orthonormal frame bundle of \(E^n\), 70
on the orthonormal frame bundle of \(M^{1,n}\), 91
on the unimodular frame bundle of \(A^n\), 95
on the projective frame bundle of \(P^n\), 103
for the Levi-Civita connection on \(S^n\) or \(H^n\), 347
determined by a connection, 367, 370
Constant type, 316
Cotangent bundle, 36
Cotangent space, 36
Covariant derivative, 33
for vector fields on \(S^n\) and \(H^n\), 347
compatibility with the metric, 347
for vector fields on a submanifold of \(E^{n+m}\), 379
Covector, 37
Covector space, 36
Cruz, Akaxia, xvii
Curvature, see also Curve, curvature;
Gauss curvature; mean curvature
curvature matrix of a connection
matrix, 340
curvature matrix of the connection
matrix on \(F(S^n)\), 342
curvature matrix of the connection
matrix on \(F(H^n)\), 344
curvature tensor of a connection, 376
Curve
in \(E^3\)
arclength, 112
binormal vector, 112
complete set of invariants, 115
curvature, 113
Frenet equations, 114
Frenet frame, 112
nondegenerate curve, 112
orthonormal frame field, 111
regular curve, 111
torsion, 113
unit normal vector, 112
unit tangent vector, 111
in \(M^{1,2}\), null curve, 163
in \(M^{1,2}\), timelike curve
Frenet equations, 148
Minkowski curvature, 147
Minkowski torsion, 147
nondegenerate curve, 146
orthonormal frame field, 144
proper time, 144
regular curve, 144
unit normal vector, 146
unit tangent vector, 144
in \(A^2\), 176–178
conic section, 177
equi-affine curvature, 177
in \(A^3\)
equi-affine arc length, 173–175
equi-affine curvatures, 176
equi-affine Frenet equations, 176
equi-affine Frenet frame, 175
nondegenerate curve, 172
rational normal curve, 178
unimodular frame field, 172
in \(P^2\)
canonical lifting, 205
canonical projective frame field, 205
conic section, 212
nondegenerate curve, 205
projective arc length, 211
projective curvature form, 210
projective frame field, 204
projective Frenet equations, 212
projective parameter, 207
projective parametrization, 207
projective structure, 210
Wilczynski invariants, 206
in \(P^3\)
canonical lifting, 216
canonical projective frame field, 216
nondegenerate curve, 216
projective curvature forms, 218
projective frame field, 217
projective Frenet equations, 219
projective parameter, 216
projective parametrization, 217
projective structure, 217
rational normal curve, 220
Wilczynski invariants, 216
in \(S^3\)
binormal vector, 350
curvature, 350
Frenet equations, 350
Frenet frame, 350
geodesic, 349
geodesic equation, 349
nondegenerate curve, 349
orthonormal frame field, 348
regular curve, 348
torsion, 350
unit normal vector, 350
in \(H^3\)
binormal vector, 350
curvature, 350
Frenet equations, 350
Frenet frame, 350
geodesic, 349
geodesic equation, 349
nondegenerate curve, 349
orthonormal frame field, 348
regular curve, 348
torsion, 350
unit normal vector, 350
in a Riemannian 3-manifold
curvature, 381
Frenet equations, 381
Frenet frame, 381
geodesic, 380
nondegenerate curve, 380
orthonormal frame field, 379
regular curve, 379
torsion, 381
Darboux tangents, 227
Darboux, Jean-Gaston, xi
De Sitter spacetime, 157, 158
Derivative
directional, 149–151
of a map from \(\mathbb{R}^m\) to \(\mathbb{R}^n\), 163
of a map between manifolds, 23
Diffeomorphism, 25
Differentiable manifold, see Manifold
Differential

- of a real-valued function, 35
- of a map from \(\mathbb{R}^m \) to \(\mathbb{R}^n \), 16
- of a map between manifolds, 24, 49

Differential form

- 0-form, 12
- 1-form, 35
- on \(\mathbb{R}^n \), 40–41
- on a manifold, 37
- \(p \)-form
 - on \(\mathbb{R}^n \), 42
 - on a manifold, 37
- algebra of differential forms on \(\mathbb{R}^n \), 41, 42
- closed form, 46
- exact form, 46

DifferentialGeometry package for Maple, xiii

Directional derivative, see Derivative, directional

Divergence theorem, 55

Doubly ruled surface, see Ruled surface, doubly ruled surface

Dual forms
- on the orthonormal frame bundle of \(E^n \), 79
- on the projective frame bundle of \(P^n \), 108
- associated to an orthonormal frame field, 369

