Introduction to Global Analysis
Minimal Surfaces in Riemannian Manifolds

John Douglas Moore
Introduction to
Global Analysis
Minimal Surfaces in
Riemannian Manifolds
Introduction to Global Analysis
Minimal Surfaces in Riemannian Manifolds

John Douglas Moore
Contents

Preface vii

Chapter 1. Infinite-dimensional Manifolds 1
 §1.1. A global setting for nonlinear DEs 1
 §1.2. Infinite-dimensional calculus 2
 §1.3. Manifolds modeled on Banach spaces 17
 §1.4. The basic mapping spaces 25
 §1.5. Homotopy type of the space of maps 33
 §1.6. The α- and ω-Lemmas 39
 §1.7. The tangent and cotangent bundles 40
 §1.8. Differential forms 44
 §1.9. Riemannian and Finsler metrics 49
 §1.10. Vector fields and ODEs 53
 §1.11. Condition C 55
 §1.12. Birkhoff’s minimax principle 60
 §1.13. de Rham cohomology 63

Chapter 2. Morse Theory of Geodesics 71
 §2.1. Geodesics 71
 §2.2. Condition C for the action 76
 §2.3. Fibrations and the Fet-Lusternik Theorem 81
 §2.4. Second variation and nondegenerate critical points 85
 §2.5. The Sard-Smale Theorem 91
 §2.6. Existence of Morse functions 95
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§2.7</td>
<td>Bumpy metrics for smooth closed geodesics</td>
<td>100</td>
</tr>
<tr>
<td>§2.8</td>
<td>Adding handles</td>
<td>108</td>
</tr>
<tr>
<td>§2.9</td>
<td>Morse inequalities</td>
<td>114</td>
</tr>
<tr>
<td>§2.10</td>
<td>The Morse-Witten complex</td>
<td>118</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Topology of Mapping Spaces</td>
<td>125</td>
</tr>
<tr>
<td>§3.1</td>
<td>Sullivan’s theory of minimal models</td>
<td>125</td>
</tr>
<tr>
<td>§3.2</td>
<td>Minimal models for spaces of paths</td>
<td>131</td>
</tr>
<tr>
<td>§3.3</td>
<td>Gromov dimension</td>
<td>138</td>
</tr>
<tr>
<td>§3.4</td>
<td>Infinitely many closed geodesics</td>
<td>145</td>
</tr>
<tr>
<td>§3.5</td>
<td>Postnikov towers</td>
<td>148</td>
</tr>
<tr>
<td>§3.6</td>
<td>Maps from surfaces</td>
<td>155</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Harmonic and Minimal Surfaces</td>
<td>169</td>
</tr>
<tr>
<td>§4.1</td>
<td>The energy of a smooth map</td>
<td>169</td>
</tr>
<tr>
<td>§4.2</td>
<td>Minimal two-spheres and tori</td>
<td>178</td>
</tr>
<tr>
<td>§4.3</td>
<td>Minimal surfaces of arbitrary topology</td>
<td>188</td>
</tr>
<tr>
<td>§4.4</td>
<td>The α-energy</td>
<td>204</td>
</tr>
<tr>
<td>§4.5</td>
<td>Morse theory for a perturbed energy</td>
<td>216</td>
</tr>
<tr>
<td>§4.6</td>
<td>Bubbles</td>
<td>225</td>
</tr>
<tr>
<td>§4.7</td>
<td>Existence of minimal two-spheres</td>
<td>239</td>
</tr>
<tr>
<td>§4.8</td>
<td>Existence of higher genus minimal surfaces</td>
<td>249</td>
</tr>
<tr>
<td>§4.9</td>
<td>Unstable minimal surfaces</td>
<td>256</td>
</tr>
<tr>
<td>§4.10</td>
<td>An application to curvature and topology</td>
<td>267</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Generic Metrics</td>
<td>277</td>
</tr>
<tr>
<td>§5.1</td>
<td>Bumpy metrics for minimal surfaces</td>
<td>277</td>
</tr>
<tr>
<td>§5.2</td>
<td>Local behavior of minimal surfaces</td>
<td>281</td>
</tr>
<tr>
<td>§5.3</td>
<td>The two-variable energy revisited</td>
<td>292</td>
</tr>
<tr>
<td>§5.4</td>
<td>Minimal surfaces without branch points</td>
<td>308</td>
</tr>
<tr>
<td>§5.5</td>
<td>Minimal surfaces with simple branch points</td>
<td>318</td>
</tr>
<tr>
<td>§5.6</td>
<td>Higher order branch points</td>
<td>334</td>
</tr>
<tr>
<td>§5.7</td>
<td>Proof of the Transversal Crossing Theorem</td>
<td>347</td>
</tr>
<tr>
<td>§5.8</td>
<td>Branched covers</td>
<td>349</td>
</tr>
</tbody>
</table>

Bibliography 357
Index 365
This book is devoted to giving the foundations for a partial Morse theory of minimal surfaces in Riemannian manifolds. It is based upon lecture notes for graduate courses on “Topics in Differential Geometry”, given at the University of California, Santa Barbara, during the fall quarter of 2009 and again in the spring of 2014, but it also includes several topics not treated in these courses.

