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ules (e.g., Janet and border bases). msc | Commutative algebra – Computational aspects and
applications – Solving polynomial systems; resultants. msc | Algebraic geometry – Special va-
rieties – Determinantal varieties. msc | Algebraic geometry – Special varieties – Toric varieties,
Newton polyhedra. msc | Algebraic geometry – Real algebraic and real analytic geometry –
Semialgebraic sets and related spaces. msc | Algebraic geometry – Tropical geometry – Tropical
geometry. msc | Convex and discrete geometry – Polytopes and polyhedra – Lattice polytopes
(including relations with commutative algebra and algebraic geometry). msc | Probability
theory and stochastic processes – Markov processes – Markov chains (discrete-time Markov
processes on discrete state spaces). msc | Statistics – Parametric inference – Hypothesis test-
ing. msc | Statistics – Multivariate analysis – Contingency tables. msc | Operations research,
mathematical programming – Mathematical programming – Integer programming. msc | Bi-
ology and other natural sciences – Genetics and population dynamics – Problems related to
evolution. msc

Classification: LCC QA276 .S8945 2018 | DDC 519.5–dc23
LC record available at https://lccn.loc.gov/2018025744

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting
for them, are permitted to make fair use of the material, such as to copy select pages for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for permission
to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For
more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.

c© 2018 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at https://www.ams.org/

10 9 8 7 6 5 4 3 2 1 23 22 21 20 19 18

www.ams.org/bookpages/gsm-194
www.ams.org/publications/pubpermissions
reprint-permission@ams.org
https://www.ams.org/


Contents

Preface ix

Chapter 1. Introduction 1

§1.1. Discrete Markov Chain 2

§1.2. Exercises 9

Chapter 2. Probability Primer 11

§2.1. Probability 11

§2.2. Random Variables and their Distributions 17

§2.3. Expectation, Variance, and Covariance 22

§2.4. Multivariate Normal Distribution 30

§2.5. Limit Theorems 33

§2.6. Exercises 37

Chapter 3. Algebra Primer 41

§3.1. Varieties 41

§3.2. Ideals 45
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Preface

Algebraic statistics is a relatively young field based on the observation that
many questions in statistics are fundamentally problems of algebraic geom-
etry. This observation is now at least twenty years old and the time seems
ripe for a comprehensive book that could be used as a graduate textbook
on this topic.

Algebraic statistics represents an unusual intersection of mathematical
disciplines, and it is rare that a mathematician or statistician would come
to work in this area already knowing both the relevant algebraic geometry
and statistics. I have tried to provide sufficient background in both alge-
braic geometry and statistics so that a newcomer to either area would be
able to benefit from using the book to learn algebraic statistics. Of course
both statistics and algebraic geometry are huge subjects and the book only
scratches the surface on either of these disciplines.

I made the conscious decision to introduce algebraic concepts along-
side statistical concepts where they can be applied, rather than having long
introductory chapters on algebraic geometry, statistics, combinatorial opti-
mization, etc. that must be waded through first, or flipped back to over and
over again, before all the pieces are put together. Besides the three intro-
ductory chapters on probability, algebra, and statistics (Chapters 2, 3, and
5, respectively), this perspective is followed throughout the text. While this
choice might make the book less useful as a reference book on algebraic sta-
tistics, I hope that it will make the book more useful as an actual textbook
that students and faculty plan to learn from.

Here is a breakdown of material that appears in each chapter in the
book.

ix



x Preface

Chapter 1 is an introductory chapter that shows how ideas from alge-
bra begin to arise when considering elementary problems in statistics. These
ideas are illustrated with the simple example of a Markov chain. As sta-
tistical and algebraic concepts are introduced the chapter makes forward
reference to other sections and chapters in the book where those ideas are
highlighted in more depth.

Chapter 2 provides necessary background information in probability
theory which is useful throughout the book. This starts from the axioms of
probability, works through familiar and important examples of discrete and
continuous random variables, and includes limit theorems that are useful for
asymptotic results in statistics.

