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§5.2. Möbius Functions of Subdivisions 165

§5.3. Beneath, Beyond, and Half-open Decompositions 168

§5.4. Stanley Reciprocity 174

§5.5. h∗-vectors and f -vectors 176

§5.6. Self-reciprocal Complexes and Dehn–Sommerville Revisited 181

§5.7. A Combinatorial Triangulation 188

Notes 193

Exercises 195

Chapter 6. Partially Ordered Sets, Geometrically 203

§6.1. The Geometry of Order Cones 204

§6.2. Subdivisions, Linear Extensions, and Permutations 210

§6.3. Order Polytopes and Order Polynomials 214

§6.4. The Arithmetic of Order Cones and P -Partitions 220

Notes 229

Exercises 230



Contents vii

Chapter 7. Hyperplane Arrangements 235

§7.1. Chromatic, Order Polynomials, and Subdivisions Revisited 236

§7.2. Flats and Regions of Hyperplane Arrangements 239

§7.3. Inside-out Polytopes 245

§7.4. Alcoved Polytopes 250

§7.5. Zonotopes and Tilings 261

§7.6. Graph Flows and Totally Cyclic Orientations 273

Notes 280

Exercises 281

Bibliography 287

Notation Index 297

Index 301





Preface

Combinatorics is not a field, it’s an attitude.
Anon

A combinatorial reciprocity theorem relates two classes of combinatorial ob-
jects via their counting functions: consider a class X of combinatorial objects
and let f(n) be the function that counts the number of objects in X of size
n, where size refers to some specific quantity that is naturally associated
with the objects in X . Similar to canonization, it requires two miracles for
a combinatorial reciprocity to occur:

1. the function f(n) is the restriction of some reasonable function
(e.g., a polynomial) to the positive integers, and

2. the evaluation f(−n) is an integer of the same sign σ = ±1 for all
n ∈ Z>0.

In this situation it is only human to ask if σ f(−n) has a combinatorial
meaning, that is, if there is a natural class X ◦ of combinatorial objects such
that σ f(−n) counts the objects of X ◦ of size n (where size again refers
to some specific quantity naturally associated to X ◦). Combinatorial reci-
procity theorems are among the most charming results in mathematics and,
in contrast to canonization, can be found all over enumerative combinatorics
and beyond.

As a first example we consider the class of maps [k]→ Z>0 from the finite
set [k] := {1, 2, . . . , k} into the positive integers, and so f(n) = nk counts
the number of maps with codomain [n]. Thus f(n) is the restriction of a
polynomial and (−1)kf(−n) = nk satisfies our second requirement above.
This relates the number of maps [k]→ [n] to itself. This relation is a genuine
combinatorial reciprocity but the impression one is left with is that of being

ix



x Preface

underwhelmed rather than charmed. Later in the book it will become clear
that this example is not boring at all, but for now let’s try again.

The term combinatorial reciprocity theorem was coined by Richard Stan-
ley in his 1974 paper [162] of the same title, in which he developed a firm
foundation of the subject. Stanley starts with an appealing reciprocity that
he attributes to John Riordan: For a set S and d ∈ Z≥0, the collection of
d-subsets1 of S is (

S

d

)
:= {A ⊆ S : |A| = d} .

For d fixed, the number of d-subsets of S depends only on the cardinality
|S|, and the number of d-subsets of an n-set is

(0.0.1) f(n) =

(
n

d

)
=

1

d!
n(n− 1) · · · (n− d+ 2)(n− d+ 1) ,

which is the restriction of a polynomial in n of degree d. From the factoriza-
tion we can read off that (−1)df(−n) is a positive integer for every n > 0.
More precisely,

(−1)df(−n) =
1

d!
n(n+ 1) · · · (n+ d− 2)(n+ d− 1) =

(
n+ d− 1

d

)
,

which is the number of d-multisubsets of an n-set, that is, the number of
picking d elements from [n] with repetition but without regard to the order
in which the elements are picked. Now this is a combinatorial reciprocity!
In formulas it reads

(0.0.2) (−1)d
(
−n
d

)
=

(
n+ d− 1

d

)
.

This is enticing in more than one way. The identity presents an intriguing
connection between subsets and multisubsets via their counting functions,
and its formal justification is completely within the realms of an undergradu-
ate class in combinatorics. Equation (0.0.2) can be found in Riordan’s book
[143] on combinatorial analysis without further comment and, charmingly,
Stanley states that his paper [162] can be considered as “further comment”.
That further comment is necessary is apparent from the fact that the for-
mal proof above falls short of explaining why these two sorts of objects are
related by a combinatorial reciprocity. In particular, comparing coefficients
in (0.0.2) cannot be the method of choice for establishing more general reci-
procity relations.

In this book we develop tools and techniques for handling combinatorial
reciprocities. However, our own perspective is firmly rooted in geometric
combinatorics and, thus, our emphasis is on the geometric nature of the

1All our definitions will look like that: incorporated into the text but bold-faced and so
hopefully clearly visible.