It might be helpful to start with a description of the goal of our presentation. Morse theory is concerned with the relationship between the critical points of a smooth function on a manifold and the topology of that manifold. It might have developed in three main stages.

The first stage in our fictional history would have been finite-dimensional Morse theory, which relates critical points of proper nonnegative functions on finite-dimensional manifolds to the homology of these manifolds via the Morse inequalities. The foundations were laid in Marston Morse’s first landmark article on what is now known as Morse theory Mor25, but Morse quickly turned his attention to problems from the calculus of variations, which ultimately became part of the infinite-dimensional theory. Nevertheless, finite-dimensional Morse theory became one of the primary tools for studying the topology of finite-dimensional manifolds and had many successes, including the celebrated \(h \)-cobordism theorem of Smale Mil65, crucial for the classification of manifolds in high dimensions. Modern expositions of finite-dimensional Morse theory often construct a chain complex from the free abelian group generated by the critical points of a “generic” function, the boundary being defined by orbits of the gradient flow which connect the critical points. The homology of this chain complex, called the
Morse-Witten complex, is isomorphic to the usual integer homology of the manifold.

What might have been the second stage, the Morse theory of geodesics, formed the core of what Morse [Mor34] called “the calculus of variations in the large”. Motivated to some extent by earlier work on celestial mechanics by Poincaré and Birkhoff, Morse studied the calculus of variations for the length function or action function on the space of paths joining two points in a Riemannian manifold (or the space of closed paths in a Riemannian manifold), the critical points of these functions being geodesics. His idea was to approximate the infinite-dimensional space of paths by a finite-dimensional manifold of very high dimension and then apply finite-dimensional Morse theory to this approximation. This approach is explained in Milnor’s classical book on Morse theory [Mil63] and produced many striking results in the theory of geodesics in Riemannian geometry, such as the theorem of Serre [Ser51] that any two points on a compact Riemannian manifold can be joined by infinitely many geodesics. It also provided the first proof of the Bott periodicity theorem from homotopy theory. A Morse theory of closed geodesics, representing periodic motion in certain mechanical systems, was also constructed. One might regard the Morse theory of geodesics as an application of topology to the study of ordinary differential equations, in particular, to those equations which like the equation for geodesics arise from classical mechanics.

Palais and Smale were able to provide an elegant reformulation of the Morse theory of geodesics in the language of infinite-dimensional Hilbert manifolds [PS64]. They showed that the action function on the infinite-dimensional manifold of paths satisfies “Condition C”, a condition replacing “proper” in the finite-dimensional theory, and they showed that Condition C is sufficient for the development of Morse theory in infinite dimensions. This became a standard approach to the Morse theory of geodesics during the last several decades of the twentieth century, and we will describe it in some detail later.

One might regard the third stage of Morse theory as encompassing many strands, but our viewpoint is to focus on techniques for applying Morse theory to nonlinear elliptic partial differential equations coming from the calculus of variations in which the domain is a two-dimensional compact surface. Morse himself hoped to apply the ideas of his theory to what is arguably the central case—the partial differential equations for minimal surfaces—and he focused on the case in which the ambient space is Euclidean space. The first steps in this direction were taken by Morse and Tompkins, as well as Shiffman, who established the theorem that if a simple closed curve in Euclidean space \mathbb{R}^3 bounds two stable minimal disks, it bounds a
third, which is not stable. This provided a version of the so-called “mountain pass lemma” for minimal disks in Euclidean space. The results of Morse, Tompkins, and Shiffman suggested that Morse inequalities should hold for minimal surfaces in Euclidean space with boundary constrained to lie on a given Jordan curve and, indeed, such inequalities were later established under appropriate hypotheses (as explained, for example, in [JS90]).