Chapter 3 provides necessary background information in algebra and
algebraic geometry, with an emphasis on computational aspects. This starts
from definitions of polynomial rings, their ideals, and the associated vari-
eties. Examples are typically drawn from probability theory to begin to
show how tools from algebraic geometry can be applied to study families
of probability distributions. Some computational examples using computer
software packages are given.

Chapter 4 is an in-depth treatment of conditional independence, an im-
portant property in probability theory that is essential for the construction of
multivariate statistical models. To study implications between conditional
independence models, we introduce primary decomposition, an algebraic
tool for decomposing solutions of polynomial equations into constituent ir-
reducible pieces.

Chapter 5 provides some necessary background information in statis-
tics. It includes some examples of basic statistical models and hypothesis
tests that can be performed in reference to those statistical models. This
chapter has significantly fewer theorems than other chapters and is primarily
concerned with introducing the philosophy behind various statistical ideas.

Chapter 6 provides a detailed introduction to exponential families, an
important general class of statistical models. Exponential families are re-
lated to familiar objects in algebraic geometry like toric varieties. Nearly
all models that we study in this book arise by taking semialgebraic subsets
of the natural parameter space of some exponential family, making these
models extremely important for everything that follows. Such models are
called algebraic exponential families.

Chapter 7 gives an in-depth treatment of maximum likelihood estima-
tion from an algebraic perspective. For many algebraic exponential families
maximum likelihood estimation amounts to solving a system of polynomial
equations. For a fixed model and generic data, the number of critical points
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of this system is fixed and gives an intrinsic measure of the complexity of
calculating maximum likelihood estimates.

Chapter 8 concerns the geometry of the cone of sufficient statistics of
an exponential family. This geometry is important for maximum likelihood
estimation: maximum likelihood estimates exist in an exponential family if
and only if the data lies in the interior of the cone of sufficient statistics.
This chapter also introduces techniques from polyhedral and general convex
geometry which are useful in subsequent chapters.

Chapter 9 describes Fisher’s exact test, a hypothesis test used for
discrete exponential families. A fundamental computational problem that
arises is that of generating random lattice points from inside of convex poly-
topes. Various methods are explored including methods that connect the
problem to the study of toric ideals. This chapter also introduces the hier-
archical models, a special class of discrete exponential family.

Chapter 10 concerns the computation of upper and lower bounds on
cell entries in contingency tables given some lower-dimensional marginal
totals. One motivation for the problem comes from the sampling problem of
Chapter 9: fast methods for computing bounds on cell entries can be used in
sequential importance sampling, an alternate strategy for generating random
lattice points in polytopes. A second motivation comes from certain data
privacy problems associated with contingency tables. The chapter connects
these optimization problems to algebraic methods for integer programming.

Chapter 11 describes the exponential random graph models, a family of
statistical models used in the analysis of social networks. While these models
fit in the framework of the exponential families introduced in Chapter 6, they
present a particular challenge for various statistical analyses because they
have a large number of parameters and the underlying sample size is small.
They also present a novel area of study for application of Fisher’s exact test
and studying the existence of maximum likelihood estimates.

Chapter 12 concerns the use of algebraic methods for the design of
experiments. Specific algebraic tools that are developed include the Gröbner
fan of an ideal. Consideration of designs that arise in reliability theory lead
to connections with multigraded Hilbert series.

Chapter 13 introduces the graphical statistical models. In graphical
models, complex interactions between large collections of random variables
are constructed using graphs to specify interactions between subsets of the
random variables. A key feature of these models is that they can be speci-
fied either by parametric descriptions or via conditional independence con-
structions. This chapter compares these two perspectives via the primary
decompositions from Chapter 4.
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Chapter 14 provides a general introduction to statistical models with
hidden variables. Graphical models with hidden variables are widely used in
statistics, but the presence of hidden variables complicates their use. This
chapter starts with some basic examples of these constructions, including
mixture models. Mixture models are connected to secant varieties in alge-
braic geometry.

Chapter 15 concerns the study of phylogenetic models, certain hidden
variable statistical models used in computational biology. The chapter high-
lights various algebraic issues involved with studying these models and their
equations. The equations that define a phylogenetic model are known as
phylogenetic invariants in the literature.

