Algebraic Statistics

Seth Sullivant

Algebraic Statistics

Algebraic Statistics

Seth Sullivant

EDITORIAL COMMITTEE

Daniel S. Freed (Chair)
Bjorn Poonen
Gigliola Staffilani
Jeff A. Viaclovsky
2010 Mathematics Subject Classification. Primary 62-01, 14-01, 13P10, 13P15, 14M12, 14M25, 14P10, 14T05, 52B20, 60J10, 62F03, 62H17, 90C10, 92 D 15.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-194

Library of Congress Cataloging-in-Publication Data

Names: Sullivant, Seth, author.
Title: Algebraic statistics / Seth Sullivant.
Description: Providence, Rhode Island : American Mathematical Society, [2018] | Series: Graduate studies in mathematics; volume 194 | Includes bibliographical references and index.
Identifiers: LCCN 2018025744 | ISBN 9781470435172 (alk. paper)
Subjects: LCSH: Mathematical statistics-Textbooks. | Geometry, Algebraic-Textbooks. | AMS: Statistics - Instructional exposition (textbooks, tutorial papers, etc.). msc | Algebraic geometry - Instructional exposition (textbooks, tutorial papers, etc.). msc | Commutative algebra - Computational aspects and applications - Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases). msc | Commutative algebra - Computational aspects and applications - Solving polynomial systems; resultants. msc | Algebraic geometry - Special varieties - Determinantal varieties. msc | Algebraic geometry - Special varieties - Toric varieties, Newton polyhedra. msc | Algebraic geometry - Real algebraic and real analytic geometry Semialgebraic sets and related spaces. msc | Algebraic geometry - Tropical geometry - Tropical geometry. msc | Convex and discrete geometry - Polytopes and polyhedra - Lattice polytopes (including relations with commutative algebra and algebraic geometry). msc | Probability theory and stochastic processes - Markov processes - Markov chains (discrete-time Markov processes on discrete state spaces). msc | Statistics - Parametric inference - Hypothesis testing. msc | Statistics - Multivariate analysis - Contingency tables. msc | Operations research, mathematical programming - Mathematical programming - Integer programming. msc| Biology and other natural sciences - Genetics and population dynamics - Problems related to evolution. msc
Classification: LCC QA276 .S8945 2018 | DDC 519.5-dc23
LC record available at https://lcen.loc.gov/2018025744

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
(c) 2018 by the American Mathematical Society. All rights reserved.

Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

Contents

Preface ix
Chapter 1. Introduction 1
§1.1. Discrete Markov Chain 2
§1.2. Exercises 9
Chapter 2. Probability Primer 11
§2.1. Probability 11
§2.2. Random Variables and their Distributions 17
§2.3. Expectation, Variance, and Covariance 22
§2.4. Multivariate Normal Distribution 30
§2.5. Limit Theorems [33
§2.6. Exercises 37
Chapter 3. Algebra Primer 41
§3.1. Varieties 41
§3.2. Ideals 45
§3.3. Gröbner Bases 49
§3.4. First Applications of Gröbner Bases 55
§3.5. Computational Algebra Vignettes 5
§3.6. Projective Space and Projective Varieties 6.5
§3.7. Exercises 68
Chapter 4. Conditional Independence 71
§4.1. Conditional Independence Models 72
§4.2. Primary Decomposition 79
§4.3. Primary Decomposition of CI Ideals 86
§4.4. Exercises 95
Chapter 5. Statistics Primer 99
§5.1. Statistical Models 99
§5.2. Types of Data 102
§5.3. Parameter Estimation 104
§5.4. Hypothesis Testing 109
§5.5. Bayesian Statistics 113
§5.6. Exercises 116
Chapter 6. Exponential Families 117
§6.1. Regular Exponential Families 118
§6.2. Discrete Regular Exponential Families 121
§6.3. Gaussian Regular Exponential Families 125
§6.4. Real Algebraic Geometry 128
§6.5. Algebraic Exponential Families 132
§6.6. Exercises 134
Chapter 7. Likelihood Inference 137
§7.1. Algebraic Solution of the Score Equations 138
§7.2. Likelihood Geometry 146
§7.3. Concave Likelihood Functions 152
§7.4. Likelihood Ratio Tests 160
§7.5. Exercises 166
Chapter 8. The Cone of Sufficient Statistics 169
§8.1. Polyhedral Geometry 169
§8.2. Discrete Exponential Families 173
§8.3. Gaussian Exponential Families 179
§8.4. Exercises 186
Chapter 9. Fisher's Exact Test 189
§9.1. Conditional Inference 189
§9.2. Markov Bases 194
§9.3. Markov Bases for Hierarchical Models 203
§9.4. Graver Bases and Applications 215
§9.5. Lattice Walks and Primary Decompositions 219
§9.6. Other Sampling Strategies 221
§9.7. Exercises 223
Chapter 10. Bounds on Cell Entries 227
§10.1. Motivating Applications 227
§10.2. Integer Programming and Gröbner Bases 233
§10.3. Quotient Rings and Gröbner Bases 236
§10.4. Linear Programming Relaxations 238
$\S 10.5$. Formulas for Bounds on Cell Entries 244
§10.6. Exercises 248
Chapter 11. Exponential Random Graph Models 251
§11.1. Basic Setup 252
§11.2. The Beta Model and Variants 255
§11.3. Models from Subgraphs Statistics 261
§11.4. Exercises 263
Chapter 12. Design of Experiments 265
§12.1. Designs 266
§12.2. Computations with the Ideal of Points 271
§12.3. The Gröbner Fan and Applications 274
§12.4. Two-level Designs and System Reliability 280
§12.5. Exercises 285
Chapter 13. Graphical Models 287
§13.1. Conditional Independence Description of Graphical Models 287
§13.2. Parametrizations of Graphical Models 294
§13.3. Failure of the Hammersley-Clifford Theorem 305
§13.4. Examples of Graphical Models from Applications 307
§13.5. Exercises 310
Chapter 14. Hidden Variables 313
§14.1. Mixture Models 314
§14.2. Hidden Variable Graphical Models 321
§14.3. The EM Algorithm 329
§14.4. Exercises 333
Chapter 15. Phylogenetic Models 335
§15.1. Trees and Splits 336
§15.2. Types of Phylogenetic Models 339
§15.3. Group-based Phylogenetic Models 347
§15.4. The General Markov Model 358
§15.5. The Allman-Rhodes-Draisma-Kuttler Theorem 365
§15.6. Exercises 368
Chapter 16. Identifiability 371
§16.1. Tools for Testing Identifiability 372
§16.2. Linear Structural Equation Models 379
§16.3. Tensor Methods 385
§16.4. State Space Models 390
§16.5. Exercises 396
Chapter 17. Model Selection and Bayesian Integrals 399
§17.1. Information Criteria 400
§17.2. Bayesian Integrals and Singularities 405
§17.3. The Real Log-Canonical Threshold 410
$\S 17.4$. Information Criteria for Singular Models 418
§17.5. Exercises 422
Chapter 18. MAP Estimation and Parametric Inference 423
§18.1. MAP Estimation General Framework 424
§18.2. Hidden Markov Models and the Viterbi Algorithm 426
§18.3. Parametric Inference and Normal Fans 432
§18.4. Polytope Algebra and Polytope Propogation 435
§18.5. Exercises 437
Chapter 19. Finite Metric Spaces 439
§19.1. Metric Spaces and the Cut Polytope 439
§19.2. Tree Metrics 447
§19.3. Finding an Optimal Tree Metric 453
§19.4. Toric Varieties Associated to Finite Metric Spaces 458
§19.5. Exercises 461
Bibliography 463
Index481

Preface

Algebraic statistics is a relatively young field based on the observation that many questions in statistics are fundamentally problems of algebraic geometry. This observation is now at least twenty years old and the time seems ripe for a comprehensive book that could be used as a graduate textbook on this topic.

Algebraic statistics represents an unusual intersection of mathematical disciplines, and it is rare that a mathematician or statistician would come to work in this area already knowing both the relevant algebraic geometry and statistics. I have tried to provide sufficient background in both algebraic geometry and statistics so that a newcomer to either area would be able to benefit from using the book to learn algebraic statistics. Of course both statistics and algebraic geometry are huge subjects and the book only scratches the surface on either of these disciplines.

I made the conscious decision to introduce algebraic concepts alongside statistical concepts where they can be applied, rather than having long introductory chapters on algebraic geometry, statistics, combinatorial optimization, etc. that must be waded through first, or flipped back to over and over again, before all the pieces are put together. Besides the three introductory chapters on probability, algebra, and statistics (Chapters 2, 3, and 55, respectively), this perspective is followed throughout the text. While this choice might make the book less useful as a reference book on algebraic statistics, I hope that it will make the book more useful as an actual textbook that students and faculty plan to learn from.

Here is a breakdown of material that appears in each chapter in the book.

Chapter 1 is an introductory chapter that shows how ideas from algebra begin to arise when considering elementary problems in statistics. These ideas are illustrated with the simple example of a Markov chain. As statistical and algebraic concepts are introduced the chapter makes forward reference to other sections and chapters in the book where those ideas are highlighted in more depth.

Chapter 2 provides necessary background information in probability theory which is useful throughout the book. This starts from the axioms of probability, works through familiar and important examples of discrete and continuous random variables, and includes limit theorems that are useful for asymptotic results in statistics.

Chapter 3 provides necessary background information in algebra and algebraic geometry, with an emphasis on computational aspects. This starts from definitions of polynomial rings, their ideals, and the associated varieties. Examples are typically drawn from probability theory to begin to show how tools from algebraic geometry can be applied to study families of probability distributions. Some computational examples using computer software packages are given.

Chapter 4 is an in-depth treatment of conditional independence, an important property in probability theory that is essential for the construction of multivariate statistical models. To study implications between conditional independence models, we introduce primary decomposition, an algebraic tool for decomposing solutions of polynomial equations into constituent irreducible pieces.

Chapter 5 provides some necessary background information in statistics. It includes some examples of basic statistical models and hypothesis tests that can be performed in reference to those statistical models. This chapter has significantly fewer theorems than other chapters and is primarily concerned with introducing the philosophy behind various statistical ideas.

Chapter 6 provides a detailed introduction to exponential families, an important general class of statistical models. Exponential families are related to familiar objects in algebraic geometry like toric varieties. Nearly all models that we study in this book arise by taking semialgebraic subsets of the natural parameter space of some exponential family, making these models extremely important for everything that follows. Such models are called algebraic exponential families.

Chapter 7 gives an in-depth treatment of maximum likelihood estimation from an algebraic perspective. For many algebraic exponential families maximum likelihood estimation amounts to solving a system of polynomial equations. For a fixed model and generic data, the number of critical points
of this system is fixed and gives an intrinsic measure of the complexity of calculating maximum likelihood estimates.

Chapter 8 concerns the geometry of the cone of sufficient statistics of an exponential family. This geometry is important for maximum likelihood estimation: maximum likelihood estimates exist in an exponential family if and only if the data lies in the interior of the cone of sufficient statistics. This chapter also introduces techniques from polyhedral and general convex geometry which are useful in subsequent chapters.

Chapter 9 describes Fisher's exact test, a hypothesis test used for discrete exponential families. A fundamental computational problem that arises is that of generating random lattice points from inside of convex polytopes. Various methods are explored including methods that connect the problem to the study of toric ideals. This chapter also introduces the hierarchical models, a special class of discrete exponential family.

Chapter 10 concerns the computation of upper and lower bounds on cell entries in contingency tables given some lower-dimensional marginal totals. One motivation for the problem comes from the sampling problem of Chapter 9: fast methods for computing bounds on cell entries can be used in sequential importance sampling, an alternate strategy for generating random lattice points in polytopes. A second motivation comes from certain data privacy problems associated with contingency tables. The chapter connects these optimization problems to algebraic methods for integer programming.

Chapter 11 describes the exponential random graph models, a family of statistical models used in the analysis of social networks. While these models fit in the framework of the exponential families introduced in Chapter 6, they present a particular challenge for various statistical analyses because they have a large number of parameters and the underlying sample size is small. They also present a novel area of study for application of Fisher's exact test and studying the existence of maximum likelihood estimates.

Chapter 12 concerns the use of algebraic methods for the design of experiments. Specific algebraic tools that are developed include the Gröbner fan of an ideal. Consideration of designs that arise in reliability theory lead to connections with multigraded Hilbert series.

Chapter 13 introduces the graphical statistical models. In graphical models, complex interactions between large collections of random variables are constructed using graphs to specify interactions between subsets of the random variables. A key feature of these models is that they can be specified either by parametric descriptions or via conditional independence constructions. This chapter compares these two perspectives via the primary decompositions from Chapter 4

Chapter 14 provides a general introduction to statistical models with hidden variables. Graphical models with hidden variables are widely used in statistics, but the presence of hidden variables complicates their use. This chapter starts with some basic examples of these constructions, including mixture models. Mixture models are connected to secant varieties in algebraic geometry.

Chapter 15 concerns the study of phylogenetic models, certain hidden variable statistical models used in computational biology. The chapter highlights various algebraic issues involved with studying these models and their equations. The equations that define a phylogenetic model are known as phylogenetic invariants in the literature.