But the most natural extension of the Morse theory of closed geodesics in Riemannian manifolds to partial differential equations would be a Morse theory of closed two-dimensional minimal surfaces in a general curved ambient Riemannian manifold M, instead of the ambient Euclidean space used in the classical theory of minimal surfaces with boundary. The generalization to ambient Riemannian manifolds with arbitrary curvature introduces complexity and requires new techniques. Unfortunately, if Σ is a connected compact surface, it becomes awkward to extend the finite-dimensional approximation procedure—so effective in the theory of geodesics—to the space $\text{Map}(\Sigma, M)$ of mappings from Σ to M. One might hope for a better approach based upon the theory of infinite-dimensional manifolds, as developed by Palais and Smale, but a serious problem is encountered: the standard energy function

$$E : \text{Map}(\Sigma, M) \to \mathbb{R},$$

used in the theory of harmonic maps and parametrized minimal surfaces, fails to satisfy the compactness condition, the Condition C which Palais and Smale had used as a foundation for their theory, when $\text{Map}(\Sigma, M)$ is completed with respect to a norm strong enough to lie within the space of continuous functions.

To get around this difficulty, Sacks and Uhlenbeck introduced the α-energy [SU81], [SU82] in which $\alpha > 1$ is a parameter, a perturbation of the usual energy which is defined on the completion of $\text{Map}(\Sigma, M)$ with respect to a Banach space norm which is both weak enough to satisfy Condition C and strong enough for the α-energy to be a C^2 function on a Banach space having the same homotopy type as the space of continuous maps from Σ to M. We can express the fact that such a completion exists by saying that the α-energy lies within “Sobolev range”. The α-energy approaches the usual energy as the parameter α in the perturbation goes to one, and we can therefore say that the usual energy on maps from compact surfaces is “on the border of Sobolev range”, approachable by Morse theory via approximation. Using this approximation via the α-energy, Sacks and Uhlenbeck were able to establish many striking results in the theory of minimal surfaces in Riemannian manifolds, including the fact that any compact simply connected Riemannian manifold contains at least one nonconstant minimal two-sphere, which parallels the classical theorem of Fet and Lyusternik stating that any
compact Riemannian manifold contains at least one smooth closed geodesic. But they also discovered a serious obstruction: The phenomenon of “bubbling” as $\alpha \to 1$ prevents full Morse inequalities from holding for compact parametrized minimal surfaces in $\text{Map}(\Sigma, M)$ in complete generality.

A somewhat different approach to existence of parametrized minimal surfaces in Riemannian manifolds was developed at about the same time by Schoen and Yau [SY79], using Morrey’s solution to the Plateau problem for minimal disks bounded by a Jordan curve in a Riemannian manifold and arguments based upon a “replacement procedure”. Their approach provided striking theorems relating positive scalar curvature to the topology of three-manifolds, including a step toward the first proof of the positive mass theorem of general relativity. The Schoen-Yau replacement procedure can also be used to obtain many of the existence results of Sacks and Uhlenbeck, and, indeed, an alternate treatment of many of their theorems is provided by Jost [Jos91]. Yet other proofs of these theorems were developed using heat flow (see Struwe [Str90] or Hang and Lin [HL03]).

An even more general approach to minimal surfaces is provided by geometric measure theory [Mor08], which constructs minimal varieties of arbitrary dimension and codimension via generalized surfaces such as integral currents and varifolds, and then attempts to show that the resulting generalized surfaces are regular. But regularity cannot always succeed because according to results of René Thom, not every homology class is represented by a smooth submanifold [Tho54] and much work has focused on the special dimensions in which regularity can be established. In this book we restrict our attention to minimal surfaces of dimension two for which a parametrized theory often provides additional information not directly accessible via geometric measure theory, such as the genus of the surface, and this additional information is crucial for many of the applications we will describe. Moreover, the Sacks-Uhlenbeck perturbation is available in the mapping context, and it provides a suggestive link with classical Morse theory, and perhaps the clearest insight into bubbling, the phenomenon observed as the perturbation is turned off, which turns out to be the main technical difficulty in establishing Morse inequalities for (two-dimensional) closed minimal surfaces in Riemannian manifolds. Moreover, analogs of bubbling appear in the study of other nonlinear partial differential equations, such as the Yang-Mills equation on four-dimensional manifolds, suggesting links between theories that can sometimes be exploited.