Chapter 16 concerns the identifiability problem for parametric statis-
tical models. Identifiability of model parameters is an important structural
feature of a statistical model. Identifiability is studied for graphical models
with hidden variables and structural equation models. Tools are also devel-
oped for addressing identifiability problems for dynamical systems models.

Chapter 17 concerns the topic of model selection. This is a well-
developed topic in statistics and machine learning, but becomes complicated
in the presence of model singularities that arise when working with models
with hidden variables. The mathematical tools to develop corrections come
from studying the asymptotics of Bayesian integrals. The issue of nonstan-
dard asymptotics arises precisely at the points of parameter space where the
model parameters are not identifiable.

Chapter 18 concerns the geometry of maximum a posteriori (MAP)
estimation of the hidden states in a model. This involves performing com-
putations in the tropical semiring. The related parametric inference prob-
lem studies how the MAP estimate changes as underlying model parameters
change, and is related to problems in convex and tropical geometry.

Chapter 19 is a study of the geometry of finite metric spaces. Of
special interest are the set of tree metrics and ultrametrics which play an
important role in phylogenetics. More generally, the set of cut metrics are
closely related to hierarchical models studied earlier in the book.

There are a number of other books that address topics in algebraic sta-
tistics. The first book on algebraic statistics was Pistone, Riccomagno,
and Wynn’s text [PRW01] which is focused on applications of compu-
tational commutative algebra to the design of experiments. Pachter and
Sturmfels’ book [PS05] is focused on applications of algebraic statistics to
computational biology, specifically phylogenetics and sequence alignment.
Studený’s book [Stu05] is specifically focused on the combinatorics of con-
ditional independence structures. Aoki, Hara, and Takemura [AHT12] give
a detailed study of Markov bases which we discuss in Chapter 9. Zwiernik



Preface xiii

[Zwi16] gives an introductory treatment of tree models from the perspec-
tive of real algebraic geometry. Drton, Sturmfels, and I wrote a short book
[DSS09] based on a week-long short course we gave at the Mathematis-
ches Forschungsinstitut Oberwolfach (MFO). While there are many books
in algebraic statistics touching on a variety of topics, this is the first one
that gives a broad treatment. I have tried to add sufficient background and
provide many examples and exercises so that algebraic statistics might be
picked up by a nonexpert.

My first attempt at a book on algebraic statistics was in 2007 with
Mathias Drton. That project eventually led to the set of lecture notes
[DSS09]. As part of Mathias’s and my first attempt at writing, we produced
two background chapters on probability and algebra which were not used in
[DSS09] and which Mathias has graciously allowed me to use here.

I am grateful to a number of readers who provided feedback on early
drafts of the book. These include Elizabeth Allman, Carlos Améndola
Cerón, Daniel Bernstein, Jane Coons, Mathias Drton, Eliana Duarte, Eliz-
abeth Gross, Serkan Hosten, David Kahle, Thomas Kahle, Kaie Kubjas,
Christian Lehn, Colby Long, Frantǐsek Matúš, Nicolette Meshkat, John
Rhodes, Elina Robeva, Anna Seigal, Rainer Sinn, Milan Studený, Ruriko
Yoshida, as well as four anonymous reviewers. Tim Römer at the University
Osnabrück also organized a reading course on the material that provided
extensive feedback. David Kahle provided extensive help in preparing ex-
amples of statistical analyses using R. My research during the writing of this
book has been generously supported by the David and Lucille Packard Foun-
dation and the US National Science Foundation under grants DMS 0954865
and DMS 1615660.
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[ABB+17] Carlos Améndola, Nathan Bliss, Isaac Burke, Courtney R. Gibbons, Martin
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[AFS16] Carlos Améndola, Jean-Charles Faugère, and Bernd Sturmfels, Moment va-
rieties of Gaussian mixtures, J. Algebr. Stat. 7 (2016), no. 1, 14–28, DOI
10.18409/jas.v7i1.42. MR3529332

[Agr13] Alan Agresti, Categorical data analysis, 3rd ed., Wiley Series in Probability
and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2013.
MR3087436
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[FHKT08] Conor Fahey, Serkan Hoşten, Nathan Krieger, and Leslie Timpe, Least squares
methods for equidistant tree reconstruction, arXiv:0808.3979, 2008.