Chapter 16 concerns the identifiability problem for parametric statistical models. Identifiability of model parameters is an important structural feature of a statistical model. Identifiability is studied for graphical models with hidden variables and structural equation models. Tools are also developed for addressing identifiability problems for dynamical systems models.

Chapter 17 concerns the topic of model selection. This is a welldeveloped topic in statistics and machine learning, but becomes complicated in the presence of model singularities that arise when working with models with hidden variables. The mathematical tools to develop corrections come from studying the asymptotics of Bayesian integrals. The issue of nonstandard asymptotics arises precisely at the points of parameter space where the model parameters are not identifiable.

Chapter 18 concerns the geometry of maximum a posteriori (MAP) estimation of the hidden states in a model. This involves performing computations in the tropical semiring. The related parametric inference problem studies how the MAP estimate changes as underlying model parameters change, and is related to problems in convex and tropical geometry.

Chapter 19 is a study of the geometry of finite metric spaces. Of special interest are the set of tree metrics and ultrametrics which play an important role in phylogenetics. More generally, the set of cut metrics are closely related to hierarchical models studied earlier in the book.

There are a number of other books that address topics in algebraic statistics. The first book on algebraic statistics was Pistone, Riccomagno, and Wynn's text PRW01 which is focused on applications of computational commutative algebra to the design of experiments. Pachter and Sturmfels' book PS05 is focused on applications of algebraic statistics to computational biology, specifically phylogenetics and sequence alignment. Studený's book Stu05 is specifically focused on the combinatorics of conditional independence structures. Aoki, Hara, and Takemura AHT12 give a detailed study of Markov bases which we discuss in Chapter 9, Zwiernik
[Zwi16] gives an introductory treatment of tree models from the perspective of real algebraic geometry. Drton, Sturmfels, and I wrote a short book DSS09 based on a week-long short course we gave at the Mathematisches Forschungsinstitut Oberwolfach (MFO). While there are many books in algebraic statistics touching on a variety of topics, this is the first one that gives a broad treatment. I have tried to add sufficient background and provide many examples and exercises so that algebraic statistics might be picked up by a nonexpert.

My first attempt at a book on algebraic statistics was in 2007 with Mathias Drton. That project eventually led to the set of lecture notes DSS09. As part of Mathias's and my first attempt at writing, we produced two background chapters on probability and algebra which were not used in [DSS09] and which Mathias has graciously allowed me to use here.

I am grateful to a number of readers who provided feedback on early drafts of the book. These include Elizabeth Allman, Carlos Améndola Cerón, Daniel Bernstein, Jane Coons, Mathias Drton, Eliana Duarte, Elizabeth Gross, Serkan Hosten, David Kahle, Thomas Kahle, Kaie Kubjas, Christian Lehn, Colby Long, František Matúš, Nicolette Meshkat, John Rhodes, Elina Robeva, Anna Seigal, Rainer Sinn, Milan Studený, Ruriko Yoshida, as well as four anonymous reviewers. Tim Römer at the University Osnabrück also organized a reading course on the material that provided extensive feedback. David Kahle provided extensive help in preparing examples of statistical analyses using R. My research during the writing of this book has been generously supported by the David and Lucille Packard Foundation and the US National Science Foundation under grants DMS 0954865 and DMS 1615660.