Indeed, the theory of two-dimensional minimal surfaces can be placed in a broader context—that of nonlinear partial differential equations which lie
on the border of Sobolev range and are conformally invariant or closely re-
related to conformally invariant equations. These equations include the Yang-
Mills equations on four-dimensional manifolds from the standard model for
particle physics, the anti-self-dual equations used so effectively by Donald-
son, the Seiberg-Witten equations, and Gromov’s equations for pseudoholo-
morphic curves. It is useful to develop a common technology for study-
ing these equations and a common schema for setting up theories: First
one needs to develop a transversality theory using Smale’s generalization
of Sard’s theorem from finite-dimensional differential topology. This gen-
erally shows that in generic situations, solutions to the nonlinear partial
differential equation form a finite-dimensional submanifold of an infinite-
dimensional function space. The tangent space to this submanifold is stud-
ied via the linearization of the nonlinear partial differential equation at a
given solution, and often the dimension of the tangent space is obtained
by application of the Atiyah-Singer index theorem (which reduces to the
Riemann-Roch theorem in the case of parametrized minimal surfaces). Next
one develops a suitable compactness theorem, which in Donaldson’s theory
provides solutions localized near points, in analogy with bubbling. Finally,
one uses topological and geometric methods to derive important geometric
conclusions (for example, existence of minimal surfaces under various
topological conditions) or to construct differential topological invariants of
manifolds (in the Seiberg-Witten or Donaldson theories). The reader can
refer to [DK90] for a definitive treatment of Donaldson theory, which might
be regarded as a model for the other theories.

Although bubbling implies that the most obvious extension of the Morse
inequalitiestominimalsurfacesinRiemannianmanifoldscannotholdingen-
general, it also suggests a framework for analyzing how the Morse inequalities
fail and to what extent a remnant of the Morse inequalities might still be
retained. Of course, other difficulties also need to be controlled. When
constructing a minimax critical point, one must allow for variations in the
conformal structure on the surface, thought of as an element of Teichmüller
space or moduli space, and a sequence of harmonic maps may degenerate as
the conformal structure moves to the boundary of moduli space. Moreover,
branched coverings of a given minimal surface count as new critical points
within the space of functions, although they are not geometrically distinct
from the covered surface. We call these the “sources of noncompactness”
for the two-variable energy

\[E : \text{Map}(\Sigma, M) \times T \rightarrow \mathbb{R}, \]

in which \(T \) represents Teichmüller space. Note that this energy is invariant
under various groups, an action of the group of complex automorphisms of
the domain Σ and an action of the mapping class group on Teichmüller space, suggesting use of equivariant Morse theory as described by Bott [Bot82].

One might suspect that a procedure for constructing minimal surfaces that might fail in several different ways is too flawed to be of much use. However, we argue that a different perspective is more productive—since the minimax procedure for a given homology class does not always yield nontrivial minimal surfaces, one should divide homology classes into various categories depending upon which of the possible difficulties can arise. This approach appears ambitious at first, but then one realizes that the topology of $\text{Map}(\Sigma, M)$ has a rich internal structure that can compensate for the many ways in which minimax sequences might fail to converge.

Our purpose here is to provide the foundation for a theory which might explain when sequences of α-energy critical points for minimax constraints converge to minimal surfaces without bubbling as $\alpha \to 1$, a theory which should ultimately have important applications similar to those found in the Morse theory of geodesics.

It has long been known that the extension of Morse theory to infinite-dimensional manifolds is not really necessary for the study of geodesics. Bott expressed it this way in his 1982 survey on Morse theory [Bot82]: “I know of no aspect of the geodesic question where [the infinite-dimensional approach] is essential; however it clearly has some aesthetic advantages, and points the way for situations where finite-dimensional approximations are not possible...” On the other hand, finite-dimensional approximations suitable for studying the α-energy when $\alpha > 1$ appear to break down as $\alpha \to 1$. This suggests that for any partial Morse theory of minimal surfaces, in contrast to closed geodesics, calculus on infinite-dimensional manifolds should play an essential conceptual and simplifying role.

Our presentation in this book therefore starts with an extension of finite-dimensional calculus to calculus on infinite-dimensional manifolds. We assume the reader is familiar with the basics of finite-dimensional differential geometry, including geodesics, curvature, and the tubular neighborhood theorem. We also assume some familiarity with basic complex analysis, the foundations of Banach and Hilbert space theory, and the willingness to accept results from the linear theory of elliptic partial differential operators, in particular, the theory of Fredholm operators on Sobolev spaces. All of these topics are treated very well in highly accessible sources, to which we can refer at the appropriate time.