Dual space, 335–336

Dunne, Edward, xvi

\(E^n \), see Euclidean space

Einstein summation convention, 14–15

Einstein, Albert, 35

Elliptic paraboloid, 272

- Blaschke representation, 280

Elliptic space, 340–342

- Elliptic surface
 - in \(A^3 \), 180, 189
 - in \(\mathbb{E}^3 \), 223, 232
- Embedding, 26
- Enneper’s surface, 268
- Enneper, Alfred, 261

Equi-affine arc length, see Curve in \(A^3 \), equi-affine arc length

Equi-affine first fundamental form, see Surface in \(A^3 \), equi-affine first fundamental form

Equi-affine geometry, 92

Equi-affine group \(A(n) \), 94

- as a principal bundle over \(A^n \), 95

Equi-affine mean curvature, see Surface in \(A^3 \), equi-affine mean curvature

Equi-affine minimal surface, see Minimal surface, equi-affine, in \(A^3 \)

Equi-affine normal vector field, see Surface in \(A^3 \), equi-affine normal vector field

Equi-affine second fundamental form, see Surface in \(A^3 \), equi-affine second fundamental form

Equi-affine space, see also Homogeneous space, equi-affine space \(A^n \)
- volume form, 92

Equi-affine sphere
- improper equi-affine sphere, 189
- proper equi-affine sphere, 189

Equi-affine transformation, 93

Equivalence problem, 107

Equivariant, 109

Equivariant moving frame, see Moving frame, equivariant moving frame

Estrada, Edward, xvi

Euclidean group \(E(n) \), 73

- as a principal bundle over \(E^n \), 75

Euclidean space, 70

- see also Homogeneous space, Euclidean space \(\mathbb{E}^n \)

Exterior derivative
- of a real-valued function, 35
- of a \(p \)-form on \(\mathbb{R}^n \), 43, 46
- of a \(p \)-form on a manifold, 48, 49
- Leibniz rule, 44

Extrinsic curvature of a surface in \(S^3 \) or \(H^3 \), 353

Fels, Mark, xiii

First fundamental form
- of a surface in \(E^3 \), 118, 120
- of a surface in \(S^3 \) or \(H^3 \), 332
- of a surface in a Riemannian 3-manifold, 382
- of a timelike surface in \(M^{1,2} \), 150, 163