Bibliography

$\left[\mathrm{ABB}^{+} 17\right]$ Carlos Améndola, Nathan Bliss, Isaac Burke, Courtney R. Gibbons, Martin Helmer, Serkan Hoşten, Evan D. Nash, Jose Israel Rodriguez, and Daniel Smolkin, The maximum likelihood degree of toric varieties, arXiv:1703.02251, 2017.
[AFS16] Carlos Améndola, Jean-Charles Faugère, and Bernd Sturmfels, Moment varieties of Gaussian mixtures, J. Algebr. Stat. 7 (2016), no. 1, 14-28, DOI 10.18409/jas.v7i1.42. MR3529332
[Agr13] Alan Agresti, Categorical data analysis, 3rd ed., Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley \& Sons], Hoboken, NJ, 2013. MR3087436
[AGZV88] V. I. Arnol'd, S. M. Gusĕ̆n-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. II: Monodromy and asymptotics of integrals; Translated from the Russian by Hugh Porteous; translation revised by the authors and James Montaldi, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988. MR966191
[AH85] David F. Andrews and A. M. Herzberg, Data, Springer, New York, 1985.
[AHT12] Satoshi Aoki, Hisayuki Hara, and Akimichi Takemura, Markov bases in algebraic statistics, Springer Series in Statistics, Springer, New York, 2012. MR2961912
[AK06] Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96 (2006), no. 1, 38-49, DOI 10.1016/j.jctb.2005.06.004. MR2185977
[Aka74] Hirotugu Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control AC-19 (1974), 716-723. MR 0423716
[AM00] Srinivas M. Aji and Robert J. McEliece, The generalized distributive law, IEEE Trans. Inform. Theory 46 (2000), no. 2, 325-343, DOI 10.1109/18.825794. MR1748973
[AMP97] Steen A. Andersson, David Madigan, and Michael D. Perlman, A characterization of Markov equivalence classes for acyclic digraphs, Ann. Statist. 25 (1997), no. 2, 505-541, DOI 10.1214/aos/1031833662. MR1439312
[AMP01] Steen A. Andersson, David Madigan, and Michael D. Perlman, Alternative Markov properties for chain graphs, Scand. J. Statist. 28 (2001), no. 1, 33-85, DOI 10.1111/1467-9469.00224. MR 1844349
[AMR09] Elizabeth S. Allman, Catherine Matias, and John A. Rhodes, Identifiability of parameters in latent structure models with many observed variables, Ann. Statist. 37 (2009), no. 6A, 3099-3132, DOI 10.1214/09-AOS689. MR 2549554
[And63] George E. Andrews, A lower bound for the volume of strictly convex bodies with many boundary lattice points, Trans. Amer. Math. Soc. 106 (1963), 270-279, DOI 10.2307/1993769. MR0143105
[APRS11] Elizabeth Allman, Sonja Petrovic, John Rhodes, and Seth Sullivant, Identifiability of two-tree mixtures for group-based models, IEEE/ACM Transactions on Computational Biology and Bioinformatics 8 (2011), 710-722.
[AR06] Elizabeth S. Allman and John A. Rhodes, The identifiability of tree topology for phylogenetic models, including covarion and mixture models, J. Comput. Biol. 13 (2006), no. 5, 1101-1113, DOI 10.1089/cmb.2006.13.1101. MR2255411
[AR08] Elizabeth S. Allman and John A. Rhodes, Phylogenetic ideals and varieties for the general Markov model, Adv. in Appl. Math. 40 (2008), no. 2, 127-148, DOI 10.1016/j.aam.2006.10.002. MR2388607
[Ard04] Federico Ardila, Subdominant matroid ultrametrics, Ann. Comb. 8 (2004), no. 4, 379-389, DOI 10.1007/s00026-004-0227-1. MR2112691
[ARS17] Elizabeth S. Allman, John A. Rhodes, and Seth Sullivant, Statistically consistent k-mer methods for phylogenetic tree reconstruction, J. Comput. Biol. 24 (2017), no. 2, 153-171, DOI 10.1089/cmb.2015.0216. MR3607847
[ARSV15] Elizabeth S. Allman, John A. Rhodes, Elena Stanghellini, and Marco Valtorta, Parameter identifiability of discrete Bayesian networks with hidden variables, J. Causal Inference 3 (2015), 189-205.
[ARSZ15] Elizabeth S. Allman, John A. Rhodes, Bernd Sturmfels, and Piotr Zwiernik, Tensors of nonnegative rank two, Linear Algebra Appl. 473 (2015), 37-53, DOI 10.1016/j.laa.2013.10.046. MR3338324
[ART14] Elizabeth S. Allman, John A. Rhodes, and Amelia Taylor, A semialgebraic description of the general Markov model on phylogenetic trees, SIAM J. Discrete Math. 28 (2014), no. 2, 736-755, DOI 10.1137/120901568. MR3206983
[AT03] Satoshi Aoki and Akimichi Takemura, Minimal basis for a connected Markov chain over $3 \times 3 \times K$ contingency tables with fixed two-dimensional marginals, Aust. N. Z. J. Stat. 45 (2003), no. 2, 229-249, DOI 10.1111/1467-842X.00278. MR 1983834
[AW05] Miki Aoyagi and Sumio Watanabe, Stochastic complexities of reduced rank regression in Bayesian estimation, Neural Networks 18 (2005), no. 7, 924-933.
[Bar35] M. S. Bartlett, Contingency table interactions, Supplement to J. Roy. Statist. Soc. 2 (1935), no. 2, 248-252.
$\left[\mathrm{BBDL}^{+} 15\right]$ V. Baldoni, N. Berline, J. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, M. Vergne, and J. Wu, A user's guide for LattE integrale v1.7.3, available from URL http://www.math.ucdavis.edu/~latte/, 2015.
[BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509
[BD10] Joseph Blitzstein and Persi Diaconis, A sequential importance sampling algorithm for generating random graphs with prescribed degrees, Internet Math. 6 (2010), no. 4, 489-522, DOI 10.1080/15427951.2010.557277. MR 2809836
[Bes74] Julian Besag, Spatial interaction and the statistical analysis of lattice systems, J. Roy. Statist. Soc. Ser. B 36 (1974), 192-236. With discussion by D. R. Cox, A. G. Hawkes, P. Clifford, P. Whittle, K. Ord, R. Mead, J. M. Hammersley, and M. S. Bartlett, and with a reply by the author. MR 0373208
[BHSW] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Bertini: Software for numerical algebraic geometry, available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5.
[BHSW13] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler, Numerically solving polynomial systems with Bertini, Software, Environments, and Tools, vol. 25, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. MR3155500
[Bil95] Patrick Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, Inc., New York, 1995. MR1324786
[BJL96] Wayne W. Barrett, Charles R. Johnson, and Raphael Loewy, The real positive definite completion problem: cycle completability, Mem. Amer. Math. Soc. 122 (1996), no. 584, viii+69, DOI 10.1090/memo/0584. MR 1342017
[BJT93] Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga, The real positive definite completion problem for a simple cycle, Linear Algebra Appl. 192 (1993), 3-31, DOI 10.1016/0024-3795(93)90234-F. MR 1236734
[BL16] Daniel Bernstein and Colby Long, L-infinity optimization in tropical geometry and phylogenetics, arXiv:1606.03702, 2016.
[BM86] Francisco Barahona and Ali Ridha Mahjoub, On the cut polytope, Math. Programming 36 (1986), no. 2, 157-173, DOI 10.1007/BF02592023. MR 866986
$\left[\mathrm{BMAO}^{+} 10\right]$ Yael Berstein, Hugo Maruri-Aguilar, Shmuel Onn, Eva Riccomagno, and Henry Wynn, Minimal average degree aberration and the state polytope for experimental designs, Ann. Inst. Statist. Math. 62 (2010), no. 4, 673-698, DOI 10.1007/s10463-010-0291-8. MR2652311
[BMS04] David Bryant, Vincent Moulton, and Andreas Spillner, Neighbornet: an agglomerative method for the construction of planar phylogenetic networks, Mol. Biol. Evol. 21 (2004), 255-265.
[BN78] Ole Barndorff-Nielsen, Information and exponential families in statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, Ltd., Chichester, 1978. MR489333
[BO11] Daniel J. Bates and Luke Oeding, Toward a salmon conjecture, Exp. Math. 20 (2011), no. 3, 358-370, DOI 10.1080/10586458.2011.576539. MR2836258
[Boc15] Brandon Bock, Algebraic and combinatorial properties of statistical models for ranked data, Ph.D. thesis, North Carolina State University, 2015.
[Bos47] R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhyā 8 (1947), 107-166. MR0026781
[BP02] Carlos Brito and Judea Pearl, A new identification condition for recursive models with correlated errors, Struct. Equ. Model. 9 (2002), no. 4, 459-474, DOI 10.1207/S15328007SEM0904_1. MR1930449
[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, 2nd ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006. MR 2248869
[Bro86] Lawrence D. Brown, Fundamentals of statistical exponential families with applications in statistical decision theory, Institute of Mathematical Statistics Lecture Notes-Monograph Series, vol. 9, Institute of Mathematical Statistics, Hayward, CA, 1986. MR882001
[Bry05] David Bryant, Extending tree models to splits networks, Algebraic statistics for computational biology, Cambridge Univ. Press, New York, 2005, pp. 322-334, DOI 10.1017/CBO9780511610684.021. MR2205882
[BS09] N. Beerenwinkel and S. Sullivant, Markov models for accumulating mutations, Biometrika 96 (2009), no. 3, 645-661, DOI 10.1093/biomet/asp023. MR2538763
[BS17a] Daniel Irving Bernstein and Seth Sullivant, Normal binary hierarchical models, Exp. Math. 26 (2017), no. 2, 153-164, DOI 10.1080/10586458.2016.1142911. MR3623866
[BS17b] Grigoriy Blekherman and Rainer Sinn, Maximum likelihood threshold and generic completion rank of graphs, 2017.
[BSAD07] G. Bellu, M.P. Saccomani, S. Audoly, and L. D'Angió, Daisy: a new software tool to test global identifiability of biological and physiological systems, Computer Methods and Programs in Biomedicine 88 (2007), 52-61.
[BT97] Dimitris Bertsimas and John Tsitsiklis, Introduction to linear optimization, 1st ed., Athena Scientific, 1997.
[Buh93] Søren L. Buhl, On the existence of maximum likelihood estimators for graphical Gaussian models, Scand. J. Statist. 20 (1993), no. 3, 263-270. MR 1241392
[Bun74] Peter Buneman, A note on the metric properties of trees, J. Combinatorial Theory Ser. B 17 (1974), 48-50. MR0363963
[Cam97] J. E. Campbell, On a law of combination of operators (second paper), Proc. Lond. Math. Soc. 29 (1897/98), 14-32, DOI 10.1112/plms/s1-29.1.14. MR1576434
[Cav78] James A. Cavender, Taxonomy with confidence, Math. Biosci. 40 (1978), no. 3-4, 271-280, DOI 10.1016/0025-5564(78)90089-5. MR0503936
[CDHL05] Yuguo Chen, Persi Diaconis, Susan P. Holmes, and Jun S. Liu, Sequential Monte Carlo methods for statistical analysis of tables, J. Amer. Statist. Assoc. 100 (2005), no. 469, 109-120, DOI 10.1198/016214504000001303. MR2156822
[CDS06] Yuguo Chen, Ian H. Dinwoodie, and Seth Sullivant, Sequential importance sampling for multiway tables, Ann. Statist. 34 (2006), no. 1, 523-545, DOI 10.1214/009053605000000822. MR 2275252
[CF87] James A. Cavender and Joseph Felsenstein, Invariants of phylogenies: a simple case with discrete states, J. Classif. 4 (1987), 57-71.
[CF00] Victor Chepoi and Bernard Fichet, l_{∞}-approximation via subdominants, J. Math. Psych. 44 (2000), no. 4, 600-616, DOI 10.1006/jmps.1999.1270. MR 1804236
[Che72] N. N. Chentsov, Statisticheskie reshayushchie pravila i optimal'nye vyvody (Russian), Izdat. "Nauka", Moscow, 1972. MR0343398
[Chr97] Ronald Christensen, Log-linear models and logistic regression, 2nd ed., Springer Texts in Statistics, Springer-Verlag, New York, 1997. MR 1633357
[CHS17] James Cussens, David Haws, and Milan Studený, Polyhedral aspects of score equivalence in Bayesian network structure learning, Math. Program. 164 (2017), no. 1-2, Ser. A, 285-324, DOI 10.1007/s10107-016-1087-2. MR3661033
[Chu01] Kai Lai Chung, A course in probability theory, 3rd ed., Academic Press, Inc., San Diego, CA, 2001. MR 1796326
[Cli90] Peter Clifford, Markov random fields in statistics, Disorder in physical systems, Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 19-32. MR1064553
[CLO05] David A. Cox, John Little, and Donal O'Shea, Using algebraic geometry, 2nd ed., Graduate Texts in Mathematics, vol. 185, Springer, New York, 2005. MR2122859
[CLO07] David Cox, John Little, and Donal O'Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007. MR2290010
[CM08] Imre Csiszár and František Matúš, Generalized maximum likelihood estimates for exponential families, Probab. Theory Related Fields 141 (2008), no. 1-2, 213-246, DOI 10.1007/s00440-007-0084-z. MR 2372970
[CO12] Luca Chiantini and Giorgio Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM J. Matrix Anal. Appl. 33 (2012), no. 3, 1018-1037, DOI 10.1137/110829180. MR3023462
[Con94] Aldo Conca, Gröbner bases of ideals of minors of a symmetric matrix, J. Algebra 166 (1994), no. 2, 406-421, DOI 10.1006/jabr.1994.1160. MR 1279266
[CS05] Marta Casanellas and Seth Sullivant, The strand symmetric model, Algebraic statistics for computational biology, Cambridge Univ. Press, New York, 2005, pp. 305321, DOI 10.1017/CBO9780511610684.020. MR 2205881
[CT65] James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297-301, DOI 10.2307/2003354. MR0178586
[CT91] Pasqualina Conti and Carlo Traverso, Buchberger algorithm and integer programming, Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., vol. 539, Springer, Berlin, 1991, pp. 130-139, DOI 10.1007/3-540-54522-0_102. MR1229314
[CTP14] Bryant Chen, Jin Tian, and Judea Pearl, Testable implications of linear structural equations models, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI) (Quebec City, Canada), July 27-31, 2014.
[Day87] William H. E. Day, Computational complexity of inferring phylogenies from dissimilarity matrices, Bull. Math. Biol. 49 (1987), no. 4, 461-467, DOI 10.1016/S0092-8240(87)80007-1. MR 908160
[DDt87] I. R. Dunsmore, F. Daly, and the M345 course team, M345 statistical methods, unit 9: Categorical data, Milton Keynes: The Open University, 1987.
[DE85] Persi Diaconis and Bradley Efron, Testing for independence in a two-way table: new interpretations of the chi-square statistic, Ann. Statist. 13 (1985), no. 3, 845913, DOI 10.1214/aos/1176349634. MR803747
[DEKM98] Richard M. Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison, Biological sequence analysis: Probabilistic models of proteins and nucleic acids, Cambridge University Press, 1998.
[DES98] Persi Diaconis, David Eisenbud, and Bernd Sturmfels, Lattice walks and primary decomposition, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math., vol. 161, Birkhäuser Boston, Boston, MA, 1998, pp. 173-193. MR1627343
[DF80] Persi Diaconis and David Freedman, Finite exchangeable sequences, Ann. Probab. 8 (1980), no. 4, 745-764. MR577313