The first chapter gives an introduction to global analysis on infinite-dimensional manifolds of maps. The second chapter studies the theory of geodesics on Riemannian manifolds using the action integral

$$J : \text{Map}(S^1, M) \to \mathbb{R}$$
and owes much to the beautiful work of Bott, Gromoll, Klingenberg, and Meyer. This leads to the question of determining the topological invariants of the space \(\text{Map}(S^1, M) \) and motivates the exposition in Chapter 3 of Sullivan’s theory of minimal models, which provides an efficient means of calculating rational cohomology of \(\text{Map}(S^1, M) \). Sullivan and Vigué-Poirrier were able to use this theory to provide a striking extension of an earlier theorem of Gromoll and Meyer: Most compact smooth manifolds have infinitely many geometrically distinct smooth closed geodesics for arbitrary choice of Riemannian metric. More generally, Sullivan’s theory provides an algorithm for calculating the rational cohomology of \(\text{Map}(\Sigma, M) \), when \(\Sigma \) is a compact manifold of arbitrary dimension and \(M \) is a nilpotent manifold.

In Chapter 4, we turn to the theory of minimal surfaces in Riemannian manifolds and discuss well-known theorems of Sacks, Uhlenbeck, Schoen, and Yau which use minimal surfaces to elucidate the topology of three-dimensional manifolds. We also describe Uhlenbeck’s Morse theory for the \(\alpha \)-energy and its perturbations, which provide examples of energy functions for which complete Morse inequalities hold, relating critical points to rational cohomology of \(\text{Map}(\Sigma, M) \), when \(\Sigma \) is a compact smooth surface.

Just as a generic choice of proper function \(f: M \to \mathbb{R} \) on a smooth manifold \(M \) is necessary for Morse inequalities on finite-dimensional manifolds, so a generic choice of Riemannian metric on a compact manifold \(M \) is needed to simplify the relationships between the topology of \(M \) and the types of minimal surfaces within \(M \). Chapter 5 gives a proof of the Bumpy Metric Theorem from \([\text{Moo06}]\), which describes the generic behavior: It states that for generic choice of Riemannian metric on a smooth manifold \(M \) of dimension at least three, closed prime minimal surfaces \(f: \Sigma \to M \) have no branch points and are as nondegenerate as allowed by their invariance under the group of complex automorphisms of \(\Sigma \). This is complemented by a transversality theory which in accordance with Whitney’s theorems implies that for generic metrics minimal surfaces \(f: \Sigma \to M \) are imbeddings when \(M \) has dimension at least five and immersions with transverse crossings when \(M \) has dimension four.

We believe that the Bumpy Metric Theorem will be useful in establishing partial Morse inequalities for parametrized minimal surfaces of given genus when the dimension of the ambient manifold is sufficiently large. Such partial Morse inequalities require additional techniques not treated in this book, and we hope to return to this topic in a later publication. We intend to apply the Bumpy Metric Theorem to area-minimizing minimal surfaces in four-manifolds with generic metrics in a subsequent article \([\text{Moox}]\), using the twistor degrees studied by Eells and Salamon \([\text{ES64}]\).
We have left out many topics from the theory of minimal surfaces which are treated very well in existing sources. Readers unfamiliar with the rich theory of minimal surfaces in Euclidean space \mathbb{R}^3 should seek other sources, such as the excellent books of Osserman [O69] and Colding and Minicozzi [CM11].

I would like to thank the students in my classes, and in particular Casey Blacker, Robert Ream, and Changliang Wang, for questions and remarks that helped correct minor errors and smooth out the exposition in several places. I am also grateful to anonymous readers of earlier versions of this book for their helpful suggestions and to Xianzhe Dai for his encouragement.

Doug Moore
Santa Barbara, CA, June 2017
Bibliography

Moox. J. D. Moore, Closed minimal surfaces in four-manifolds with generic Riemannian metrics, in preparation.

Mor25. M. Morse, Relations between the critical points of a real function of n independent variables, Trans. Amer. Math Soc. 27 (1925), 345-396.