[Fin10] Audrey Finkler, Goodness of fit statistics for sparse contingency tables,
arXiv:1006.2620, 2010.

[Fin11] Alex Fink, The binomial ideal of the intersection axiom for conditional probabil-
ities, J. Algebraic Combin. 33 (2011), no. 3, 455–463, DOI 10.1007/s10801-010-
0253-5. MR2772542

[Fis66] Franklin M. Fisher, The identification problem in econometrics, McGraw-Hill,
1966.

[FKS16] Stefan Forcey, Logan Keefe, and William Sands, Facets of the balanced minimal
evolution polytope, J. Math. Biol. 73 (2016), no. 2, 447–468, DOI 10.1007/s00285-
015-0957-1. MR3521111

https://www.ams.org/mathscinet-getitem?mr=3778199
https://www.ams.org/mathscinet-getitem?mr=2820719
https://www.ams.org/mathscinet-getitem?mr=2861096
https://www.ams.org/mathscinet-getitem?mr=2205884
https://www.ams.org/mathscinet-getitem?mr=1212181
https://www.ams.org/mathscinet-getitem?mr=1394747
https://www.ams.org/mathscinet-getitem?mr=2398601
https://www.ams.org/mathscinet-getitem?mr=1892967
https://www.ams.org/mathscinet-getitem?mr=3015040
https://www.ams.org/mathscinet-getitem?mr=2891138
https://www.ams.org/mathscinet-getitem?mr=2772542
https://www.ams.org/mathscinet-getitem?mr=3521111


Bibliography 471

[FKS17] Stefan Forcey, Logan Keefe, and William Sands, Split-facets for balanced minimal
evolution polytopes and the permutoassociahedron, Bull. Math. Biol. 79 (2017),
no. 5, 975–994, DOI 10.1007/s11538-017-0264-7. MR3634386
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J. Softw. Algebra Geom. 5 (2013), 1–7, DOI 10.2140/jsag.2013.5.1. MR3073716
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associated prime, 80, 81

balanced minimum evolution, 457
basic closed semialgebraic set, 128
basic semialgebraic set, 128
Bayes’ rule, 16
Bayesian information criterion (BIC),

401, 407
singular (sBIC), 420

Bayesian networks, 300
Bayesian statistics, 113
Bernoulli random variable, 20, 320
Bertini, 60
beta function, 115
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beta model, 256
Betti numbers, 63
bidirected edge, 326
bidirected subdivision, 327
binary graph model, 176, 186, 459
binomial ideal, 83, 123

primary decomposition, 83
binomial random variable, 18, 44, 46,

47, 100, 166
implicitization, 58
maximum likelihood estimate, 107
method of moments, 105

Bonferroni bound, 247
Borel σ-algebra, 14
bounded in probability, 407
bounds, 227

2-way table, 229
3-way table, 245
decomposable marginals, 247

bow-free graph, 382
branch length, 342, 450
Buchberger’s algorithm, 54
Buchberger’s criterion, 54
Buchburger-Möller algorithm, 272

canonical sufficient statistic, 118
caterpillar, 308, 461
Cavender-Farris-Neyman model, 343,

368, 459
cdf, 18
censored exponentials, 140, 148
censored Gaussians, 332
centered Gaussian model, 145
central limit theorem, 36
CFN model, 343, 352
character

group theory, 348
characteristic class, 150
Chebyshev’s inequality, 25
Chern-Schwartz-Macpherson class, 150
cherry, 449
chi-square distribution, 32, 162
chordal graph, 181, 306
claw tree, 321