[DF00] Adrian Dobra and Stephen E. Fienberg, Bounds for cell entries in contingency tables given marginal totals and decomposable graphs, Proc. Natl. Acad. Sci. USA 97 (2000), no. 22, 11885-11892, DOI 10.1073/pnas.97.22.11885. MR 1789526
[DF01] Adrian Dobra and Stephen E. Fienberg, Bounds for cell entries in contingency tables induced by fixed marginal totals, UNECE Statistical Journal 18 (2001), 363371.
[DFS11] Mathias Drton, Rina Foygel, and Seth Sullivant, Global identifiability of linear structural equation models, Ann. Statist. 39 (2011), no. 2, 865-886, DOI 10.1214/10-AOS859. MR 2816341
[DGPS16] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, SinGULAR 4-1-0 - A computer algebra system for polynomial computations, http:// www.singular.uni-kl.de, 2016.
[DH16] Noah S. Daleo and Jonathan D. Hauenstein, Numerically deciding the arithmetically Cohen-Macaulayness of a projective scheme, J. Symbolic Comput. 72 (2016), 128-146, DOI 10.1016/j.jsc.2015.01.001. MR 3369053
$\left[\mathrm{DHO}^{+} 16\right]$ Jan Draisma, Emil Horobet, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R. Thomas, The Euclidean distance degree of an algebraic variety, Found. Comput. Math. 16 (2016), no. 1, 99-149, DOI 10.1007/s10208-014-9240-x. MR3451425
$\left[\mathrm{DHW}^{+} 06\right]$ Colin N. Dewey, Peter M. Huggins, Kevin Woods, Bernd Sturmfels, and Lior Pachter, Parametric alignment of Drosophila genomes, PLOS Computational Biology 2 (2006), e73.
[Dia77] Persi Diaconis, Finite forms of de Finetti's theorem on exchangeability, Synthese 36 (1977), no. 2, 271-281, DOI 10.1007/BF00486116. MR0517222
[Dia88] Persi Diaconis, Group representations in probability and statistics, Institute of Mathematical Statistics Lecture Notes-Monograph Series, vol. 11, Institute of Mathematical Statistics, Hayward, CA, 1988. MR 964069
[Dir61] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76, DOI 10.1007/BF02992776. MR0130190
[DJLS07] Elena S. Dimitrova, Abdul Salam Jarrah, Reinhard Laubenbacher, and Brandilyn Stigler, A Gröbner fan method for biochemical network modeling, ISSAC 2007, ACM, New York, 2007, pp. 122-126, DOI 10.1145/1277548.1277566. MR2396193
[DK02] Harm Derksen and Gregor Kemper, Computational invariant theory, Encyclopaedia of Mathematical Sciences, vol. 130, Springer-Verlag, Berlin, 2002. MR1918599
[DK09] Jan Draisma and Jochen Kuttler, On the ideals of equivariant tree models, Math. Ann. 344 (2009), no. 3, 619-644, DOI 10.1007/s00208-008-0320-6. MR2501304
[DL97] Michel Marie Deza and Monique Laurent, Geometry of cuts and metrics, Algorithms and Combinatorics, vol. 15, Springer-Verlag, Berlin, 1997. MR 1460488
[DLHK13] Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe, Algebraic and geometric ideas in the theory of discrete optimization, MOS-SIAM Series on Optimization, vol. 14, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013. MR3024570
[DLO06] Jesús A. De Loera and Shmuel Onn, Markov bases of three-way tables are arbitrarily complicated, J. Symbolic Comput. 41 (2006), no. 2, 173-181, DOI 10.1016/j.jsc.2005.04.010. MR2197153
[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 1, 1-38. MR0501537
[DLWZ17] Mathias Drton, Shaowei Lin, Luca Weihs, and Piotr Zwiernik, Marginal likelihood and model selection for Gaussian latent tree and forest models, Bernoulli 23 (2017), no. 2, 1202-1232, DOI 10.3150/15-BEJ775. MR3606764
[DMM10] Alicia Dickenstein, Laura Felicia Matusevich, and Ezra Miller, Combinatorics of binomial primary decomposition, Math. Z. 264 (2010), no. 4, 745-763, DOI 10.1007/s00209-009-0487-x. MR2593293
[Dob02] Adrian Dobra, Statistical tools for disclosure limitation in multi-way contingency tables, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)-Carnegie Mellon University. MR2703763
[Dob03] Adrian Dobra, Markov bases for decomposable graphical models, Bernoulli 9 (2003), no. 6, 1093-1108, DOI 10.3150/bj/1072215202. MR2046819
[DP17] Mathias Drton and Martyn Plummer, A Bayesian information criterion for singular models, J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 (2017), no. 2, 323-380, DOI 10.1111/rssb.12187. MR3611750
[DR72] J. N. Darroch and D. Ratcliff, Generalized iterative scaling for log-linear models, Ann. Math. Statist. 43 (1972), 1470-1480, DOI 10.1214/aoms/1177692379. MR0345337
[DR08] Mathias Drton and Thomas S. Richardson, Graphical methods for efficient likelihood inference in Gaussian covariance models, J. Mach. Learn. Res. 9 (2008), 893-914. MR2417257
[Drt09a] Mathias Drton, Discrete chain graph models, Bernoulli 15 (2009), no. 3, 736-753, DOI 10.3150/08-BEJ172. MR2555197
[Drt09b] Mathias Drton, Likelihood ratio tests and singularities, Ann. Statist. 37 (2009), no. 2, 979-1012, DOI 10.1214/07-AOS571. MR2502658
[DS98] Persi Diaconis and Bernd Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), no. 1, 363-397, DOI 10.1214/aos/1030563990. MR 1608156
[DS04] Adrian Dobra and Seth Sullivant, A divide-and-conquer algorithm for generating Markov bases of multi-way tables, Comput. Statist. 19 (2004), no. 3, 347-366, DOI 10.1007/BF03372101. MR2096204
[DS13] Ruth Davidson and Seth Sullivant, Polyhedral combinatorics of UPGMA cones, Adv. in Appl. Math. 50 (2013), no. 2, 327-338, DOI 10.1016/j.aam.2012.10.002. MR3003350
[DS14] Ruth Davidson and Seth Sullivant, Distance-based phylogenetic methods around a polytomy, IEEE/ACM Transactions on Computational Biology and Bioinformatics 11 (2014), 325-335.
[DSS07] Mathias Drton, Bernd Sturmfels, and Seth Sullivant, Algebraic factor analysis: tetrads, pentads and beyond, Probab. Theory Related Fields 138 (2007), no. 3-4, 463-493, DOI 10.1007/s00440-006-0033-2. MR2299716
[DSS09] Mathias Drton, Bernd Sturmfels, and Seth Sullivant, Lectures on algebraic statistics, Oberwolfach Seminars, vol. 39, Birkhäuser Verlag, Basel, 2009. MR2723140
[DW16] Mathias Drton and Luca Weihs, Generic identifiability of linear structural equation models by ancestor decomposition, Scand. J. Stat. 43 (2016), no. 4, 1035-1045, DOI 10.1111/sjos.12227. MR 3573674
[Dwo06] Cynthia Dwork, Differential privacy, Automata, languages and programming. Part II, Lecture Notes in Comput. Sci., vol. 4052, Springer, Berlin, 2006, pp. 1-12, DOI 10.1007/11787006_1. MR2307219
[DY10] Mathias Drton and Josephine Yu, On a parametrization of positive semidefinite matrices with zeros, SIAM J. Matrix Anal. Appl. 31 (2010), no. 5, 2665-2680, DOI 10.1137/100783170. MR2740626
[EAM95] Robert J. Elliott, Lakhdar Aggoun, and John B. Moore, Hidden Markov models, Applications of Mathematics (New York), vol. 29, Springer-Verlag, New York, 1995. Estimation and control. MR 1323178
[EFRS06] Nicholas Eriksson, Stephen E. Fienberg, Alessandro Rinaldo, and Seth Sullivant, Polyhedral conditions for the nonexistence of the MLE for hierarchical log-linear models, J. Symbolic Comput. 41 (2006), no. 2, 222-233, DOI 10.1016/j.jsc.2005.04.003. MR2197157
[EG60] Paul Erdos and Tibor Gallai, Gráfok elóirt fokszámú pontokkal, Matematikai Lapok 11 (1960), 264-274.
[EGG89] Michael J. Evans, Zvi Gilula, and Irwin Guttman, Latent class analysis of twoway contingency tables by Bayesian methods, Biometrika 76 (1989), no. 3, 557-563, DOI 10.1093/biomet/76.3.557. MR 1040648
[EHtK16] Rob H. Eggermont, Emil Horobet, and Kaie Kubjas, Algebraic boundary of matrices of nonnegative rank at most three, Linear Algebra Appl. 508 (2016), 62-80, DOI 10.1016/j.laa.2016.06.036. MR 3542981
[Eis95] David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR1322960
[EKS14] Alexander Engström, Thomas Kahle, and Seth Sullivant, Multigraded commutative algebra of graph decompositions, J. Algebraic Combin. 39 (2014), no. 2, 335-372, DOI 10.1007/s10801-013-0450-0. MR3159255
[EMT16] Péter L. Erdős, István Miklós, and Zoltán Toroczkai, New classes of degree sequences with fast mixing swap Markov chain sampling, Combin. Probab. Comput. 27 (2018), no. 2, 186-207, DOI 10.1017/S0963548317000499. MR3778199
[EN11] Alexander Engström and Patrik Norén, Polytopes from subgraph statistics (English, with English and French summaries), 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), Discrete Math. Theor. Comput. Sci. Proc., AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011, pp. 305-316. MR2820719
[Eng11] Alexander Engström, Cut ideals of K_{4}-minor free graphs are generated by quadrics, Michigan Math. J. 60 (2011), no. 3, 705-714, DOI $10.1307 / \mathrm{mmj} / 1320763056$. MR2861096
[Eri05] Nicholas Eriksson, Tree construction using singular value decomposition, Algebraic statistics for computational biology, Cambridge Univ. Press, New York, 2005, pp. 347-358, DOI 10.1017/CBO9780511610684.023. MR2205884
[ES93] Steven N. Evans and T. P. Speed, Invariants of some probability models used in phylogenetic inference, Ann. Statist. 21 (1993), no. 1, 355-377, DOI 10.1214/aos/1176349030. MR1212181
[ES96] David Eisenbud and Bernd Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), no. 1, 1-45, DOI 10.1215/S0012-7094-96-08401-X. MR 1394747
[EW07] Sergi Elizalde and Kevin Woods, Bounds on the number of inference functions of a graphical model, Statist. Sinica 17 (2007), no. 4, 1395-1415. MR2398601
[EY08] Kord Eickmeyer and Ruriko Yoshida, Geometry of neighbor-joining algorithm for small trees, Proceedings of Algebraic Biology, Springer LNC Series, 2008, pp. 8296.
[Far73] James S. Farris, A probability model for inferring evolutionary trees, Syst. Zool. 22 (1973), 250-256.
[FBSS02] David Fernández-Baca, Timo Seppäläinen, and Giora Slutzki, Bounds for parametric sequence comparison, Discrete Appl. Math. 118 (2002), no. 3, 181-198, DOI 10.1016/S0166-218X(01)00206-2. MR1892967
[FDD12] Rina Foygel, Jan Draisma, and Mathias Drton, Half-trek criterion for generic identifiability of linear structural equation models, Ann. Statist. 40 (2012), no. 3, 1682-1713, DOI 10.1214/12-AOS1012. MR3015040
[Fel81] Joseph Felsenstein, Evolutionary trees from dna sequences: a maximum likelihood approach, J. Molecular Evolution 17 (1981), 368-376.
[Fel03] Joseph Felsenstein, Inferring phylogenies, Sinauer Associates, Inc., Sunderland, 2003.
[FG12] Shmuel Friedland and Elizabeth Gross, A proof of the set-theoretic version of the salmon conjecture, J. Algebra 356 (2012), 374-379, DOI 10.1016/j.jalgebra.2012.01.017. MR 2891138
[FHKT08] Conor Fahey, Serkan Hoşten, Nathan Krieger, and Leslie Timpe, Least squares methods for equidistant tree reconstruction, arXiv:0808.3979, 2008.
[Fin10] Audrey Finkler, Goodness of fit statistics for sparse contingency tables, arXiv:1006.2620, 2010.
[Fin11] Alex Fink, The binomial ideal of the intersection axiom for conditional probabilities, J. Algebraic Combin. 33 (2011), no. 3, 455-463, DOI 10.1007/s10801-010-0253-5. MR 2772542
[Fis66] Franklin M. Fisher, The identification problem in econometrics, McGraw-Hill, 1966.
[FKS16] Stefan Forcey, Logan Keefe, and William Sands, Facets of the balanced minimal evolution polytope, J. Math. Biol. 73 (2016), no. 2, 447-468, DOI 10.1007/s00285-015-0957-1. MR 3521111
[FKS17] Stefan Forcey, Logan Keefe, and William Sands, Split-facets for balanced minimal evolution polytopes and the permutoassociahedron, Bull. Math. Biol. 79 (2017), no. 5, 975-994, DOI 10.1007/s11538-017-0264-7. MR3634386
[FPR11] Stephen E. Fienberg, Sonja Petrović, and Alessandro Rinaldo, Algebraic statistics for p_{1} random graph models: Markov bases and their uses, Looking back, Lect. Notes Stat. Proc., vol. 202, Springer, New York, 2011, pp. 21-38, DOI 10.1007/978-1-4419-9389-2_2. MR2856692
[FR07] Stephen E. Fienberg and Alessandro Rinaldo, Three centuries of categorical data analysis: log-linear models and maximum likelihood estimation, J. Statist. Plann. Inference 137 (2007), no. 11, 3430-3445, DOI 10.1016/j.jspi.2007.03.022. MR2363267
[FS08] Stephen E. Fienberg and Aleksandra B. Slavković, A survey of statistical approaches to preserving confidentiality of contingency table entries, PrivacyPreserving Data Mining: Models and Algorithms, Springer, 2008, pp. 291-312.
[Gal57] David Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957), 1073-1082. MR0091855
[GBN94] D. Gusfield, K. Balasubramanian, and D. Naor, Parametric optimization of sequence alignment, Algorithmica 12 (1994), no. 4-5, 312-326, DOI 10.1007/BF01185430. MR1289485
[GJdSW84] Robert Grone, Charles R. Johnson, Eduardo M. de Sá, and Henry Wolkowicz, Positive definite completions of partial Hermitian matrices, Linear Algebra Appl. 58 (1984), 109-124, DOI 10.1016/0024-3795(84)90207-6. MR739282
[GKZ94] I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory \& Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
[GMS06] Dan Geiger, Christopher Meek, and Bernd Sturmfels, On the toric algebra of graphical models, Ann. Statist. 34 (2006), no. 3, 1463-1492, DOI 10.1214/009053606000000263. MR2278364
[GPPS13] Luis David García-Puente, Sonja Petrović, and Seth Sullivant, Graphical models, J. Softw. Algebra Geom. 5 (2013), 1-7, DOI 10.2140/jsag.2013.5.1. MR3073716
[GPS17] Elizabeth Gross, Sonja Petrović, and Despina Stasi, Goodness of fit for log-linear network models: dynamic Markov bases using hypergraphs, Ann. Inst. Statist. Math. 69 (2017), no. 3, 673-704, DOI 10.1007/s10463-016-0560-2. MR3635481
[GPSS05] Luis David Garcia, Michael Stillman, and Bernd Sturmfels, Algebraic geometry of Bayesian networks, J. Symbolic Comput. 39 (2005), no. 3-4, 331-355, DOI 10.1016/j.jsc.2004.11.007. MR2168286
[Gre63] Ulf Grenander, Probabilities on algebraic structures, John Wiley \& Sons, Inc., New York-London; Almqvist \& Wiksell, Stockholm-Göteborg-Uppsala, 1963. MR0206994
[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at https://faculty.math.illinois.edu/ Macaulay2/.
[GS18] Elizabeth Gross and Seth Sullivant, The maximum likelihood threshold of a graph, Bernoulli 24 (2018), no. 1, 386-407, DOI 10.3150/16-BEJ881. MR 3706762
[GT92] Sun Wei Guo and Elizabeth A. Thompson, Performing the exact test of HardyWeinberg proportions for multiple alleles, Biometrics 48 (1992), 361-372.
[Hac79] L. G. Hačijan, A polynomial algorithm in linear programming (Russian), Dokl. Akad. Nauk SSSR 244 (1979), no. 5, 1093-1096. MR522052