- equi-affine, of an elliptic surface in \(A^3 \), 181
- equi-affine, of a hyperbolic surface in \(A^3 \), 190
projective, of an elliptic surface in \mathbb{P}^3, 227
Flat connection on \mathbb{E}^n, 360
Flat homogeneous space, 339
Flat surface
in \mathbb{E}^3, 132–134
in \mathbb{S}^3, 355–356
flat torus, 356
in \mathbb{H}^3, 356–357
flat cylinder, 356
Frenet, Jean, xi
Frobenius theorem, 46
Fubini-Pick form
of a hyperbolic surface in \mathbb{A}^3, 191
of an elliptic surface in \mathbb{A}^3, 185
of an elliptic surface in \mathbb{P}^3, 226
Fundamental Theorem of Calculus, 54
Fundamental Theorem of Space Curves,
existence, 117
uniqueness, 114
$GL(n)$, 28–29
$gl(n)$, 30
Gauge, 368
Gauge field, 368
Gauge transformation, 368
Gauss curvature
of a surface in \mathbb{E}^3, 131
of a surface in \mathbb{S}^3 or \mathbb{H}^3, 353
of a timelike surface in $M_{1,2}$, 153–163
Gauss equation
for a surface in \mathbb{E}^3, 127
for a surface in \mathbb{S}^3, 353–354
for a surface in \mathbb{H}^3, 353–354
for a timelike surface in $M_{1,2}$, 156
165
for a submanifold of \mathbb{E}^{n+m}, 379
Gauss map
of a surface in \mathbb{E}^3, 124
of a surface in \mathbb{S}^3 or \mathbb{H}^3, 352
of a surface in a Riemannian 3-manifold, 382
Gauss, Carl Friedrich, 131
Theorema Egregium, 131
Gelfand, Sergei, xv
General linear group, see $GL(n)$
General relativity, 143
Geodesic
in \mathbb{S}^3 or \mathbb{H}^3, 349
in a Riemannian 3-manifold, 380
Geodesic equation
for curves in \mathbb{S}^3 or \mathbb{H}^3, 349
for curves in a Riemannian 3-manifold, 380
Geodesic spray, 380–381
Grassmannian, affine, 288–291
Great hyperboloid in \mathbb{H}^n, 351–355
Great sphere in \mathbb{S}^3, 351–355
Green’s theorem, 53
Guggenheimer, Heinrich, xi
\mathbb{H}^n, see Hyperbolic space
Harmonic function, 264
Helicoid, 261–263
Helm, Rachel, xvi
Hilbert’s theorem, 301–302
Holomorphic function, 263
Homogeneous space, 70, 84, 361
flat homogeneous space, 339
Euclidean space \mathbb{E}^n, 70–75
Minkowski space $M_{1,n}$, 85–92
equi-affine space \mathbb{A}^n, 92–96
projective space \mathbb{P}^n, 96–103
horizontal tangent space, 367
horizontal vector field, 380
Hyperbolic paraboloid, 311–319
Hyperbolic plane, 301
Hyperbolic space, 340–342, 344
see also
Homogeneous space, hyperbolic space \mathbb{H}^n
Hyperbolic surface
in \mathbb{A}^3, 180, 189, 191
in \mathbb{P}^3, 224, 229, 235
Hyperboloid of one sheet, 311
Immersion, 20
Incidence, of a point and a line, 327
Indices
lower index, 9
upper index, 9
in partial derivative operators, 13
Inner product
Euclidean, 70
Minkowski, 86
Integrable system, 288
soliton solution, 288
Interior product, 157
Intrinsic curvature of a surface in \mathbb{S}^3 or \mathbb{H}^3, 353
Intrinsic invariant, see Invariant, intrinsic invariant for surfaces in \(\mathbb{E}^3 \)
Invariant, 107
for curves in \(\mathbb{E}^3 \), 69
for submanifolds of a homogeneous space, 109
complete set of invariants, 107
for curves in \(\mathbb{E}^3 \), 115
intrinsic invariant for surfaces in \(\mathbb{E}^3 \), 131
relative invariant, 226, 315
Isometric embedding, 378–379, 383–385
Cartan-Janet theorem, 383
Isotropy group
of a point in \(\mathbb{E}^n \), 73
of a point in \(\mathbb{M}^{1,n} \), 91
of a point in \(\mathbb{A}^n \), 64
of a point in \(\mathbb{P}^n \), 101
of a point in \(\mathbb{S}^n \), 340
of a point in \(\mathbb{H}^n \), 343
Janet, Maurice, 383
Jensen, Andrew, xvi
Joeris, Peter, xvi
Karpel, Joshua, xvi
Kaufman, Bryan, xvi
Klein, Felix, 69
Lagrange, Joseph-Louis, 251
Laplace’s equation, 356
Left-hook, 57
Levi-Civita connection, 33, 370–372
on \(\mathbb{E}^n \), 366
on \(\mathbb{S}^n \) or \(\mathbb{H}^n \), 347
connection forms, 347
Riemann curvature tensor, 376–378
Lie algebra, 26, 32
Lie bracket, 26
of vector fields, 27
on a Lie algebra, 28, 29
Lie derivative, 36, 358, 263
Cartan’s formula, 58
Lie group, 26, 32
left translation map, 26
left-invariant vector field, 26, 27
right translation map, 26
Lifting, 109
Light cone, see Minkowski space, light cone
Lightlike vector, see Minkowski space, lightlike vector
Line congruence, 288, 289
focal surface, 289
normal congruence, 289
pseudospherical congruence, 289, 290
surface of reference, 289
Linear fractional transformation, 39
Liouville’s equation, 302, 303
Bäcklund transformation, 302, 303
Local coordinates
on a surface, 4, 5
on a manifold, 6
Local trivialization
of a vector bundle, 52
of a tangent bundle, 364
of an orthonormal frame bundle, 369
Lorentz group, 89
proper, orthochronous, 89
Lorentz transformation, 89
orthochronous, 89
proper, 89
\(\mathbb{M}^{1,n} \), see Minkowski space
Mahoney, Michael, xvi
Manifold, 5
local coordinates, 6
transition map between, 6
parametrization, 7
Riemannian manifold, 362
557, 560, 888, 895
Mapping
continuous, 15
differentiable from \(\mathbb{R}^m \) to \(\mathbb{R}^n \), 15
between manifolds, 18
Mathematical Sciences Research Institute, xvi
Maurer-Cartan equation, see also Structure equations
on a Lie group, 85
on the Euclidean group \(E(n) \), 82
on the elliptic symmetry group \(SO(n+1) \), 342
on the hyperbolic symmetry group \(SO^+(1,n) \), 344
Maurer-Cartan form
on a Lie group, 85
on the Euclidean group \(E(n) \), 81, 82
on the Poincaré group \(M(1,n) \), 91
on the equi-affine group \(A(n) \), 95
on the projective symmetry group
$SL(n+1)$, 102
on the elliptic symmetry group
$SO(n+1)$, 341
on the hyperbolic symmetry group
$SO^+(1,n)$, 344