Gaussian, 323
clique, 181, 295
clique condition, 182
collider, 291
colon ideal, 82, 139
combinatorially equivalent, 171
compartment model

linear, 393

three, 393
two, 391, 398

compatible splits, 338
pairwise, 338

complete fan, 276

complete independence, 17, 20, 402
and cdf, 21
and density, 21

complete intersection, 150
completeness of global Markov

property, 290, 293
concave function, 152
concentration graph model, 180

concentration matrix, 120
conditional and marginal independence,

78

conditional density, 72
conditional distribution, 19
conditional expectation, 27
conditional independence, 72
conditional independence axioms, 73
conditional independence ideal, 76

conditional independence inference
rules, 73

conditional independence model, 4

conditional inference, 189, 192
conditional Poisson distribution, 258
conditional probability, 16
cone generated by V , 172
cone of sufficient statistics, 173

and existence of MLE, 173
conformal decomposition, 216
conjugate prior, 115
consistent estimator, 104
constructible sets, 56
continuous random variable, 18

contraction axiom, 73, 86
control variables, 390
convergence in distribution, 35
convergence in probability, 33
converging arborescence, 380

convex function, 152
convex hull, 134, 170
convex set, 152, 169
convolution, 350
coordinate ring, 237
corner cut ideal, 269

correlation, 26
correlation cone, 443

of simplicial complex, 446
correlation polytope, 177, 443
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correlation vector, 443
coset, 237
covariance, 25
covariance mapping, 443
covariance matrix, 26
critical equations, 138
cumulants, 363
cumulative distribution function, 18
curved exponential families, 117
cuspidal cubic, 143, 163
cut cone, 440

of a graph, 444
cut ideal, 458
cut polytope, 177, 440, 458

of a graph, 444
cut semimetric, 440
cycle, 178
cyclic split, 459
cyclic split system, 459

d-connected, 292
d-separates, 292
DAG, 291
DAG model selection polytope, 405, 422
De Finetti’s theorem, 48, 103, 319
decomposable graph, 181
decomposable marginals, 247
decomposable model

Markov basis, 213
urn scheme, 223

decomposable simplicial complex, 208,
306

decomposable tensor, 385
decomposition axiom, 73
defining ideal, 45
degree

of a vertex, 256
degree sequence, 256
density function, 15
descendants, 291
design, 266
design matrix, 267
deterministic Laplace integral, 409–411
Diaconis-Efron test, 194
differential algebra, 391
differential privacy, 233
dimension, 55
directed acyclic graph, 291, 403

maximum likelihood estimate, 404
model selection, 405
phylogenetic tree, 337

directed cycle, 291

Dirichlet distribution, 115
disclosure limitation, 231
discrete conditional independence

model, 76
discrete linear model, 153
discrete random variable, 18
dissimilarity map, 439
distance-based methods, 453
distinguishability, 378
distraction, 270
distribution, 18
distributive law, 428, 437
division algorithm, 52
dual group, 349

edge, 170
edge-triangle model, 253–255, 263, 264
elimination ideal, 57, 377
elimination order, 57, 63
EM algorithm

discrete, 330
EM algorithm, 329, 429
embedded prime, 81
emission matrix, 427
empirical moment, 105
entropy, 412
equidistant tree metric, 450
equivalent functions, 413
equivariant phylogenetic model, 365
Erdős-Gallai theorem, 256
Erdős-Rényi random graphs, 252, 263
estimable, 267
estimable polynomial regression, 267
estimator, 104
Euclidean distance degree, 143
Euler characteristic, 150
event, 12
exact test, 110, 193
exchangeable, 103, 319
exchangeable polytope, 320
expectation, 22
expected value, 22
experimental design, 265
exponential distribution, 38
exponential family, 118, 169

discrete random variables, 119, 121
extended, 121
Gaussian random variables, 119, 125
likelihood function, 157

exponential random graph model, 252
exponential random variable, 116
extreme rays, 172
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face, 170, 204
facet, 171, 204
factor analysis, 133

identifiability, 397
pentad, 324

factorize, 295
fan, 276
Felsenstein model, 344, 368
few inference function theorem, 435
fiber, 192
Fisher information matrix, 165, 166
Fisher’s exact test, 8, 193, 228, 253
flattening, 360
four-point condition, 447
Fourier transform

discrete, 348, 349
fast, 350, 429

fractional factorial design, 266
free resolution, 285
frequentist statistics, 113, 116
full factorial design, 266
fundamental theorem of Markov bases,