[Har08] G. H. Hardy, Mendelian proportions in a mixed population, Science XXVIII (1908), 49-50.
[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York-Heidelberg, 1977. MR0463157
[Har95] Joe Harris, Algebraic geometry: A first course, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. Corrected reprint of the 1992 original. MR1416564
[Has07] Brendan Hassett, Introduction to algebraic geometry, Cambridge University Press, Cambridge, 2007. MR2324354
[HAT12] Hisayuki Hara, Satoshi Aoki, and Akimichi Takemura, Running Markov chain without Markov basis, Harmony of Gröbner bases and the modern industrial society, World Sci. Publ., Hackensack, NJ, 2012, pp. 45-62, DOI 10.1142/9789814383462_0005. MR2986873
[Hau88] Dominique M. A. Haughton, On the choice of a model to fit data from an exponential family, Ann. Statist. 16 (1988), no. 1, 342-355, DOI 10.1214/aos/1176350709. MR924875
$\left[\mathrm{HCD}^{+} 06\right]$ Mark Huber, Yuguo Chen, Ian Dinwoodie, Adrian Dobra, and Mike Nicholas, Monte Carlo algorithms for Hardy-Weinberg proportions (English, with English and French summaries), Biometrics 62 (2006), no. 1, 49-53, 314, DOI 10.1111/j.1541-0420.2005.00418.x. MR 2226555
[HEL12] Søren Højsgaard, David Edwards, and Steffen Lauritzen, Graphical models with R, Use R!, Springer, New York, 2012. MR 2905395
[HH03] Raymond Hemmecke and Ralf Hemmecke, 4ti2 - Software for computation of Hilbert bases, Graver bases, toric Gröbner bases, and more, 2003, available at http://www.4ti2.de.
[HH11] Valerie Hower and Christine E. Heitsch, Parametric analysis of RNA branching configurations, Bull. Math. Biol. 73 (2011), no. 4, 754-776, DOI 10.1007/s11538-010-9607-3. MR2785143
[HHY11] David C. Haws, Terrell L. Hodge, and Ruriko Yoshida, Optimality of the neighbor joining algorithm and faces of the balanced minimum evolution polytope, Bull. Math. Biol. 73 (2011), no. 11, 2627-2648, DOI 10.1007/s11538-011-9640-x. MR2855185
[HKaY85] Masami Hasegawa, Hirohisa Kishino, and Taka aki Yano, Dating of human-ape splitting by a molecular clock of mitochondrial dna, J. Molecular Evolution 22 (1985), 160-174.
[HKS05] Serkan Hoşten, Amit Khetan, and Bernd Sturmfels, Solving the likelihood equations, Found. Comput. Math. 5 (2005), no. 4, 389-407, DOI 10.1007/s10208-004-0156-8. MR2189544
[HL81] Paul W. Holland and Samuel Leinhardt, An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc. 76 (1981), no. 373, 33-65. With comments by Ronald L. Breiger, Stephen E. Fienberg, Stanley Wasserman, Ove Frank and Shelby J. Haberman, and a reply by the authors. MR608176
[HLS12] Raymond Hemmecke, Silvia Lindner, and Milan Studený, Characteristic imsets for learning Bayesian network structure, Internat. J. Approx. Reason. 53 (2012), no. 9, 1336-1349, DOI 10.1016/j.ijar.2012.04.001. MR2994270
[HN09] Raymond Hemmecke and Kristen A. Nairn, On the Gröbner complexity of matrices, J. Pure Appl. Algebra 213 (2009), no. 8, 1558-1563, DOI 10.1016/j.jpaa.2008.11.044. MR2517992
[HOPY17] Hoon Hong, Alexey Ovchinnikov, Gleb Pogudin, and Chee Yap, Global identifiability of differential models, available at https://cs.nyu.edu/~pogudin/, 2017.
[HP96] Mike D. Hendy and David Penny, Complete families of linear invariants for some stochastic models of sequence evolution, with and without molecular clock assumption, J. Comput. Biol. 3 (1996), 19-32.
[HS00] Serkan Hoşten and Jay Shapiro, Primary decomposition of lattice basis ideals, J. Symbolic Comput. 29 (2000), no. 4-5, 625-639, DOI 10.1006/jsco.1999.0397. MR1769658
[HS02] Serkan Hoşten and Seth Sullivant, Gröbner bases and polyhedral geometry of reducible and cyclic models, J. Combin. Theory Ser. A 100 (2002), no. 2, 277-301, DOI 10.1006/jcta.2002.3301. MR 1940337
[HS04] Serkan Hoşten and Seth Sullivant, Ideals of adjacent minors, J. Algebra 277 (2004), no. 2, 615-642, DOI 10.1016/j.jalgebra.2004.01.027. MR2067622
[HS07a] Serkan Hoşten and Bernd Sturmfels, Computing the integer programming gap, Combinatorica 27 (2007), no. 3, 367-382, DOI 10.1007/s00493-007-2057-3. MR2345814
[HS07b] Serkan Hoşten and Seth Sullivant, A finiteness theorem for Markov bases of hierarchical models, J. Combin. Theory Ser. A 114 (2007), no. 2, 311-321, DOI 10.1016/j.jcta.2006.06.001. MR2293094
[HS12] Christopher J. Hillar and Seth Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math. 229 (2012), no. 1, 1-25, DOI 10.1016/j.aim.2011.08.009. MR2854168
[HS14] June Huh and Bernd Sturmfels, Likelihood geometry, Combinatorial algebraic geometry, Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 63-117, DOI 10.1007/978-3-319-04870-3_3. MR3329087
[Huh13] June Huh, The maximum likelihood degree of a very affine variety, Compos. Math. 149 (2013), no. 8, 1245-1266, DOI 10.1112/S0010437X13007057. MR3103064
[Huh14] June Huh, Varieties with maximum likelihood degree one, J. Algebr. Stat. 5 (2014), no. 1, 1-17, DOI 10.18409/jas.v5i1.22. MR3279951
[JC69] Thomas H. Jukes and Charles R. Cantor, Evolution of protein molecules, Mammalian Protein Metabolism, Academic Press, New York, 1969, pp. 21-32.
[Jen] Anders Nedergaard Jensen, Gfan, a software system for Gröbner fans and tropical varieties, available at http://home.imf.au.dk/jensen/software/gfan/gfan.html.
[Jen07] Anders Nedergaard Jensen, A non-regular Gröbner fan, Discrete Comput. Geom. 37 (2007), no. 3, 443-453, DOI 10.1007/s00454-006-1289-0. MR2301528
[Jos05] Michael Joswig, Polytope propagation on graphs, Algebraic statistics for computational biology, Cambridge Univ. Press, New York, 2005, pp. 181-192, DOI 10.1017/CBO9780511610684.010. MR2205871
[Kah10] Thomas Kahle, Decompositions of binomial ideals, Ann. Inst. Statist. Math. 62 (2010), no. 4, 727-745, DOI 10.1007/s10463-010-0290-9. MR2652314
[Kah13] David Kahle, mpoly: Multivariate polynomials in R, The R Journal 5 (2013), no. 1, 162-170.
[Kar72] Richard M. Karp, Reducibility among combinatorial problems, Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), Plenum, New York, 1972, pp. 85-103. MR0378476
[Kar84] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), no. 4, 373-395, DOI 10.1007/BF02579150. MR779900
[KF09] Daphne Koller and Nir Friedman, Probabilistic graphical models: Principles and techniques, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, 2009. MR2778120
[KGPY17a] David Kahle, Luis Garcia-Puente, and Ruriko Yoshida, algstat: Algebraic statistics in R, 2017, R package version 0.1.1.
[KGPY17b] David Kahle, Luis Garcia-Puente, and Ruriko Yoshida, latter: LattE and 4 ti2 in $R, 2017, \mathrm{R}$ package version 0.1.0.
[Kim80] Motoo Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Molecular Evolution 16 (1980), 111-120.
[Kir07] George A. Kirkup, Random variables with completely independent subcollections, J. Algebra 309 (2007), no. 2, 427-454, DOI 10.1016/j.jalgebra.2006.06.023. MR2303187
[KM86] Mirko Křivánek and Jaroslav Morávek, NP-hard problems in hierarchical-tree clustering, Acta Inform. 23 (1986), no. 3, 311-323, DOI 10.1007/BF00289116. MR 853580
[KM14] Thomas Kahle and Ezra Miller, Decompositions of commutative monoid congruences and binomial ideals, Algebra Number Theory 8 (2014), no. 6, 1297-1364, DOI 10.2140/ant.2014.8.1297. MR 3267140
[KMO16] Thomas Kahle, Ezra Miller, and Christopher O'Neill, Irreducible decomposition of binomial ideals, Compos. Math. 152 (2016), no. 6, 1319-1332, DOI 10.1112/S0010437X16007272. MR 3518313
[KOS17] David Kahle, Christopher O'Neill, and Jeff Sommars, A computer algebra system for R: Macaulay2 and the m2r package, arXiv e-prints (2017).
[Koy16] Tamio Koyama, Holonomic modules associated with multivariate normal probabilities of polyhedra, Funkcial. Ekvac. 59 (2016), no. 2, 217-242, DOI 10.1619/fesi.59.217. MR3560500
$\left[\mathrm{KPP}^{+}{ }^{+16] \quad \text { Vishesh Karwa, Debdeep Pati, Sonja Petrović, Liam Solus, Nikita Alexeev, Mateja }}\right.$ Raič, Dane Wilburne, Robert Williams, and Bowei Yan, Exact tests for stochastic block models, arXiv:1612.06040, 2016.
[KR14] Thomas Kahle and Johannes Rauh, The markov basis database, http://markov-bases.de/, 2014.
[KRS14] Thomas Kahle, Johannes Rauh, and Seth Sullivant, Positive margins and primary decomposition, J. Commut. Algebra 6 (2014), no. 2, 173-208, DOI 10.1216/JCA-2014-6-2-173. MR3249835
[KRS15] Kaie Kubjas, Elina Robeva, and Bernd Sturmfels, Fixed points EM algorithm and nonnegative rank boundaries, Ann. Statist. 43 (2015), no. 1, 422-461, DOI 10.1214/14-AOS1282. MR3311865
[Kru76] Joseph B. Kruskal, More factors than subjects, tests and treatments: an indeterminacy theorem for canonical decomposition and individual differences scaling, Psychometrika 41 (1976), no. 3, 281-293, DOI 10.1007/BF02293554. MR 0488592
[Kru77] Joseph B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and Appl. 18 (1977), no. 2, 95-138. MR0444690
[KT15] Tamio Koyama and Akimichi Takemura, Calculation of orthant probabilities by the holonomic gradient method, Jpn. J. Ind. Appl. Math. 32 (2015), no. 1, 187-204, DOI 10.1007/s13160-015-0166-8. MR3318908
[KTV99] Ravi Kannan, Prasad Tetali, and Santosh Vempala, Simple Markov-chain algorithms for generating bipartite graphs and tournaments, Random Structures Algorithms 14 (1999), no. 4, 293-308, DOI 10.1002/(SICI)1098-2418(199907)14:4〈293::AID-RSA1〉3.3.CO;2-7. MR 1691976
[Lak87] James A. Lake, A rate-independent technique for analysis of nucleaic acid sequences: evolutionary parsimony, Mol. Biol. Evol. 4 (1987), 167-191.
[Lan12] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128, American Mathematical Society, Providence, RI, 2012. MR 2865915
[Lau96] Steffen L. Lauritzen, Graphical models, Oxford Statistical Science Series, vol. 17, The Clarendon Press, Oxford University Press, New York, 1996. MR 1419991
[Lau98] Monique Laurent, A tour d'horizon on positive semidefinite and Euclidean distance matrix completion problems, Topics in semidefinite and interior-point methods (Toronto, ON, 1996), Fields Inst. Commun., vol. 18, Amer. Math. Soc., Providence, RI, 1998, pp. 51-76. MR 1607310
[Let92] Gérard Letac, Lectures on natural exponential families and their variance functions, Monografías de Matemática [Mathematical Monographs], vol. 50, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1992. MR1182991
[LG94] Lennart Ljung and Torkel Glad, On global identifiability for arbitrary model parametrizations, Automatica J. IFAC 30 (1994), no. 2, 265-276, DOI 10.1016/0005-1098(94)90029-9. MR1261705
[Lin10] Shaowei Lin, Ideal-theoretic strategies for asymptotic approximation of marginal likelihood integrals, J. Algebr. Stat. 8 (2017), no. 1, 22-55, DOI 10.18409/jas.v8i1.47. MR 3614481
[Lov12] László Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American Mathematical Society, Providence, RI, 2012. MR3012035
[LPW09] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Markov chains and mixing times, American Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson. MR2466937
[LS04] Reinhard Laubenbacher and Brandilyn Stigler, A computational algebra approach to the reverse engineering of gene regulatory networks, J. Theoret. Biol. 229 (2004), no. 4, 523-537, DOI 10.1016/j.jtbi.2004.04.037. MR2086931
[LS15] Colby Long and Seth Sullivant, Identifiability of 3-class Jukes-Cantor mixtures, Adv. in Appl. Math. 64 (2015), 89-110, DOI 10.1016/j.aam.2014.12.003. MR3300329
[LSX09] Shaowei Lin, Bernd Sturmfels, and Zhiqiang Xu, Marginal likelihood integrals for mixtures of independence models, J. Mach. Learn. Res. 10 (2009), 1611-1631. MR2534873
[Mac01] Diane Maclagan, Antichains of monomial ideals are finite, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1609-1615, DOI 10.1090/S0002-9939-00-05816-0. MR 1814087
[Man07] Bryan F. J. Manly, Randomization, bootstrap and Monte Carlo methods in biology, 3rd ed., Chapman \& Hall/CRC Texts in Statistical Science Series, Chapman \& Hall/CRC, Boca Raton, FL, 2007. MR 2257066
[MASdCW13] Hugo Maruri-Aguilar, Eduardo Sáenz-de-Cabezón, and Henry P. Wynn, Alexander duality in experimental designs, Ann. Inst. Statist. Math. 65 (2013), no. 4, 667-686, DOI 10.1007/s10463-012-0390-9. MR3094951
[Mat15] František Matúš, On limiting towards the boundaries of exponential families, Kybernetika (Prague) 51 (2015), no. 5, 725-738. MR3445980
[MB82] H. M. Möller and B. Buchberger, The construction of multivariate polynomials with preassigned zeros, Computer algebra (Marseille, 1982), Lecture Notes in Comput. Sci., vol. 144, Springer, Berlin-New York, 1982, pp. 24-31. MR 680050
[MED09] Nicolette Meshkat, Marisa Eisenberg, and Joseph J. DiStefano III, An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner bases, Math. Biosci. 222 (2009), no. 2, 61-72, DOI 10.1016/j.mbs.2009.08.010. MR2584099
[Mic11] Mateusz Michałek, Geometry of phylogenetic group-based models, J. Algebra 339 (2011), 339-356, DOI 10.1016/j.jalgebra.2011.05.016. MR2811326
[MLP09] Radu Mihaescu, Dan Levy, and Lior Pachter, Why neighbor-joining works, Algorithmica 54 (2009), no. 1, 1-24, DOI 10.1007/s00453-007-9116-4. MR2496663
[MM15] Guido F. Montúfar and Jason Morton, When does a mixture of products contain a product of mixtures?, SIAM J. Discrete Math. 29 (2015), no. 1, 321-347, DOI 10.1137/140957081. MR3310972
[Moh16] Fatemeh Mohammadi, Divisors on graphs, orientations, syzygies, and system reliability, J. Algebraic Combin. 43 (2016), no. 2, 465-483, DOI 10.1007/s10801-015-0641-y. MR3456498
[MR88] Teo Mora and Lorenzo Robbiano, The Gröbner fan of an ideal, J. Symbolic Comput. 6 (1988), no. 2-3, 183-208, DOI 10.1016/S0747-7171(88)80042-7. MR 988412
[MS04] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR2110098
[MSdCW16] Fatemeh Mohammadi, Eduardo Sáenz-de-Cabezón, and Henry P. Wynn, The algebraic method in tree percolation, SIAM J. Discrete Math. 30 (2016), no. 2, 11931212, DOI 10.1137/151003647. MR 3507549
[MSE15] Nicolette Meshkat, Seth Sullivant, and Marisa Eisenberg, Identifiability results for several classes of linear compartment models, Bull. Math. Biol. 77 (2015), no. 8, 1620-1651, DOI 10.1007/s11538-015-0098-0. MR3421974