May, Molly, xvi

Mean curvature
of a surface in E^3, 131
of a surface in S^3 or H^3, 353
of a timelike surface in $M^{1,2}$, 153 163
equi-affine, of an elliptic surface in A^3, 185

Measure, 324
area measure, 324

Meromorphic function, 266

Method of moving frames, see Moving frame, method of moving frames

Metric, 13–14
Metric structure on a curve in E^n, 209

Miller, Jonah, xvi

Minimal surface
in E^3, 132 251 268
associated family, 267
catenoid, 128 260 268
conjugate surface, 267
Enneper’s surface, 268
helicoid, 261 268
Weierstrass-Enneper representation, 266 267
equi-affine, in A^3, 268 280
Blaschke representation, 278
elliptic paraboloid, 272 280
Minkowski cross product, 146
Minkowski norm, 88
Minkowski space, 86 see also
Homogeneous space, Minkowski space $M^{1,n}$
future-pointing vector, 87
light cone, 87
lightlike vector, 87
Minkowski norm of a vector, 88
null cone, 87
null vector, 87
past-pointing vector, 87
spacelike vector, 87
timelike vector, 87
world line of a particle, 88

Minkowski, Hermann, 85

Moving frame
equivariant moving frame, 83

method of moving frames, 70 107 111

Nash embedding theorem, 378
National Science Foundation, xvi
Nondegenerate curve, see Curve, nondegenerate

Null adapted frame field
on a timelike surface in $M^{1,2}$, 162
on a hyperbolic surface in A^3, 181
on a hyperbolic surface in E^3, 232

Null cone, see Minkowski space, null cone

Null coordinates on a timelike surface
in $M^{1,2}$, 165

Null curve in $M^{1,2}$, 165

Null vector, see Minkowski space, null vector

$O(1,n)$, 89
$O(n)$, 31
$\sigma(n)$, 31

Olver, Peter, 81

Orthogonal group, see $O(n)$

Orthonormal basis
for E^n, 72
for $M^{1,n}$, 87

Orthonormal frame
on E^n, 75
on $M^{1,n}$, 91
on S^n, 344 345
on H^n, 343 344
on a Riemannian manifold, 303

Orthonormal frame bundle
of E^n, 75
of $M^{1,n}$, 91
of S^2, 33
of S^n, 341 345
of H^n, 343 344
of a Riemannian manifold, 363
local trivialization, 369

Orthonormal frame field
on E^n, 83
along a curve in E^3, 111
along a curve in S^3 or H^3, 348
along a curve in a Riemannian 3-manifold, 379
along a timelike curve in $M^{1,2}$, 144