196

Gale-Ryser theorem, 257
gamma random variable, 116
Gaussian conditional independence

ideal, 78
Gaussian marginal independence

ML-degree, 145
Gaussian random variables

marginal likelihood, 406
maximum likelihood, 108, 142

Gaussian random vector, 31
Gaussoid axiom, 95
general Markov model, 341, 358
general time reversible model, 345, 347
generalized hypergeometric distribution,

193
generators of an ideal, 45, 53
generic, 139, 269

weight order, 235
generic completion rank, 185
generic group-based model, 351
Gröbner basis, 49, 51

integer programming, 234
to check identifiability, 377

Gröbner cone, 275
Gröbner fan, 274, 276
Gröbner region, 275
graph

of a polynomial map, 57

of a rational map, 59
graph statistic, 252
graphical model, 403

directed, 291
Gaussian, 180
undirected, 288
with hidden variables, 321, 388

Grassmannian, 452
Graver basis, 189, 216
ground set, 208
group, 347
group-based phylogenetic models, 346,

347, 459

half-space, 169
half-trek, 384

criterion, 384
Hammersley-Clifford theorem, 295–297
Hardy-Weinberg equilibrium, 201

Markov basis, 203
Hasegawa-Kishino-Yano model, 344,

347, 368
hidden Markov model, 308, 426

pair, 428
hidden variable, 313
hierarchical model, 159, 204, 241

sufficient statistics, 207
hierarchical set of monomials, 268
hierarchy, 451, 454
Hilbert basis theorem, 45
Hilbert series, 283
holes, 176
holonomic gradient method, 333
homogeneous polynomial, 66
homogenization, 130

of parametrization, 68
Horn uniformization, 152
hypercube, 170
hypergeometric distribution, 193, 221
hypersurface, 45
hypothesis test, 109, 161

asymptotic, 113

i.i.d., 30, 102
ideal, 45
ideal membership problem, 49, 52
ideal-variety correspondence, 48
identifiability

of phylogenetic models, 379, 449
practical, 391
structural, 391

identifiable, 100, 372
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discrete parameters, 378
generically, 372
globally, 372
locally, 372
parameter, 374
rationally, 372

image of a rational map, 45
implicitization problem, 46, 56
importance sampling, 228
importance weights, 228
independence model, 76, 101

as exponential family, 124
as hierarchical model, 205
Euler characteristic, 151
Graver basis, 216
identifiability, 373
Markov basis, 199, 218

independent and identically distributed
(i.i.d.), 30, 102

independent events, 17
indeterminates, 42
indicator random variable, 20
induced subgraph, 178
inference functions, 434
information criterion, 401
initial ideal, 51
initial monomial, 51
initial term, 51
input/output equation, 391
instrumental variable, 324, 397

as mixed graph, 328, 329
identifiability, 374, 383

integer program, 233
integer programming gap, 242, 243
intersection axiom, 74, 87, 289
intersection of ideals, 271
interval of integers, 249
inverse linear space, 126
irreducible decomposition

of a variety, 79
of an ideal, 80
of monomial ideal, 242

irreducible ideal, 80
irreducible Markov chain, 344
irreducible variety, 79
Ising model, 176, 309
isometric embedding, 440
iterative proportional fitting, 156

Jacobian, 147, 375
augmented, 148

JC69, 343

join variety, 316
joint distribution, 18
Jukes-Cantor model, 343, 368

linear invariants, 358, 368

K-polynomial, 283
K2P model, 344
K3P model, 344, 352
kernel, 64
Kimura models, 343, 368
Kruskal rank, 385
Kruskal’s theorem, 386
Kullback-Leibler divergence, 412, 414

Lagrange multipliers, 146
Laplace approximation, 407
latent variable, 313
lattice basis ideal, 97
lattice ideal, 83, 123
law of total probability, 16
Lawrence lifting, 225
leading term, 51
learning coefficient, 410
least-squares phylogeny, 454
lexicographic order, 50, 236, 249
Lie Markov model, 346
likelihood correspondence, 149
likelihood function, 5, 106
likelihood geometry, 146, 149
likelihood ratio statistic, 161
likelihood ratio test

asymptotic, 163
linear invariants, 357
linear model, 153
linear program, 233
linear programming relaxation, 233, 238
log-affine model, 122
log-likelihood function, 107
log-linear model, 122