Index

\(\alpha\)-energy, 206
\(\alpha\)-harmonic map, 206
\(\alpha\)-Lemma, 39
\(\alpha\)-minimal surface, 206
\(\varepsilon\)-Regularity Theorem, 229
\(\lambda\)-handle, 110
\(\omega\)-Lemma, 20, 39
action integral, 24, 74
Almgren’s Theorem, 131
ambient isotopy, 60
ambient isotopy invariant, 61
area function, 178
ascending disk, 110
ascending sphere, 110
atlas, 18
Baire Category Theorem, 93
Banach algebra, 6
Banach Algebra Lemma, 27
Banach manifold, 17
Banach space, 4
Banachable space, 6
Birkhoff Minimax Principle, 62, 257
Bochner Lemma, 226
bootstrapping, 15, 81, 215
branch point, 176
false, 285
primitive, 285
branch point stratification, 318
branch type, 318
branched cover
 of a harmonic map, 177
broken geodesics, 139
Brown-Sard Theorem, 92
bubble point, 238
bubble tree, 257, 259
bubble tree convergence
 for harmonic surfaces, 238
 for minimal surfaces, 265
Bumpy Metric Theorem
 for closed geodesics, 104
 for minimal surfaces, 279
 for prime closed geodesics, 101
Čech cohomology, 67
center of mass, 201
chain rule, 8
closed differential form, 83
Condition C, 55
 for \(\alpha\)-energy, 250, 253
 for geodesics, 76
 for the \(\alpha\)-energy, 207
configuration space
 for higher order branch points, 334
 for simple mechanical systems, 72
connected dga, 126
cotangent bundle
 to a Banach manifold, 41
critical point, 45
 Morse nondegenerate, 80
 stable, 80
critical value, 91
cup product, 63
curvature operator, 269
cusp singularity, 281

de Rham cohomology, 63
de Rham homotopy group, 127
de Rham Theorem, 66
degree of a holomorphic line bundle, 175
descending disk, 110
descending sphere, 110
dga, 125
diffeomorphism group of Σ
 \[\text{Diff}_+(\Sigma), 189\]
 \[\text{Diff}_0(\Sigma), 189\]
 \[\text{Diff}_{0,D}(\Sigma), 320\]
 \[\text{Diff}_{0,p}(T^2), 194\]
 \[\text{Diff}_{0,q,r,s}(S^2), 195\]
diffeomorphism of manifolds, 18
differential form, 45
differential graded algebra, 125
differential of a function, 45
directional derivative, 13
Dirichlet energy integral, 25, 169
disk bundle addition, 113
divisor of a harmonic surface, 167

Eells-Sampson Theorem, 171
Eilenberg-MacLane space, 149
elementary extension of a dga, 152
elliptic fibration, 281
energy, 169
energy density, 169
energy loss in necks, 259
equivalent commutative algebra, 190
Euler class, 170
Euler equations for a rigid body, 73
Euler-Lagrange map, 46
Euler-Lagrange operator
 for closed curves, 90
 for the two-variable energy, 309
evaluation map, 40
exact differential form, 63
Existence and Uniqueness Theorem for
 ODE’s, 55
 exponential chart, 19
 exterior derivative, 17

Fet-Lusternik Theorem, 84
fibration, 84
finite type, 126
Finsler metric, 50
first Chern class, 175
fishtail singularity, 281
flow box, 53
Fréchet derivative, 7
Fréchet space, 16
Fredholm index, 92
Fredholm map, 93
Fredholm operator, 92
Fredholm projection, 131
free homotopy class, 241
free loop space, 73
fundamental domain
 of Teichmüller space T_1, 184
gauge group G
 for two-variable energy, 196, 292, 320
generic Riemannian metric, 100, 277
goode cover, 66
graded commutative algebra, 125
Green’s operator, 220
Gromoll-Meyer Theorem, 138
Gromov dimension, 139
Gromov estimates, 143, 263
Grothendieck Theorem, 270
Grushko Theorem, 247

Hölder continuous function, 29
Hahn-Banach Theorem, 6
Hamilton’s principle of least action, 75
handle addition, 108
harmonic map, 170
Hartman Theorem, 171
Hessians of f, 85
Hilbert manifold, 17
Hilbert space, 8
homotopy direct limit, 37
homotopy equivalence, 59
Homotopy Lemma, 64
homotopy lifting property, 81
homotopy type, 83
Hopf differential, 181
Hopf-Leray Theorem, 131

incompressible
 Klein bottle, 252
torus, 252
incompressible component
 of mapping space, 255
incompressible map
 from Σ to M, 258
injective point, 282
integral curve, 83
interior product, 17
Inverse Function Theorem, 13
irreducible three-manifold, 247
isothermal coordinates, 172
isotropic two-plane, 270

Jacobi field
for closed geodesics, 88
for fixed end-point geodesics, 87
tangential, 301

Jacobi operator
for the α-energy, 219

Kepler problem, 72
kinetic energy, 72

Koszul-Malgrange Theorem, 174

Lacunary Principle, 116, 123
Leibniz rule, 7
Leray cover, 66
Lie bracket, 46
Lie derivative, 45
local flow
for a vector field, 55
lower central series, 153
L^p norm, 12