[MSvS03] David Mond, Jim Smith, and Duco van Straten, Stochastic factorizations, sandwiched simplices and the topology of the space of explanations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), no. 2039, 2821-2845, DOI 10.1098/rspa.2003.1150. MR 2015992
[ND85] Peter G. Norton and Earl V. Dunn, Snoring as a risk factor for disease: an epidemiological survey, British Medical Journal (Clinical Research Ed.) 291 (1985), 630-632.
[Ney71] Jerzy Neyman, Molecular studies of evolution: A source of novel statistical problems, Statistical decision theory and related topics (Proc. Sympos., Purdue Univ., Lafayette, Ind., 1970), Academic Press, New York, 1971, pp. 1-27. MR 0327321
[Nor98] J. R. Norris, Markov chains, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2, Cambridge University Press, Cambridge, 1998. Reprint of 1997 original. MR 1600720
[Ohs10] Hidefumi Ohsugi, Normality of cut polytopes of graphs in a minor closed property, Discrete Math. 310 (2010), no. 6-7, 1160-1166, DOI 10.1016/j.disc.2009.11.012. MR 2579848
[OHT13] Mitsunori Ogawa, Hisayuki Hara, and Akimichi Takemura, Graver basis for an undirected graph and its application to testing the beta model of random graphs, Ann. Inst. Statist. Math. 65 (2013), no. 1, 191-212, DOI 10.1007/s10463-012-03678. MR3011620
[OS99] Shmuel Onn and Bernd Sturmfels, Cutting corners, Adv. in Appl. Math. 23 (1999), no. 1, 29-48, DOI 10.1006/aama.1999.0645. MR1692984
[Pau00] Yves Pauplin, Direct calculation of a tree length using a distance matrix, J. Molecular Evolution 51 (2000), 41-47.
[Pea94] Karl Pearson, Contributions to the mathematical theory of evolution, Phil. Trans. Roy. Soc. London A 185 (1894), 71-110.
[Pea82] Judea Pearl, Reverend bayes on inference engines: A distributed hierarchical approach, Proceedings of the Second National Conference on Artificial Intelligence. AAAI-82, AAAI Press, Pittsburgh, PA., Menlo Park, California, 1982, pp. 133-136.
[Pea09] Judea Pearl, Causality: Models, reasoning, and inference, 2nd ed., Cambridge University Press, Cambridge, 2009. MR 2548166
[Pet14] Jonas Peters, On the intersection property of conditional independence and its application to causal discovery, J. Causal Inference 3 (2014), 97-108.
[Pet17] Sonja Petrović, A survey of discrete methods in (algebraic) statistics for networks, Algebraic and geometric methods in discrete mathematics, Contemp. Math., vol. 685, Amer. Math. Soc., Providence, RI, 2017, pp. 251-277. MR3625579
[PRF10] Sonja Petrović, Alessandro Rinaldo, and Stephen E. Fienberg, Algebraic statistics for a directed random graph model with reciprocation, Algebraic methods in statistics and probability II, Contemp. Math., vol. 516, Amer. Math. Soc., Providence, RI, 2010, pp. 261-283, DOI 10.1090/conm/516/10180. MR 2730754
[PRW01] Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn, Algebraic statistics: Computational commutative algebra in statistics, Monographs on Statistics and Applied Probability, vol. 89, Chapman \& Hall/CRC, Boca Raton, FL, 2001. MR2332740
[PS04a] Lior Pachter and Bernd Sturmfels, Parametric inference for biological sequence analysis, Proc. Natl. Acad. Sci. USA 101 (2004), no. 46, 16138-16143, DOI 10.1073/pnas. 0406011101 . MR 2114587
[PS04b] Lior Pachter and Bernd Sturmfels, Tropical geometry of statistical models, Proc. Natl. Acad. Sci. USA 101 (2004), no. 46, 16132-16137, DOI 10.1073/pnas. 0406010101. MR 2114586
[PS05] Lior Pachter and Bernd Sturmfels (eds.), Algebraic statistics for computational biology, Cambridge University Press, New York, 2005. MR 2205865
[R C16] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2016.
[Rai12] Claudiu Raicu, Secant varieties of Segre-Veronese varieties, Algebra Number Theory 6 (2012), no. 8, 1817-1868, DOI 10.2140/ant.2012.6.1817. MR3033528
[Rao73] C. Radhakrishna Rao, Linear statistical inference and its applications, 2nd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, New York-London-Sydney, 1973. MR0346957
[Rap06] Fabio Rapallo, Markov bases and structural zeros, J. Symbolic Comput. 41 (2006), no. 2, 164-172, DOI 10.1016/j.jsc.2005.04.002. MR 2197152
[Raz07] Alexander A. Razborov, Flag algebras, J. Symbolic Logic 72 (2007), no. 4, 12391282, DOI $10.2178 / \mathrm{jsl} / 1203350785$. MR 2371204
[RC99] Christian P. Robert and George Casella, Monte Carlo statistical methods, Springer Texts in Statistics, Springer-Verlag, New York, 1999. MR1707311
[Rho10] John A. Rhodes, A concise proof of Kruskal's theorem on tensor decomposition, Linear Algebra Appl. 432 (2010), no. 7, 1818-1824, DOI 10.1016/j.laa.2009.11.033. MR2592918
[RPF13] Alessandro Rinaldo, Sonja Petrović, and Stephen E. Fienberg, Maximum likelihood estimation in the β-model, Ann. Statist. 41 (2013), no. 3, 1085-1110, DOI 10.1214/12-AOS1078. MR3113804
[RS02] Thomas Richardson and Peter Spirtes, Ancestral graph Markov models, Ann. Statist. 30 (2002), no. 4, 962-1030, DOI 10.1214/aos/1031689015. MR 1926166
[RS12] John A. Rhodes and Seth Sullivant, Identifiability of large phylogenetic mixture models, Bull. Math. Biol. 74 (2012), no. 1, 212-231, DOI 10.1007/s11538-011-9672-2. MR 2877216
[RS16] Johannes Rauh and Seth Sullivant, Lifting Markov bases and higher codimension toric fiber products, J. Symbolic Comput. 74 (2016), 276-307, DOI 10.1016/j.jsc.2015.07.003. MR3424043
[Rys57] H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957), 371-377, DOI 10.4153/CJM-1957-044-3. MR0087622
[Sch78] Gideon Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), no. 2, 461-464. MR0468014
[Sey81] P. D. Seymour, Matroids and multicommodity flows, European J. Combin. 2 (1981), no. 3, 257-290, DOI 10.1016/S0195-6698(81)80033-9. MR633121
[SF95] Mike Steel and Y. Fu, Classifying and counting linear phylogenetic invariants for the Jukes-Cantor model, J. Comput. Biol. 2 (1995), 39-47.
[SFSJ12a] J. G. Sumner, J. Fernández-Sánchez, and P. D. Jarvis, Lie Markov models, J. Theoret. Biol. 298 (2012), 16-31, DOI 10.1016/j.jtbi.2011.12.017. MR2899031
$\left[\mathrm{SFSJ}^{+} 12 \mathrm{~b}\right]$ Jeremy G. Sumner, Jesús Fernández-Sánchez, Peter D. Jarvis, Bodie T. Kaine, Michael D. Woodhams, and Barbara R. Holland, Is the general time-reversible model bad for molecular phylogenetics?, Syst. Biol. 61 (2012), 1069-1978.
[SG17] Anna Seigal and Montúfar Guido, Mixtures and products in two graphical models, arXiv:1709.05276, 2017.
[Sha13] Igor R. Shafarevich, Basic algebraic geometry. 1: Varieties in projective space, Translated from the 2007 third Russian edition, Springer, Heidelberg, 2013. MR 3100243
[Sho00] Galen R. Shorack, Probability for statisticians, Springer Texts in Statistics, Springer-Verlag, New York, 2000. MR 1762415
[SM58] Robert Sokal and Charles Michener, A statistical method for evaluating systematic relationships, University of Kansas Science Bulletin 38 (1958), 1409-1438.
[SM06] Tomi Silander and Petri Myllymaki, A simple approach for finding the globally optimal bayesian network structure, Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, AUAI Press, 2006, pp. 445-452.
[SM14] Christine Sinoquet and Raphaël Mourad (eds.), Probabilistic graphical models for genetics, genomics, and postgenomics, Oxford University Press, Oxford, 2014. MR3364440
[SN87] Naruya Saitou and Masatoshi Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Molecular Biology and Evolution 4 (1987), 406-425.
[SS03a] Francisco Santos and Bernd Sturmfels, Higher Lawrence configurations, J. Combin. Theory Ser. A 103 (2003), no. 1, 151-164, DOI 10.1016/S0097-3165(03)00092-X. MR1986836
[SS03b] Charles Semple and Mike Steel, Phylogenetics, Oxford Lecture Series in Mathematics and its Applications, vol. 24, Oxford University Press, Oxford, 2003. MR2060009
[SS04] David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389-411, DOI 10.1515/advg.2004.023. MR2071813
[SS05] Bernd Sturmfels and Seth Sullivant, Toric ideals of phylogenetic invariants, J. Comput. Biol. 12 (2005), 204-228.
[SS08] Bernd Sturmfels and Seth Sullivant, Toric geometry of cuts and splits, Michigan Math. J. 57 (2008), 689-709, DOI 10.1307/mmj/1220879432. MR2492476
[SS09] Jessica Sidman and Seth Sullivant, Prolongations and computational algebra, Canad. J. Math. 61 (2009), no. 4, 930-949, DOI 10.4153/CJM-2009-047-5. MR2541390
$\left[\mathrm{SSR}^{+} 14\right]$ Despina Stasi, Kayvan Sadeghi, Alessandro Rinaldo, Sonja Petrovic, and Stephen Fienberg, β models for random hypergraphs with a given degree sequence, Proceedings of COMPSTAT 2014-21st International Conference on Computational Statistics, Internat. Statist. Inst., The Hague, 2014, pp. 593-600. MR 3372442
[SST00] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000. MR 1734566
[Sta12] Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR2868112
[STD10] Seth Sullivant, Kelli Talaska, and Jan Draisma, Trek separation for Gaussian graphical models, Ann. Statist. 38 (2010), no. 3, 1665-1685, DOI 10.1214/09AOS760. MR2662356
[Ste16] Mike Steel, Phylogeny -discrete and random processes in evolution, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 89, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. MR3601108
[Sto91] Paul D. Stolley, When genius errs: R. A. Fisher and the lung cancer controversy, Am. J. Epidemiol. 133 (1991), 416-425.
[Stu92] Milan Studený, Conditional independence relations have no finite complete characterization, Information Theory, Statistical Decision Functions and Random Processes, 1992, pp. 377-396.
[Stu95] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR1363949
[Stu05] Milan Studený, Probabilistic conditional independence structures, Information Science and Statistics, Springer, London, 2005. MR3183760
[SU10] Bernd Sturmfels and Caroline Uhler, Multivariate Gaussian, semidefinite matrix completion, and convex algebraic geometry, Ann. Inst. Statist. Math. 62 (2010), no. 4, 603-638, DOI 10.1007/s10463-010-0295-4. MR2652308
[Sul05] Seth Sullivant, Small contingency tables with large gaps, SIAM J. Discrete Math. 18 (2005), no. 4, 787-793, DOI 10.1137/S0895480104444090. MR 2157826
[Sul06] Seth Sullivant, Compressed polytopes and statistical disclosure limitation, Tohoku Math. J. (2) 58 (2006), no. 3, 433-445. MR2273279
[Sul07] Seth Sullivant, Toric fiber products, J. Algebra 316 (2007), no. 2, 560-577, DOI 10.1016/j.jalgebra.2006.10.004. MR2356844
[Sul08] Seth Sullivant, Algebraic geometry of Gaussian Bayesian networks, Adv. in Appl. Math. 40 (2008), no. 4, 482-513, DOI 10.1016/j.aam.2007.04.004. MR2412156
[Sul09] Seth Sullivant, Gaussian conditional independence relations have no finite complete characterization, J. Pure Appl. Algebra 213 (2009), no. 8, 1502-1506, DOI 10.1016/j.jpaa.2008.11.026. MR2517987
[Sul10] Seth Sullivant, Normal binary graph models, Ann. Inst. Statist. Math. 62 (2010), no. 4, 717-726, DOI 10.1007/s10463-010-0296-3. MR2652313
[SZ13] Bernd Sturmfels and Piotr Zwiernik, Binary cumulant varieties, Ann. Comb. 17 (2013), no. 1, 229-250, DOI 10.1007/s00026-012-0174-1. MR3027579
[Tak99] Asya Takken, Monte Carlo goodness-of-fit tests for discrete data, Ph.D. thesis, Stanford University, 1999.
[TCHN07] M. Trémolières, I. Combroux, A. Hermann, and P. Nobelis, Conservation status assessment of aquatic habitats within the Rhine floodplain using an index based on macrophytes, Ann. Limnol.-Int. J. Lim. 43 (2007), 233-244.
[Tho95] Rekha R. Thomas, A geometric Buchberger algorithm for integer programming, Math. Oper. Res. 20 (1995), no. 4, 864-884, DOI 10.1287/moor.20.4.864. MR1378110
[Tho06] Rekha R. Thomas, Lectures in geometric combinatorics, Student Mathematical Library, IAS/Park City Mathematical Subseries, vol. 33, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 2006. MR 2237292
[Uhl12] Caroline Uhler, Geometry of maximum likelihood estimation in Gaussian graphical models, Ann. Statist. 40 (2012), no. 1, 238-261, DOI 10.1214/11-AOS957. MR3014306
[Var95] A. Varchenko, Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Math. 97 (1995), no. 3, 385-401. MR1353281
[vdV98] A. W. van der Vaart, Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 3, Cambridge University Press, Cambridge, 1998. MR1652247
[Vin09] Cynthia Vinzant, Lower bounds for optimal alignments of binary sequences, Discrete Appl. Math. 157 (2009), no. 15, 3341-3346, DOI 10.1016/j.dam.2009.06.028. MR2560820
[Vit67] Andrew Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory 13 (1967), no. 2, 260-269.
[Wat09] Sumio Watanabe, Algebraic geometry and statistical learning theory, Cambridge Monographs on Applied and Computational Mathematics, vol. 25, Cambridge University Press, Cambridge, 2009. MR 2554932
[Whi90] Joe Whittaker, Graphical models in applied multivariate statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley \& Sons, Ltd., Chichester, 1990. MR 1112133
[Win16] Tobias Windisch, Rapid mixing and Markov bases, SIAM J. Discrete Math. 30 (2016), no. 4, 2130-2145, DOI 10.1137/15M1022045. MR3573306
[Wri34] Sewall Wright, The method of path coefficients, Annals of Mathematical Statistics 5 (1934), 161-215.
[XS14] Jing Xi and Seth Sullivant, Sequential importance sampling for the Ising model, arXiv:1410.4217, 2014.
[XY15] Jing Xi and Ruriko Yoshida, The characteristic imset polytope of Bayesian networks with ordered nodes, SIAM J. Discrete Math. 29 (2015), no. 2, 697-715, DOI 10.1137/130933848. MR3328137
[YRF16] Mei Yin, Alessandro Rinaldo, and Sukhada Fadnavis, Asymptotic quantization of exponential random graphs, Ann. Appl. Probab. 26 (2016), no. 6, 3251-3285, DOI 10.1214/16-AAP1175. MR3582803
[Zie95] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028
[ZM09] Walter Zucchini and Iain L. MacDonald, Hidden Markov models for time series: An introduction using R, Monographs on Statistics and Applied Probability, vol. 110, CRC Press, Boca Raton, FL, 2009. MR 2523850
[ZS12] Piotr Zwiernik and Jim Q. Smith, Tree cumulants and the geometry of binary tree models, Bernoulli 18 (2012), no. 1, 290-321, DOI 10.3150/10-BEJ338. MR 2888708
[Zwi16] Piotr Zwiernik, Semialgebraic statistics and latent tree models, Monographs on Statistics and Applied Probability, vol. 146, Chapman \& Hall/CRC, Boca Raton, FL, 2016. MR 3379921