ML-degree, 166
log-odds ratios, 119
logistic regression, 225
long tables, 214

Macaulay2, 59
MAP, 114
marginal

as sufficient statistics, 207
marginal density, 19, 72
marginal independence, 73, 76, 90
marginal likelihood, 114, 406
Markov basis, 189, 194, 215, 234, 257
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and toric ideal, 196
minimal, 199

Markov chain, 3, 103, 308

homogeneous, 308, 427
Markov chain Monte Carlo, 195
Markov equivalent, 294

Markov property, 288
directed global, 292
directed local, 292

directed pairwise, 292
global, 288
local, 288

pairwise, 288
Markov subbasis, 219
matrix exponential, 342

matrix Lie algebra, 346
matrix product variety, 366
maximum a posteriori estimation, 114,

423, 424
maximum likelihood, 400

maximum likelihood degree, 140
maximum likelihood estimate, 6, 106,

137
existence, 173, 255

maximum likelihood threshold, 185

mean, 22
measurable sets, 14
method of moments, 105, 157

metric, 439
metric cone, 440

of graph, 446
metric space, 439

Lp, 440

Metropolis-Hastings algorithm, 194
for uniform distribution, 196

minimal Gröbner basis, 70

minimal prime, 81
minimal sufficient statistic, 102
Minkowski sum, 172, 435

Minkowski-Weyl theorem, 172
mixed graph, 325

simple, 382

mixing time, 195
mixture model, 47, 314, 316, 399
mixture of binomial random variable,

47, 166
mixture of complete independence, 315,

317, 322, 333, 364
identifiability, 386, 387

mixture of independence model, 315,
333

EM algorithm, 332, 334
identifiability, 373
nonnegative rank, 317

mixture of known distributions, 154
ML-degree, 137, 140
ML-degree 1, 151
MLE, 106
model selection, 399

consistency of, 401
molecular clock, 450
moment, 105
moment polytope, 177
monomial, 42
Monte Carlo algorithm, 195
moralization, 292
most recent common ancestor, 450
moves, 194, 215
multigraded Hilbert series, 283
multiplicity, 415
multivariate normal distribution, 30
mutual independence, 17, 20

natural parameter space, 118
neighbor joining, 454, 457
neighbors, 288
network connectivity, 280, 282, 286
Newton polyhedron, 415
Newton polytope, 276, 426, 433
no-3-way interaction, 159, 205, 402

Markov basis, 213
Markov basis, 214

nodal cubic, 130, 144, 164
Noetherian ring, 69, 80
nondescendants, 292
nonidentifiable, 372

generically, 372
nonnegative rank, 317
nonparametric statistical model, 100
nonsingular point, 147
normal distribution, 15
normal fan, 276, 433
normal form, 52
normal semigroup, 176, 248
normalized subgraph count statistic,

261
nuisance parameter, 9, 193
null hypothesis, 110
Nullstellensatz, 46

occasionally dishonest casino, 427, 431,
437

output variables, 391
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pairwise marginal independence, 90
parameter, 104, 374
parametric directed graphical model,

300
parametric inference, 423, 432
parametric sets, 43
parametric statistical model, 100
parametrized undirected graphical

model, 295
parents, 291
partition lattice, 454
path, 288
Pearson’s X2 statistic, 112
penalty function, 401
pentad, 324
perfect elimination ordering, 247

permutation test, 110
Perron-Frobenius theorem, 344
phylogenetic invariants, 336
phylogenetic model, 335

identifiability, 379
model selection, 402

phylogenetics
and metrics, 447

planar graph, 185

plug-in estimator, 104
pointed cone, 172
pointwise convergence, 33
polyhedral cell complex, 275
polyhedral cone, 171
polyhedron, 128, 170
polynomial, 42
polynomial regression models, 267
polytope, 170
polytope algebra, 435