p-form
on R^n, 42 43
on a manifold, 47
Index

PGL(m), 98
P^n, see Projective space
PSL(m), 98
Paraboloid
 elliptic paraboloid, 272
 Blaschke representation, 280
 hyperbolic paraboloid, 311, 319
Parametrization
 of a surface, 41, 5
 of a manifold, 6
 asymptotic, 295
 conformal, 265
 principal, 128, 156, 187
Partial derivative operator
 as a tangent vector, 20
 indices in, 13
Peneyra, Sean, xvi
Pick invariant of an elliptic surface in \(\mathbb{A}^3 \), 186
Plateau problem, 251
Plateau, Joseph, 251
Poincaré group \(M(1,n) \), 90
 as a principal bundle over \(\mathbb{M}^{1,n} \), 91
Poincaré lemma, 46
Poincaré-Hopf theorem, 33, 34
Principal adapted frame field
 on a surface in \(\mathbb{E}^3 \), 123
 on a timelike surface in \(\mathbb{M}^{1,2} \), 155
 equi-affine, on an elliptic surface in \(\mathbb{A}^3 \), 186
Principal bundle, 33
 base space, 33
 base-point projection map, 33
 fiber, 33
 section, 33
 total space, 33
 local trivialization, 309
Principal curvatures
 of a surface in \(\mathbb{E}^3 \), 123
 of a surface in \(S^3 \) or \(\mathbb{H}^3 \), 352
 of a timelike surface in \(\mathbb{M}^{1,2} \), 155
 surface in \(\mathbb{E}^3 \) with constant principal curvatures, 130, 131
Principal vectors
 on a surface in \(\mathbb{E}^3 \), 123
 on a surface in \(S^3 \) or \(\mathbb{H}^3 \), 352
 on a timelike surface in \(\mathbb{M}^{1,2} \), 155
Projective arc length, see Curve in \(\mathbb{P}^2/\mathbb{P}^3 \), projective arc length
Projective curvature form, see Curve in \(\mathbb{P}^2/\mathbb{P}^3 \), projective curvature form
Projective first fundamental form, see Surface in \(\mathbb{P}^3 \), projective first fundamental form
Projective frame bundle of \(\mathbb{P}^n \), 102
Projective frame field
 along a curve in \(\mathbb{P}^2 \), 201
 canonical projective frame field, 205
 along a curve in \(\mathbb{P}^3 \), 214
 canonical projective frame field, 215
Projective frame on \(\mathbb{P}^n \), 101
Projective general linear group, 98
Projective parametrization, see Curve in \(\mathbb{P}^2/\mathbb{P}^3 \), projective parametrization
Projective space, 7, 9, 98
 see also Homogeneous space, projective space \(\mathbb{P}^n \)
 affine coordinates, 97
 homogeneous coordinates, 8
Projective special linear group, 98
Projective sphere, 229, 232
Projective structure
 on a curve in \(\mathbb{P}^2 \), 210
 on a curve in \(\mathbb{P}^3 \), 217
 on a curve in \(\mathbb{P}^n \), 203
Projective transformation, 96, 97
 Schwarzian derivative, 208
Proper time, see Curve in \(\mathbb{M}^{1,2} \), proper time
Pseudosphere, 287
Pseudospherical line congruence, 289, 290
Pseudospherical surface, 287
 1-soliton pseudospherical surface, 301
 asymptotic coordinates, 295
 asymptotic parametrization, 295
Pullback
 for differential forms, 50, 53
 for bundles, 108
Push-forward, 50
Quasi-umbilic point on a timelike surface in \(\mathbb{M}^{1,2} \), 160
Rational normal curve
 in \(\mathbb{A}^3 \), 178
 in \(\mathbb{P}^3 \), 220
Regular curve, see Curve, regular
Regular surface, see Surface
Relative invariant, 220, 315
Relativity
 special relativity, 85, 143
general relativity, 143
Reyes, Enrique, 297
Ricci equations for a submanifold of \mathbb{E}^{n+m}, 379
Riemann curvature tensor, 376–378
 first Bianchi identity, 377
 on a Riemannian 3-manifold, 385
Riemannian manifold, 362
Row vector, see Vector, row vector
Ruled surface, 311
 doubly ruled surface, 311
 0-adapted frame field, 314
 1-adapted frame field, 316
 2-adapted frame field, 317
 classification theorem, 313
 hyperbolic paraboloid, 311, 319
 hyperboloid of one sheet, 311
$SL(n)$, 30, 31
$sl(n)$, 30
$SL(n + 1)$
as a principal bundle over \mathbb{P}^n, 102
 as the symmetry group of \mathbb{P}^n, 98
S_n, 30
\mathbb{S}^n, see Elliptic space; Unit sphere
$SO^+(1, n)$, 89
 as a principal bundle over \mathbb{H}^n, 344
 as the symmetry group of \mathbb{H}^n, 342
$so(1, n)$, 90
$SO(n)$, 31
$SO(n + 1)$
as a principal bundle over \mathbb{S}^n, 341
 as the symmetry group of \mathbb{S}^n, 340
Schmidt, Michael, xxv
Schwarzian derivative, 208, 209
 of a projective transformation, 208
Second fundamental form
 of a surface in \mathbb{E}^3, 124, 122
 of a surface in \mathbb{S}^3 or \mathbb{H}^3, 352
 of a surface in a Riemannian 3-manifold, 382
 of a timelike surface in $M^{1,2}$, 151, 163
 equi-affine, of an elliptic surface in \mathbb{A}^3, 183
 equi-affine, of a hyperbolic surface in \mathbb{A}^3, 190
 of a submanifold of \mathbb{E}^{n+m}, 378
Self-adjoint linear operator, 192
Semi-basic forms
on the orthonormal frame bundle of \mathbb{E}^n, 79
 on the projective frame bundle of \mathbb{P}^n, 103
Serret, Joseph, 81
Simple connectivity, 116
Sine-Gordon equation, 288
 1-soliton solution, 300
 Bäcklund transformation, 288, 298
 in characteristic/null coordinates, 296
 in space-time coordinates, 296
Skew curvature of a timelike surface in $M^{1,2}$, 151, 163
Smooth manifold, see Manifold
Soliton, 288
 1-soliton pseudospherical surface, 301
 1-soliton solution of the sine-Gordon equation, 300
Spacelike surface, see Surface in $M^{1,2}$, spacelike surface
Spacelike vector, see Minkowski space, spacelike vector
Special affine geometry, see Equi-affine geometry
Special linear cross product, 277
Special linear group, see $SL(n)$
Special orthogonal group, see $SO(n)$
Special relativity, 85, 143
Stokes’s theorem, 53, 54
 Divergence theorem, 55
 Fundamental Theorem of Calculus, 54
 Green’s theorem, 55
 Stokes’s theorem, multivariable calculus version, 55
Structure equations
on the orthonormal frame bundle of \mathbb{E}^n, 80
 on the orthonormal frame bundle of $M^{1,n}$, 91
 on the unimodular frame bundle of \mathbb{A}^n, 95
 on the projective frame bundle of \mathbb{P}^n, 102
 on the orthonormal frame bundle of \mathbb{S}^n, 311
 on the orthonormal frame bundle of \mathbb{H}^n, 344
 on the orthonormal frame bundle of a Riemannian manifold, 374, 377
Submersion, 25
Index