Index

1-factor model, 133
as graphical model, 323
identifiability, 373378
learning coefficients, 416, 418
sBIC, 420 421
$A \mid B, 337$
$A \Perp B \mid C, 72$
$A \triangle B, 442$
$A_{\Gamma}, 206$
α th moment, 105
an $(v), 292$
$B_{\Gamma}, 208$
$\mathbb{B}_{k}, 14$
$\mathcal{M}_{1} * \cdots * \mathcal{M}_{k}, 316$
cone $(A), 173$
cone $(V), 172$
$\operatorname{conv}(S), 170$
$\operatorname{Corr}[X, Y], 26$
Corr $_{m}, 443$
Corr ${ }_{m}^{\square}, 443$
$\operatorname{Cov}[X, Y], 25$
$\operatorname{Cut}(G), 444$
Cut $_{m}, 440$
Cut ${ }_{m}, 440$
$\operatorname{Cut}^{\square}(G), 444$
$d(x, y), 439$
$\operatorname{deg}_{i}(G), 256$
$\operatorname{de}(v), 291$
$\delta_{A \mid B}, 440$
$\delta_{A}, 451$
$\Delta_{r}, 44$
$\operatorname{Dist}(M), 270$
$\mathrm{E}[X], 22$
$E X_{n}, 320$
$E X_{n, k}, 321$
$\exp (Q t), 342$
$\mathrm{E}[X \mid Y], 27$
$\mathcal{F}(u), 192$
$\mathcal{F}(u, L, U), 215$
Flat $_{A \mid B}(P), 360$
$F_{m, s}, 133$
| Γ |, 208
$\gamma_{S}, 459$
$\operatorname{gap}(A, c), 243$
$\operatorname{gcr}(L), 185$
$\hat{G}, 349$
$G^{m}, 292$
$G^{\text {sub }}, 327$
$H\left(\mathbb{K}\left[x_{1}, \ldots, x_{m}\right] / M ; x\right), 283$
$I_{A}, 123$
$I_{A \Perp B \mid C}, 76$
$I_{A, h}, 123$
$I_{\mathcal{C}}, 77$
$I: J, 82139$
$I: J^{\infty}$, 82, 139
$\mathrm{in}_{c}(f), 235$
$\mathrm{in}_{c}(I), 235$
$\mathrm{in}_{\prec}(f), 51$
$\operatorname{IP}(A, b, c), 233$
$I_{G}^{\square}, 458$
$I(\theta), 165$
$I_{u, \tau}, 242$
$I(W), 45$
$J_{A \Perp B \mid C}, 78$
$\operatorname{Jac}(I(V)), 147$
$J_{\mathcal{C}}, 78$
$K\left(\mathbb{K}\left[x_{1}, \ldots, x_{m}\right] / M ; x\right), 283$
$\mathbb{K}[p], 42$
L^{1} embeddable, 441
$\mathcal{L}_{V}, 149$
$L P(A, b, c), 233$
L^{p} embeddable, 440
$\mathcal{M}_{G}, 326$
$\mathcal{M}_{A \Perp B \mid C}, 76$
$M(A, c), 242$
$\operatorname{Met}(G), 446$
$\min (I), 130$
$\operatorname{Mixt}^{k}(\mathcal{M}), 314$
$\mathrm{mlt}(L), 185$
$\mathbb{N} A, 173$
$\operatorname{nd}(v), 292$
$N F_{\mathcal{G}}(f), 52$
$\mathcal{N}_{m}(\mu, \Sigma), 30$
$O_{p}(1), 407$
p_{1} model, 258
Markov basis, 264
$P(A)$, 12
$P(A \mid B), 16$
$\mathrm{pa}(v), 291$
$P D(B), 326$
$P D_{m}, 78$
$P_{\mathcal{H}, n}, 262$
π-supermodular, 318
$\pi^{1}|\cdots| \pi^{k}, 454$
$\pi_{S}, 443$
p-value, 110
$\mathfrak{P}(\Omega)$, 12
$Q^{C F N}, 343$
$Q^{J C}, 343$
$Q^{K 2 P}, 343$
$\operatorname{Quad}\left(V_{1}, S, V_{2}\right), 211$
R, 111
rank $_{+}(A), 317$
$\operatorname{RLCT}(f ; \phi), 411$
S-polynomial, 53
$\mathrm{Sec}^{k}(V), 316$
$\Sigma^{\prime}(T), 360$
$\Sigma(T)$, 338
σ-algebra, 14
$\sqrt{I}, 46$
$S R_{\Gamma}, 281$
$t_{H}(G), 261$
$\bar{t}_{H}(G), 261$
$T C_{\theta_{0}}(\Theta), 129$
$\mathcal{T}_{\mathcal{X}}, 453$
$\mathcal{U}_{\mathcal{X}}, 453$
\mathcal{V}-polyhedron, 172
$V_{1} * V_{2} * \cdots * V_{k}$, 316
$\operatorname{Var}[X], 24$
$V(S), 42$
$V_{\text {reg }}, 147$
$V_{\text {sing }}, 147$
$X^{2}(u), 112$
$X(A, \mathcal{D}),[267$
$X_{A} \Perp X_{B} \mid X_{C}, 72$
X-tree, 337
binary, 337
phylogenetic, 337
$\rightarrow-\rightarrow 45$
々, 50
$\prec_{c}, 50$
acyclic,291
adjacent minors, 220
affine semigroup, 173
affinely isomorphic, 171
Akaike information criterion (AIC), 401
algebraic exponential family, 117132
algebraic tangent cone, 130
algebraic torus, 150
algebraically closed field, 46
aliasing, 272
alignment, 340432
Allman-Rhodes-Draisma-Kuttler
theorem, 322 365
almost sure convergence, 33
almost surely, 15
alternative hypothesis, 110
ancestors, 292
Andrews' theorem, 434
aperiodic, 344
argmax, 6
arrangement complement, 154
ascending chain, 5469
associated prime, 80,81
balanced minimum evolution, 457
basic closed semialgebraic set, 128
basic semialgebraic set, 128
Bayes' rule, 16
Bayesian information criterion (BIC),

401407

singular (sBIC), 420
Bayesian networks, 300
Bayesian statistics, 113
Bernoulli random variable, 20320
Bertini, 60
beta function, 115
beta model, 256
Betti numbers, 63
bidirected edge, 326
bidirected subdivision, 327
binary graph model, 176, 186, 459
binomial ideal, 83,123
primary decomposition, 83
binomial random variable, 18, 44, 46,

47100166

implicitization, 58
maximum likelihood estimate, 107
method of moments, 105
Bonferroni bound, 247
Borel σ-algebra, 14
bounded in probability, 407
bounds, 227
2 -way table, 229
3 -way table, 245
decomposable marginals, 247
bow-free graph, 382
branch length, 342450
Buchberger's algorithm, 54
Buchberger's criterion, 54
Buchburger-Möller algorithm, 272
canonical sufficient statistic, 118
caterpillar, 308, 461
Cavender-Farris-Neyman model, 343 , 368, 459
cdf, 18
censored exponentials, 140,148
censored Gaussians, 332
centered Gaussian model, 145
central limit theorem, 36
CFN model, 343, 352
character
group theory, 348
characteristic class, 150
Chebyshev's inequality, 25
Chern-Schwartz-Macpherson class, 150
cherry, 449
chi-square distribution, 32,162
chordal graph, 181, 306
claw tree, 321
Gaussian, 323
clique, 181,295
clique condition, 182
collider, 291
colon ideal, 82, 139
combinatorially equivalent, 171
compartment model
linear, 393
three, 393
two, 391 398
compatible splits, 338
pairwise, 338
complete fan, 276
complete independence, $17,20,402$
and cdf, 21
and density, 21
complete intersection, 150
completeness of global Markov property, 290, 293
concave function, 152
concentration graph model, 180
concentration matrix, 120
conditional and marginal independence, 78
conditional density, 72
conditional distribution, 19
conditional expectation, 27
conditional independence, 72
conditional independence axioms, 73
conditional independence ideal, 76
conditional independence inference rules, 73
conditional independence model, 4
conditional inference, 189, 192
conditional Poisson distribution, 258
conditional probability, 16
cone generated by $V, 172$
cone of sufficient statistics, 173
and existence of MLE, 173
conformal decomposition, 216
conjugate prior, 115
consistent estimator, 104
constructible sets, 56
continuous random variable, 18
contraction axiom, 73,86
control variables, 390
convergence in distribution, 35
convergence in probability, 33
converging arborescence, 380
convex function, 152
convex hull, 134,170
convex set, 152169
convolution, 350
coordinate ring, 237
corner cut ideal, 269
correlation, 26
correlation cone, 443
of simplicial complex, 446
correlation polytope, 177443
correlation vector, 443
coset, 237
covariance, 25
covariance mapping, 443
covariance matrix, 26
critical equations, 138
cumulants, 363
cumulative distribution function, 18
curved exponential families, 117
cuspidal cubic, 143,163
cut cone, 440
of a graph, 444
cut ideal,458
cut polytope, 177440,458
of a graph, 444
cut semimetric, 440
cycle, 178
cyclic split, 459
cyclic split system, 459
d-connected, 292
d-separates, 292
DAG, 291
DAG model selection polytope, 405, 422
De Finetti's theorem, 48, 103,319
decomposable graph, 181
decomposable marginals, 247
decomposable model
Markov basis, 213
urn scheme, 223
decomposable simplicial complex, 208 306
decomposable tensor, 385
decomposition axiom, 73
defining ideal, 45
degree
of a vertex, 256
degree sequence, 256
density function, 15
descendants, 291
design, 266
design matrix, 267
deterministic Laplace integral, 409,411
Diaconis-Efron test, 194
differential algebra, 391
differential privacy, 233
dimension, 55
directed acyclic graph, 291403
maximum likelihood estimate, 404
model selection, 405
phylogenetic tree, 337
directed cycle, 291