polytope of subgraph statistics, 262
polytope propagation, 437
positive definite, 78
positive semidefinite, 26
posterior distribution, 114
posterior probability, 406
potential function, 205, 295
power set, 12
precision matrix, 120

primary decomposition, 81
and graphical models, 306
application to random walks, 219

primary ideal, 80
prime ideal, 79
prior distribution, 114
probability measure, 12, 14

probability simplex, 44, 170
as semialgebraic set, 128

probability space, 14
projective space, 66
projective variety, 66
pure difference binomial ideal, 83

quartet, 449
quotient ideal, 82, 139
quotient ring, 237

radical ideal, 46, 307
random variable, 18
random vector, 18
rank one tensor, 385
Rasch model, 256, 264
rate matrix, 342
rational map, 45
real algebraic variety, 128
real log-canonical threshold, 411

of monomial map, 415
real radical ideal, 69
recession cone, 172
recursive factorization theorem, 295,

300, 403
reduced Gröbner basis, 70
reducible decomposition, 181
reducible graph, 181
reducible model

Markov basis, 212
reducible simplicial complex, 208
reducible variety, 79, 147
regression coefficients, 31
regular exponential family, 118
regular point, 147
resolution of singularities, 416
reverse lexicographic order, 50, 236
ring, 42
ring of polynomials, 42
rooted tree, 337

sample space, 12
saturated

conditional independence statement,
89, 127

lattice, 84
polynomial regression, 278
semigroup, 176

saturation, 82, 139
schizophrenic hospital patients, 191, 193
score equations, 107, 138
secant variety, 316, 389, 390
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Segre variety, 319, 389, 390
semialgebraic set, 128
semimetric, 439
semiring, 430, 435
separated, 288
separator, 208
sequential importance sampling, 227,

258
shuttle algorithm, 248
siblings, 384
simplex, 170
simplicial complex, 204, 280
Singular (software), 59
singular, 147
singular locus, 147
sink component, 234
SIR model, 397
slim tables, 214
smooth, 129, 147, 163
spatial statistics, 103
spine, 262
split, 337

valid, 337
splits equivalence theorem, 338
squarefree monomial ideal, 239, 248
standard deviation, 24
standard monomial, 237, 377
standard normal distribution, 15
Stanley-Reisner ideal, 281
state polytope, 278
state space model, 390
state variables, 390

stationary distribution, 344
statistic, 101
statistical model, 100
stochastic block model, 252, 254
strand symmetric model, 365
strictly concave function, 153
strong law of large numbers, 34
strong maximum, 318, 334
strongly connected, 234, 395
strongly connected component, 234
structural equation model, 325, 326

global identifiability, 380
identifiability, 379

structural zeros, 219
subgraph count statistic, 261
subgraph density, 261
sufficient statistic, 8, 101
supermodular, 318
suspension, 446

symmetric difference, 442
system inputs, 390
system reliability, 280

t-separates, 304
tableau notation, 209
tangent cone, 129, 163
tangent vector, 129
Tarski-Seidenberg theorem, 129
tensor, 385
tensor rank, 385
term order, 50

tie breaker, 235
time series, 103
topological ordering, 300
toric fiber product, 213
toric ideal, 84, 123
toric model, 122
toric variety, 122, 358
trace trick, 108
transition

phylogenetics, 343
transition matrix, 427
transversion, 343, 345
tree, 336
tree cumulants, 363
tree metric, 447
trek, 304, 327
trek rule, 327
triangle inequality, 439
tropical geometry, 452
tropical Grassmannian, 452
tropical semiring, 430
true model, 400
twisted cubic, 44, 123

ultrametric, 450
UPGMA, 454
upstream variables, 323
urn scheme, 221, 226

Vandermonde’s identity, 21
vanishing ideal, 45
variance, 24
variety, 42
vector of counts, 190
vertex, 170
very affine variety, 150
Viterbi algorithm, 428, 429, 431, 437

weak law of large numbers, 34
weak union axiom, 73
weight order, 50, 235, 274
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weighted linear aberration, 279

Zariski closed, 47
Zariski closure, 47
zero set, 43
zeta function, 411
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