Surface, 3, 5
parametrization, 4
local coordinates, 4

global coordinates, 5
transition map between, 5
ruled surface, see Ruled surface
doubly ruled surface, see Ruled surface, doubly ruled surface

in \mathbb{E}^3

adapted frame field, 118
area functional, 252
Bonnet’s theorem, 127
catenoid, 128, 260, 268
Codazzi equations, 127
compatibility equations, 127
Enneper’s surface, 268
first fundamental form, 118–120
Gauss curvature, 131
Gauss equation, 127
Gauss map, 121
helicoid, 261, 268
mean curvature, 131
minimal surface, 132–134
principal adapted frame field, 123
principal curvatures, 123
principal vectors, 123
pseudosphere, 287
pseudospherical surface, 287
second fundamental form, 121, 122
shape operator, 121
surface with constant principal curvatures, 130, 131
totally umbilic surface, 129
umbilic point, 121
variation, 292, 255

in \mathbb{A}^3

0-adapted frame field, 178
in \mathbb{A}^3, elliptic surface, 189, 189
1-adapted frame field, 180
2-adapted frame field, 183
compatibility equations, 188

cubic form, 185
elliptic paraboloid, 272, 280
equi-affine area functional, 269
equi-affine first fundamental form, 181
equi-affine mean curvature, 185
equi-affine normal vector field, 183
equi-affine principal adapted frame field, 186
equi-affine second fundamental form, 184
Fubini-Pick form, 185
improper equi-affine sphere, 189
minimal surface, 268, 280
Pick invariant, 186
proper equi-affine sphere, 189
variation, 269

in \mathbb{A}^3, hyperbolic surface, 180

1-adapted null frame field, 190
2-adapted null frame field, 190
equi-affine first fundamental form, 190

equi-affine second fundamental form, 190
Fubini-Pick form, 191
hyperbolic paraboloid, 311, 319
hyperboloid of one sheet, 311
in $\mathbb{M}^{1,2}$, spacelike surface, 148
in $\mathbb{M}^{1,2}$, timelike surface, 148
adapted frame field, 150
Codazzi equations, 156, 165
compatibility equations, 156, 165
de Sitter spacetime, 157–158
first fundamental form, 150, 165
Gauss curvature, 153, 163
Gauss equation, 156, 165
Gauss map, 151
mean curvature, 153, 163
null adapted frame field, 162
null coordinates, 165
principal adapted frame field, 155
principal curvatures, 155
principal vectors, 155
quasi-umbilic point, 160
second fundamental form, 151, 163
skew curvature, 154, 163
totally quasi-umbilic surface, 160
umbilic point, 155

in \mathbb{P}^3

0-adapted frame field, 221
in \mathbb{P}^3, elliptic surface, 223, 232
1-adapted frame field, 223
2-adapted frame field, 225
3-adapted frame field, 226
4-adapted frame field, 228
compatibility equations, 229, 247
conformal structure, 224
Index