Meeks-Yau Theorem, 246
method of steepest descent, 49
metric deformation operator, 311, 316
minimal Klein bottle, 201
minimal model, 127, 154
for $\text{Map}(S^1, M)$, 132
of $\text{Map}(\Sigma, M)$, 155
minimal projective plane, 200
minimal surface
branched cover, 278
prime, 278
somewhere injective, 282
minimal torus, 182
minimal two-sphere, 180
minimax critical point, 61
minimax principle, 60
Morse function, 86, 87, 95, 221
of finite type, 115
Morse index
of a critical point, 85
of a critical submanifold, 99
Morse inequalities, 114
equivariant, 199, 266
failure for the usual energy E, 248
for the perturbed α-energy, 224
Morse polynomial, 114
Morse series, 115
Morse-Witten boundary, 120
Morse-Witten complex, 120
for the perturbed α-energy, 224
Mountain Pass Lemma, 116
multiplicity of a branch point, 176
Newton’s equation of motion, 72
nilpotent CW complex, 153
nilpotent fundamental group, 153
nondegenerate critical submanifold, 69
nonorientable minimal surface, 200
norm, 4
nullity, 85
one-connected dga, 126
one-parameter group, 55
Open Mapping Theorem, 6
order of a branch point, 176

Palais-Smale compactness condition, 55
parametrized minimal surface, 179
partition of unity, 58
path space fibration, 82
periodic motion, 74
piecewise linear paths
for a triangulation, 141
Poincaré Lemma, 64
Poincaré polynomial, 114
Poincaré series, 115
point bundle, 177
pointed loop space, 82
positive isotropic curvature, 270
Postnikov tower, 150
pre-Banach space, 4
pre-Hilbert space, 3
prime decomposition of a
three-manifold, 217
prime harmonic map, 177
prime incompressible component
of mapping space, 235
prime smooth closed geodesic, 101
prime three-manifold, 247
principal fibration, 150
pseudogradient, 57
pullback bundle, 18
radial cutoff function, 228, 825
rank k parametrized torus, 239
rationalization of a CW complex, 148
rationally elliptic manifold, 131
rationally hyperbolic manifold, 131
regular value, 91
Regularity for the α-energy, 212
Index

Removeable Singularity Theorem, 236
residual subset, 93
Riemann moduli space, 184, 189
Riemann surface, 173
conformally finite, 320
Riemann-Christoffel curvature tensor, 269
Riemann-Roch Theorem, 175
Riemannian metric, 49
Sacks-Uhlenbeck energy, 206
Sacks-Uhlenbeck Theorem, 239, 241
Sard-Smale Theorem, 93
second variation
for closed geodesics, 88
for fixed end-point geodesics, 86
for harmonic surfaces, 217
of area, 300
of energy, complex form, 268
of the α-energy, 217
of the two-variable energy, 296
sectional curvature
complex, 269
self-intersection set
of a minimal surface, 284
seminorm, 4
sheet interchange map, 200
simple mechanical system, 72
smooth function
on a Banach space, 7
smooth manifold, 17
smooth map
between manifolds, 18
smoothing operators, 34
Sobolev Lemma, 271, 77
Sobolev norm, 26
Sobolev range, 29
sources of noncompactness, 265
Sphere Theorem, 271
split subspace
of a Banach space, 155
stable harmonic surface, 218
stable manifold, 118
Sullivan model, 158
surface subgroup, 265
symmetry group for E
full, 198
identity component G, 278
tangent bundle
to a Banach manifold, 111
tangent vector
to a Banach manifold, 11
Selected Published Titles in This Series