Dirichlet distribution, 115
disclosure limitation, 231
discrete conditional independence model, 76
discrete linear model, 153
discrete random variable, 18
dissimilarity map, 439
distance-based methods, 453
distinguishability, 378
distraction, 270
distribution, 18
distributive law, 428, 437
division algorithm, 52
dual group, 349
edge, 170
edge-triangle model, [253, $2555,[263,[264$
elimination ideal, 57 [377
elimination order, 5763
EM algorithm
discrete, 330
EM algorithm, 329429
embedded prime, 81
emission matrix, 427
empirical moment, 105
entropy, 412
equidistant tree metric, 450
equivalent functions, 413
equivariant phylogenetic model, 365
Erdős-Gallai theorem, 256
Erdős-Rényi random graphs, 252, 263
estimable, 267
estimable polynomial regression, 267
estimator, 104
Euclidean distance degree, 143
Euler characteristic, 150
event, 12
exact test, 110 193
exchangeable, 103,319
exchangeable polytope, 320
expectation, 22
expected value, 22
experimental design, 265
exponential distribution, 38
exponential family, 118 169
discrete random variables, 119121
extended, 121
Gaussian random variables, 119,125
likelihood function, 157
exponential random graph model, 252
exponential random variable, 116
extreme rays, 172
face, 170,204
facet, 171, 204
factor analysis, 133
identifiability, 397
pentad, 324
factorize, 295
fan, 276
Felsenstein model, 344368
few inference function theorem, 435
fiber, 192
Fisher information matrix, 165,166
Fisher's exact test, 8, 193, 228, 253
flattening, 360
four-point condition, 447
Fourier transform
discrete, 348349
fast, 350429
fractional factorial design, 266
free resolution, 285
frequentist statistics, 113, 116
full factorial design, 266
fundamental theorem of Markov bases, 196

Gale-Ryser theorem, 257
gamma random variable, 116
Gaussian conditional independence ideal, 78
Gaussian marginal independence
ML-degree, 145
Gaussian random variables marginal likelihood, 406
maximum likelihood, 108,142
Gaussian random vector, 31
Gaussoid axiom, 95
general Markov model, 341, 358
general time reversible model, 345, 347
generalized hypergeometric distribution, 193
generators of an ideal, 45, 53
generic, 139269
weight order, 235
generic completion rank, 185
generic group-based model, 351
Gröbner basis, 49, 51
integer programming, 234,
to check identifiability, 377
Gröbner cone, 275
Gröbner fan, 274, 276
Gröbner region, 275
graph
of a polynomial map, 57
of a rational map, 59
graph statistic, 252
graphical model, 403
directed, 291
Gaussian, 180
undirected, 288
with hidden variables, 321,388
Grassmannian, 452
Graver basis, 189216
ground set, 208
group, 347
group-based phylogenetic models, 346
347459
half-space, 169
half-trek, 384 criterion, 384
Hammersley-Clifford theorem, 295,297
Hardy-Weinberg equilibrium, 201 Markov basis, 203
Hasegawa-Kishino-Yano model, 344 347368
hidden Markov model, 308,426 pair, 428
hidden variable, 313
hierarchical model, 159, 204, 241 sufficient statistics, 207
hierarchical set of monomials, 268
hierarchy, 451, 454
Hilbert basis theorem, 45
Hilbert series, 283
holes, 176
holonomic gradient method, 333
homogeneous polynomial, 66
homogenization, 130
of parametrization, 68
Horn uniformization, 152
hypercube, 170
hypergeometric distribution, 193,221
hypersurface, 45
hypothesis test, 109,161
asymptotic, 113
i.i.d., 30 102
ideal, 45
ideal membership problem, 49, 52
ideal-variety correspondence, 48
identifiability
of phylogenetic models, 379, 449
practical, 391
structural, 391
identifiable, 100372
discrete parameters, 378
generically, 372
globally, 372
locally, 372
parameter, 374
rationally, 372
image of a rational map, 45
implicitization problem, 46, 56
importance sampling, 228
importance weights, 228
independence model, 76, 101
as exponential family, 124
as hierarchical model, 205
Euler characteristic, 151
Graver basis, 216
identifiability, 373
Markov basis, 199,218
independent and identically distributed
(i.i.d.), 30102
independent events, 17
indeterminates, 42
indicator random variable, 20
induced subgraph, 178
inference functions, 434
information criterion, 401
initial ideal, 51
initial monomial, 51
initial term, 51
input/output equation, 391
instrumental variable, 324 397
as mixed graph, 328, 329
identifiability, 374 383
integer program, 233
integer programming gap, 242, 243
intersection axiom, 7487289
intersection of ideals, 271
interval of integers, 249
inverse linear space, 126
irreducible decomposition
of a variety, 79
of an ideal, 80
of monomial ideal, 242
irreducible ideal, 80
irreducible Markov chain, 344
irreducible variety, 77
Ising model, 176
isometric embedding, 440
iterative proportional fitting, 156
Jacobian, 147375
augmented, 148
JC69, 343
join variety, 316
joint distribution, 18
Jukes-Cantor model, 34336
linear invariants, 358, 368
K-polynomial, 283
K2P model, 344
K3P model, 344 352
kernel, 64
Kimura models, 343, 368
Kruskal rank, 385
Kruskal's theorem, 386
Kullback-Leibler divergence, 412, 414
Lagrange multipliers, 146
Laplace approximation, 407
latent variable, 313
lattice basis ideal, 97
lattice ideal, $83 \boxed{123}$
law of total probability, 16
Lawrence lifting, 225
leading term, 51
learning coefficient, 410
least-squares phylogeny, 454
lexicographic order, 50, 236, 249
Lie Markov model, 346
likelihood correspondence, 149
likelihood function, 5, 106
likelihood geometry, 146 149
likelihood ratio statistic, 161
likelihood ratio test
asymptotic, 163
linear invariants, 357
linear model, 153
linear program, 233
linear programming relaxation, 233 238
log-affine model, 122
log-likelihood function, 107
log-linear model, 122
ML-degree, 166
log-odds ratios, 119
logistic regression, 225
long tables, 214
Macaulay2, 59
MAP, 114
marginal
as sufficient statistics, 207
marginal density, 1972
marginal independence, 73, 76] 90
marginal likelihood, 114, 406
Markov basis, 189, 194 215 234257
and toric ideal, 196
minimal, 199
Markov chain, 3, 103,308
homogeneous, 308,427
Markov chain Monte Carlo, 195
Markov equivalent, 294
Markov property, 288
directed global, 292
directed local, 292
directed pairwise, 292
global, 288
local, 288
pairwise, 288
Markov subbasis, 219
matrix exponential, 342
matrix Lie algebra, 346
matrix product variety, 366
maximum a posteriori estimation, 114 423, 424
maximum likelihood, 400
maximum likelihood degree, 140
maximum likelihood estimate, 6, 106 137
existence, 173, 255
maximum likelihood threshold, 185
mean, 22
measurable sets, 14
method of moments, 105,157
metric, 439
metric cone, 440
of graph, 446
metric space, 439
$L^{p}, 440$
Metropolis-Hastings algorithm, 194
for uniform distribution, 196
minimal Gröbner basis, 70
minimal prime, 81
minimal sufficient statistic, 102
Minkowski sum, 172,435
Minkowski-Weyl theorem, 172
mixed graph, 325
simple, 382
mixing time, 195
mixture model, 47, 314, 316, 399
mixture of binomial random variable, 47, 166
mixture of complete independence, 315 317, $322,333,364$
identifiability, 386387
mixture of independence model, 315 333

EM algorithm, 332334
identifiability, 373
nonnegative rank, 317
mixture of known distributions, 154
ML-degree, 137140
ML-degree 1, 151
MLE, 106
model selection, 399
consistency of, 401
molecular clock, 450
moment, 105
moment polytope, 177
monomial, 42
Monte Carlo algorithm, 195
moralization, 292
most recent common ancestor, 450
moves, 194215
multigraded Hilbert series, 283
multiplicity, 415
multivariate normal distribution, 30
mutual independence, 17, 20
natural parameter space, 118
neighbor joining, 454 457
neighbors, 288
network connectivity, 280, 282, 286
Newton polyhedron, 415
Newton polytope, 276, 426, 433
no-3-way interaction, 159, 205, 402
Markov basis, 213
Markov basis, 214
nodal cubic, 130 144, 164
Noetherian ring, 6980
nondescendants, 292
nonidentifiable, 372
generically, 372
nonnegative rank, 317
nonparametric statistical model, 100
nonsingular point, 147
normal distribution, 15
normal fan, 276, 433
normal form, 52
normal semigroup, 176, 248
normalized subgraph count statistic, 261
nuisance parameter, $9 \boxed{193}$
null hypothesis, 110
Nullstellensatz, 46
occasionally dishonest casino, 427, 431 437
output variables, 391
pairwise marginal independence, 90
parameter, 104, 374
parametric directed graphical model, 300
parametric inference, 423, 432
parametric sets,43
parametric statistical model, 100
parametrized undirected graphical model, 295
parents, 291
partition lattice, 454
path, 288
Pearson's X^{2} statistic, 112
penalty function, 401
pentad, 324
perfect elimination ordering, 247
permutation test, 110
Perron-Frobenius theorem, 344
phylogenetic invariants, 336
phylogenetic model, 335
identifiability, 379
model selection, 402
phylogenetics
and metrics, 447
planar graph, 185
plug-in estimator, 104
pointed cone, 172
pointwise convergence, 33
polyhedral cell complex, 275
polyhedral cone, 171
polyhedron, 128,170
polynomial,42
polynomial regression models, 267
polytope, 170
polytope algebra, 435
polytope of subgraph statistics, 262
polytope propagation, 437
positive definite, 78
positive semidefinite, 26
posterior distribution, 114
posterior probability, 406
potential function, 205,295
power set, 12
precision matrix, 120
primary decomposition, 81
and graphical models, 306
application to random walks, 219
primary ideal, 80
prime ideal, 79
prior distribution, 114
probability measure, 12, 14
probability simplex, 44, 170
as semialgebraic set, 128
probability space, 14
projective space, 66
projective variety, 66
pure difference binomial ideal, 83
quartet, 449
quotient ideal, 82,139
quotient ring, 237
radical ideal, 46 307
random variable, 18
random vector, 18
rank one tensor, 385
Rasch model, 256, 264
rate matrix, 342
rational map,45
real algebraic variety, 128
real log-canonical threshold, 411
of monomial map, 415
real radical ideal, 69
recession cone, 172
recursive factorization theorem, 295
300403
reduced Gröbner basis, 70
reducible decomposition, 181
reducible graph, 181
reducible model
Markov basis, 212
reducible simplicial complex, 208
reducible variety, 79, 147
regression coefficients, 31
regular exponential family, 118
regular point, 147
resolution of singularities, 416
reverse lexicographic order, 50, 236
ring, 42
ring of polynomials, 42
rooted tree, 337
sample space, 12
saturated
conditional independence statement, 89, 127
lattice, 84
polynomial regression, 278
semigroup, 176
saturation, 82, 139
schizophrenic hospital patients, 191,193
score equations, 107,138
secant variety, 316383

Segre variety, 319389390
semialgebraic set, 128
semimetric, 439
semiring, 430, 435
separated, 288
separator, 208
sequential importance sampling, 227 258
shuttle algorithm, 248
siblings, 384
simplex, 170
simplicial complex, 204, 280
Singular (software), 59
singular, 147
singular locus, 147
sink component, 234
SIR model, 397
slim tables, 214
smooth, 129147163
spatial statistics, 103
spine, 262
split, 337
valid, 337
splits equivalence theorem, 338
squarefree monomial ideal, 239] 248
standard deviation, 24
standard monomial, 237, 377
standard normal distribution, 15
Stanley-Reisner ideal, 281
state polytope, 278
state space model, 390
state variables, 390
stationary distribution, 344
statistic, 101
statistical model, 100
stochastic block model, 252, 254
strand symmetric model, 365
strictly concave function, 153
strong law of large numbers, 34
strong maximum, 318, 334
strongly connected, 234, 395
strongly connected component, 234
structural equation model, 3253
global identifiability, 380
identifiability, 379
structural zeros, 219
subgraph count statistic, 261
subgraph density, 261
sufficient statistic, 8101
supermodular, 318
suspension, 446
symmetric difference, 442
system inputs, 390
system reliability, 280
t-separates, 304
tableau notation, 209
tangent cone, 129163
tangent vector, 129
Tarski-Seidenberg theorem, 129
tensor, 385
tensor rank, 385
term order, 50
tie breaker, 235
time series, 103
topological ordering, 300
toric fiber product, 213
toric ideal, 84123
toric model, 122
toric variety, 122 , 358
trace trick, 108
transition
phylogenetics, 343
transition matrix, 427
transversion, 343, 345
tree, 336
tree cumulants, 363
tree metric, 447
trek, 304, 327
trek rule, 327
triangle inequality, 439
tropical geometry, 452
tropical Grassmannian, 452
tropical semiring, 430
true model, 400
twisted cubic, 44 123
ultrametric, 450
UPGMA, 454
upstream variables, 323
urn scheme, 221 226
Vandermonde's identity, 21
vanishing ideal, 45
variance, 24
variety, 42
vector of counts, 190
vertex, 170
very affine variety, 150
Viterbi algorithm, 428, 429, 431,437
weak law of large numbers, 34
weak union axiom, 73
weight order, 50, 235, 274
weighted linear aberration, 279
Zariski closed, 47
Zariski closure, 47
zero set, 43
zeta function, 411

Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject.Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.