413

cubic form, 226
Darboux tangents, 227
Fubini-Pick form, 226
projective first fundamental form, 227
projective sphere, 229–232
totally umbilic surface, 229–232
umbilic point, 226
in \mathbb{P}^3, hyperbolic surface, 223, 232–235
1-adapted null frame field, 232
2-adapted null frame field, 233
3-adapted null frame field, 234
4-adapted null frame field, 234
compatibility equations, 235
conformal structure, 232
in \mathbb{S}^3
Bonnet’s theorem, 354
Codazzi equations, 353, 354
compatibility equations, 355
extrinsic curvature, 355
first fundamental form, 352
flat surface, 355
flat torus, 356
Gauss curvature, 353
Gauss equation, 353, 354
Gauss map, 352
great sphere, 351, 355
intrinsic curvature, 353
mean curvature, 353
principal curvatures, 352
principal vectors, 352
second fundamental form, 352
totally geodesic surface, 355
in a Riemannian 3-manifold
first fundamental form, 382
Gauss map, 382
second fundamental form, 382
totally geodesic surface, 383
Symmetric group, see S_n
Symmetric product
of vectors, 30
of 1-forms, 119
Symmetry group
of \mathbb{E}^n, 73
of $M^{1,n}$, 50
of A^n, 97
of \mathbb{P}^n, 58
of \mathbb{S}^n, 340
of \mathbb{H}^n, 342
of a homogeneous space G/H, 84
as the set of frames on G/H, 85
Tangent bundle, 21–23
of a surface, 21–23
of a manifold, 21
base space, 22
total space, 22
fiber, 22
base-point projection map, 23
canonical parametrization, 24
transition map between, 22
local trivialization, 364
Tangent space, 16–20
tangent plane, 21
Tangent vector, 16–19
Tenenblat, Keti, 297
Tensor, 9–14
change of basis, 9, 10, 12, 13
components, 10, 12, 13
metric, 13
rank 1, 10
rank 2, 12
rank k, 38
skew-symmetric, 38
symmetric, 38
Tensor bundle, 39
Tensor field, 9–13
rank k, 40
Tensor product, 37–38
symmetric product, 38
wedge product, 39
Theorema Egregium (Gauss), 131
Timelike curve, see Curve in \(\mathbb{M}^{1,2} \), timelike curve
Timelike surface, see Surface in \(\mathbb{M}^{1,2} \), timelike surface
Timelike vector, see Minkowski space, timelike vector
Totally geodesic surface
in \(S^3 \) or \(\mathbb{H}^3 \), 355
in a Riemannian 3-manifold, 383--388
Totally quasi-umbilic timelike surface in \(\mathbb{M}^{1,2} \), 160, 165--166
Totally umbilic surface
in \(E^3 \), 129
in \(\mathbb{M}^{1,2} \), timelike surface, 156--157
in \(P^3 \), elliptic surface, 229--232
Transition map
between local coordinates on a surface, 5
between local coordinates on a manifold, 6
Transpose notation
for matrices, 31
for vectors, 6
Umbilic point
on a surface in \(E^3 \), 124
on a timelike surface in \(\mathbb{M}^{1,2} \), 155
on an elliptic surface in \(P^3 \), 226
Unimodular frame bundle of \(A^n \), 95
Unimodular frame field along a curve in \(A^3 \), 172
Unimodular frame on \(A^n \), 94
Unit sphere \(S^n \), 67
Variation
of a surface in \(E^3 \), 202, 206
compactly supported, 253
normal, 253
of an elliptic surface in \(A^3 \), 269
compactly supported, 269
normal, 269
Vatuk, Sunita, xvi, xvii
Vector
column vector, 6
row vector, 6
tangent vector, 16, 19
transpose notation for, 6
Vector bundle, 82, 83
base space, 32
total space, 92
fiber, 32
base-point projection map, 32
rank \(k \), 82
section, 32
global section, 32
local section, 32
zero section, 33
trivialization
global trivialization, 32
local trivialization, 32
Vector field, 24, 25
in local coordinates, 25
left-invariant vector field on a Lie group, 26, 27
horizontal vector field, 380
Vertical tangent space, 366
Volume form, 92
Wave equation
in characteristic/null coordinates, 302, 355
in space-time coordinates, 296
Wedge product
of vectors, 39
of 1-forms, 11
Weierstrass, Karl, 201
Weierstrass-Enneper representation for a minimal surface in \(E^3 \), 266--267
Wilczynski invariants
of a curve in \(P^2 \), 206
of a curve in \(P^3 \), 216
Wilczynski, Ernest, 206
Wilkins, George, xvii
World line, see Minkowski space, world line of a particle
Yu, Yunliang, xiii
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publication Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Frenet to Cartan: The Method of Moving Frames</td>
<td>Jeanne N. Clelland</td>
<td>2017</td>
</tr>
<tr>
<td>Differential Galois Theory through Riemann-Hilbert Correspondence</td>
<td>Jacques Sauloy</td>
<td>2016</td>
</tr>
<tr>
<td>Ordered Groups and Topology</td>
<td>Adam Clay and Dale Rolfsen</td>
<td>2016</td>
</tr>
<tr>
<td>Quiver Representations and Quiver Varieties</td>
<td>Lan Wen</td>
<td>2016</td>
</tr>
<tr>
<td>Nonlinear Elliptic Equations of the Second Order</td>
<td>Qing Han</td>
<td>2016</td>
</tr>
<tr>
<td>Colored Operads</td>