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Global Analysis</td>
<td>John Douglas Moore</td>
<td>2017</td>
</tr>
<tr>
<td>Separable Algebras</td>
<td>Timothy J. Ford</td>
<td>2017</td>
</tr>
<tr>
<td>Modular Forms</td>
<td>Henri Cohen and Fredrik Strömberg</td>
<td>2017</td>
</tr>
<tr>
<td>From Frenet to Cartan: The Method of Moving Frames</td>
<td>Jeanne N. Clelland</td>
<td>2017</td>
</tr>
<tr>
<td>Differential Galois Theory through Riemann-Hilbert Correspondence</td>
<td>Jacques Sauloy</td>
<td>2016</td>
</tr>
<tr>
<td>Ordered Groups and Topology</td>
<td>Adam Clay and Dale Rolfsen</td>
<td>2016</td>
</tr>
<tr>
<td>Separable Algebras</td>
<td>Timothy J. Ford</td>
<td>2017</td>
</tr>
<tr>
<td>From Frenet to Cartan: The Method of Moving Frames</td>
<td>Jeanne N. Clelland</td>
<td>2017</td>
</tr>
<tr>
<td>Differential Galois Theory through Riemann-Hilbert Correspondence</td>
<td>Jacques Sauloy</td>
<td>2016</td>
</tr>
<tr>
<td>Quiver Representations and Quiver Varieties</td>
<td>Alexander Kirillov Jr.</td>
<td>2016</td>
</tr>
<tr>
<td>Differentiable Dynamical Systems</td>
<td>Lan Wen</td>
<td>2016</td>
</tr>
<tr>
<td>Nonlinear Elliptic Equations of the Second Order</td>
<td>Qing Han</td>
<td>2016</td>
</tr>
<tr>
<td>Colored Operads</td>
<td>Donald Yau</td>
<td>2016</td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td>András Vasy</td>
<td>2015</td>
</tr>
<tr>
<td>Random Operators</td>
<td>Michael Aizenman and Simone Warzel</td>
<td>2015</td>
</tr>
<tr>
<td>Singular Perturbation in the Physical Sciences</td>
<td>John C. Neu</td>
<td>2015</td>
</tr>
<tr>
<td>Problems in Real and Functional Analysis</td>
<td>Alberto Torchinsky</td>
<td>2015</td>
</tr>
<tr>
<td>Expansion in Finite Simple Groups of Lie Type</td>
<td>Terence Tao</td>
<td>2015</td>
</tr>
<tr>
<td>A Course on Large Deviations with an Introduction to Gibbs Measures</td>
<td>Firas Rassoul-Agha and Timo Seppäläinen</td>
<td>2015</td>
</tr>
<tr>
<td>Introduction to Tropical Geometry</td>
<td>Diane Maclagan and Bernd Sturmfels</td>
<td>2015</td>
</tr>
<tr>
<td>A Course in Analytic Number Theory</td>
<td>Marius Overholt</td>
<td>2014</td>
</tr>
<tr>
<td>The Role of Nonassociative Algebra in Projective Geometry</td>
<td>John R. Faulkner</td>
<td>2014</td>
</tr>
<tr>
<td>Dynamical Systems and Linear Algebra</td>
<td>Fritz Colonius and Wolfgang Kliemann</td>
<td>2014</td>
</tr>
<tr>
<td>Functional Analysis</td>
<td>Markus Haase</td>
<td>2014</td>
</tr>
<tr>
<td>An Introduction to the Representation Theory of Groups</td>
<td>Emmanuel Kowalski</td>
<td>2014</td>
</tr>
<tr>
<td>A Course in Complex Analysis and Riemann Surfaces</td>
<td>Wilhelm Schlag</td>
<td>2014</td>
</tr>
<tr>
<td>Hilbert’s Fifth Problem and Related Topics</td>
<td>Terence Tao</td>
<td>2014</td>
</tr>
<tr>
<td>An Introduction to Extremal Kähler Metrics</td>
<td>Gábor Székelyhidi</td>
<td>2014</td>
</tr>
<tr>
<td>Introduction to 3-Manifolds</td>
<td>Jennifer Schultens</td>
<td>2014</td>
</tr>
<tr>
<td>The Joys of Haar Measure</td>
<td>Joe Diestel and Angela Spalsbury</td>
<td>2013</td>
</tr>
<tr>
<td>Mathematics of Probability</td>
<td>Daniel W. Stroock</td>
<td>2013</td>
</tr>
<tr>
<td>Introduction to Smooth Ergodic Theory</td>
<td>Luis Barreira and Yakov Pesin</td>
<td>2013</td>
</tr>
<tr>
<td>Matrix Theory</td>
<td>Xingzhi Zhan</td>
<td>2013</td>
</tr>
<tr>
<td>Combinatorial Game Theory</td>
<td>Aaron N. Siegel</td>
<td>2013</td>
</tr>
<tr>
<td>The K-book</td>
<td>Charles A. Weibel</td>
<td>2013</td>
</tr>
</tbody>
</table>

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.
During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold M determine the homology of the manifold.

Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on M by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse’s calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs.

This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed parametrized minimal surfaces in a compact Riemannian manifold, establishing Morse inequalities for perturbed versions of the energy function on the mapping space. It studies the bubbling which occurs when the perturbation is turned off, together with applications to the existence of closed minimal surfaces. The Morse-Sard theorem is used to develop transversality theory for both closed geodesics and closed minimal surfaces.

This book is based on lecture notes for graduate courses on “Topics in Differential Geometry”, taught by the author over several years. The reader is assumed to have taken basic graduate courses in differential geometry and algebraic topology.