<td>Donald Yau</td>
<td>2016</td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td>Andráss Vasy</td>
<td>2015</td>
</tr>
<tr>
<td>Random Operators</td>
<td>Michael Aizenman and Simone Warzel</td>
<td>2015</td>
</tr>
<tr>
<td>Singular Perturbation in the Physical Sciences</td>
<td>John C. Neu</td>
<td>2015</td>
</tr>
<tr>
<td>Problems in Real and Functional Analysis</td>
<td>Alberto Torchinsky</td>
<td>2015</td>
</tr>
<tr>
<td>Expansion in Finite Simple Groups of Lie Type</td>
<td>Terence Tao</td>
<td>2015</td>
</tr>
<tr>
<td>Introduction to Analytic and Probabilistic Number Theory, Third</td>
<td>Gérald Tenenbaum</td>
<td>2015</td>
</tr>
<tr>
<td>Course on Large Deviations with an Introduction to Gibbs Measures</td>
<td>Firas Rassoul-Agha and Timo Seppäläinen</td>
<td>2015</td>
</tr>
<tr>
<td>Introduction to Tropical Geometry</td>
<td>Diane Maclagan and Bernd Sturmfels</td>
<td>2015</td>
</tr>
<tr>
<td>A Course in Analytic Number Theory</td>
<td>Marius Overholt</td>
<td>2014</td>
</tr>
<tr>
<td>The Role of Nonassociative Algebra in Projective Geometry</td>
<td>John R. Faulkner</td>
<td>2014</td>
</tr>
<tr>
<td>Dynamical Systems and Linear Algebra</td>
<td>Fritz Colonius and Wolfgang Kliemann</td>
<td>2014</td>
</tr>
<tr>
<td>Mathematical Methods in Quantum Mechanics: With Applications to</td>
<td>Gerald Teschl</td>
<td>2014</td>
</tr>
<tr>
<td>Hilbert’s Fifth Problem and Related Topics</td>
<td>Markus Haase</td>
<td>2014</td>
</tr>
<tr>
<td>Representation Theory of Groups</td>
<td>Emmanuel Kowalski</td>
<td>2014</td>
</tr>
<tr>
<td>A Course in Complex Analysis and Riemann Surfaces</td>
<td>Wilhelm Schlag</td>
<td>2014</td>
</tr>
<tr>
<td>Hilbert’s Fifth Problem and Related Topics</td>
<td>Terence Tao</td>
<td>2014</td>
</tr>
<tr>
<td>An Introduction to Extremal Kähler Metrics</td>
<td>Gábor Székelyhidi</td>
<td>2014</td>
</tr>
<tr>
<td>Introduction to 3-Manifolds</td>
<td>Jennifer Schultens</td>
<td>2014</td>
</tr>
<tr>
<td>The Joys of Haar Measure</td>
<td>Joe Diestel and Angela Spalsbury</td>
<td>2013</td>
</tr>
<tr>
<td>Mathematics of Probability</td>
<td>Daniel W. Stroock</td>
<td>2013</td>
</tr>
<tr>
<td>Introduction to Smooth Ergodic Theory</td>
<td>Luis Barreira and Yakov Pesin</td>
<td>2013</td>
</tr>
<tr>
<td>Matrix Theory</td>
<td>Xingzhi Zhan</td>
<td>2013</td>
</tr>
<tr>
<td>Combinatorial Game Theory</td>
<td>Aaron N. Siegel</td>
<td>2013</td>
</tr>
<tr>
<td>The K-book</td>
<td>Charles A. Weibel</td>
<td>2013</td>
</tr>
<tr>
<td>Lecture Notes on Functional Analysis</td>
<td>Alberto Bressan</td>
<td>2013</td>
</tr>
<tr>
<td>Higher Order Fourier Analysis</td>
<td>Terence Tao</td>
<td>2012</td>
</tr>
<tr>
<td>A Course in Abstract Analysis</td>
<td>John B. Conway</td>
<td>2012</td>
</tr>
</tbody>
</table>

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.
The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others.

This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equiaffine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds.

The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises.

An excellent and unique graduate level exposition of the differential geometry of curves, surfaces and higher-dimensional submanifolds of homogeneous spaces based on the powerful and elegant method of moving frames. The treatment is self-contained and illustrated through a large number of examples and exercises, augmented by Maple code to assist in both concrete calculations and plotting. Highly recommended.

—Niky Kamran, McGill University

The method of moving frames has seen a tremendous explosion of research activity in recent years, expanding into many new areas of applications, from computer vision to the calculus of variations to geometric partial differential equations to geometric numerical integration schemes to classical invariant theory to integrable systems to infinite-dimensional Lie pseudo-groups and beyond. Cartan theory remains a touchstone in modern differential geometry, and Clelland’s book provides a fine new introduction that includes both classic and contemporary geometric developments and is supplemented by Maple symbolic software routines that enable the reader to both tackle the exercises and delve further into this fascinating and important field of contemporary mathematics.

Recommended for students and researchers wishing to expand their geometric horizons.

—Peter Olver, University of Minnesota

For additional information and updates on this book, visit

www.ams.org/bookpages/gsm-178