Preface xi

combinatorial reciprocities. That is, for every class of combinatorial objects
we associate a geometric object (such as a polytope or a polyhedral complex)
in such a way that combinatorial features, including counting functions and
reciprocity, are reflected in the geometry. In short, this book can be seen as
further comment with pictures. At any rate, our text was written with the
intention to give a comprehensive introduction to contemporary enumerative
geometric combinatorics.

A Quick Tour. The book naturally comes in two parts with a special
role played by the first chapter: Chapter 1 introduces four combinatorial
reciprocity theorems that we set out to establish in the course of the book.
Chapters 2–4 are for-the-most-part-independent introductions to three ma-
jor themes of combinatorics: partially ordered sets, polyhedra, and gener-
ating functions. Chapters 5–7 treat more sophisticated topics in geometric
combinatorics and are meant to be digested in order. Here is what to expect.

Chapter 1 sets the rhythm. We introduce four functions to count col-
orings and flows on graphs, order-preserving functions on partially ordered
sets, and lattice points in dilations of lattice polygons. The definitions in
this chapter are kept somewhat informal, to provide an easy entry into the
themes of the later chapters. In all four cases we state a surprising combi-
natorial reciprocity and we point to some of the relations and connections
between these examples, which will make repeated appearances later on.
All in all, this chapter is a source of examples and motivation. You should
revisit it from time to time to see how the various ways to view these objects
shape your perspective.

Chapter 2 gives an introduction to partially ordered sets (posets, for
short). Relating posets by means of order-preserving maps gives rise to the
order polynomials from Chapter 1. One of the highlights here is a purely
combinatorial proof of the reciprocity surrounding order polynomials (and
only later will we see that there was geometry behind it). This gives us an
opportunity to introduce important machinery, including Möbius inversion,
zeta polynomials, and Eulerian posets in a hands-on and nonstandard form.

Geometry enters (quite literally) the picture in Chapter 3, in which we
introduce convex polyhedra. Polyhedra are wonderful objects to study in
their own right, as we hope to convey here, and much of their combinatorial
structure comes in poset-theoretic terms. Our main motivation, however, is
to develop a language that enables us to give the objects from Chapters 1
and 2 a geometric incarnation. The main player in Chapter 3 is the Euler
characteristic, which is a powerful tool to obtain combinatorial truths from
geometry. Two applications of the Euler characteristic, which we will witness
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in this chapter, are Zaslavsky’s theorem for hyperplane arrangements and
the Brianchon–Gram relation for polytopes.

Chapter 4 sets up the main algebraic machinery for our book: (rational)
generating functions. We start gently with natural examples of composi-
tions and partitions, and combinatorial reciprocity theorems appear almost
instantly and just as naturally. The second half of Chapter 4 connects the
world of generating functions with that of polyhedra and cones, where we
develop Ehrhart and Hilbert series from first principles, including Stanley’s
reciprocity theorem for rational simplicial cones, which is at the heart of this
book. This connection, in turn, allows us to view the first half of Chapter 4
from a new, geometric, perspective.

Chapter 5 is devoted to decomposing polyhedra into simple pieces. In
particular, organizing the various pieces automatically suggests to view tri-
angulations and, more generally, subdivisions as posets. Together with the
technologies developed in the first part of the book, this culminates in a proof
of our main combinatorial reciprocity theorems for polytopes and cones. The
theory of subdividing polyhedra is worthy of study in its own right and we
only glimpse at it by studying various ways to subdivide polytopes in a
geometric, algorithmic, and, of course, combinatorial fashion. A powerful
tool is that of half-open decompositions that quite remarkably help us to
see some deep combinatorics in a clear way.

In Chapter 6 we give general posets life in Euclidean space as polyhedral
cones. The theory of order cones allows us to utilize Chapters 2–5, often
in surprisingly interconnected ways, to study posets using geometric means
and, at the same time, interesting arithmetic objects derived from posets.
Just as interesting are applications of this theory, which include permutation
statistics, order polytopes, P -partitions, and their combinatorial reciprocity
theorems.

Chapter 7 finishes the framework that was started in Chapter 1: we
develop a unifying geometric approach to certain families of combinatorial
polynomials. The last missing piece of the puzzle is formed by hyperplane
arrangements, which constitute the main players of Chapter 7. They open
a window to certain families of graph polynomials, including chromatic and
flow polynomials, and we prove combinatorial reciprocity theorems for both.
Hyperplane arrangements also naturally connect to two important families
of polytopes, namely, alcoved polytopes and zonotopes.

The prerequisites for this book are minimal: undergraduate knowledge
of linear algebra and combinatorics should suffice. The numerous exercises
throughout the text are designed so that the book could easily be used for
a graduate class in combinatorics or discrete geometry. The exercises that
are needed for the main body of the text are marked by �.
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Notation Index

The following table contains a list of symbols that are frequently used
throughout the book. The page numbers refer to the first appearance/defini-
tion of each symbol.

Notation Meaning Page

[a, b] an interval in a poset 12
a ≺· b cover relation in a poset 12
aff(S) affine hull of S ⊆ Rd 58
Astv(P) {F ∈ Φ(P) : v �∈ F}, the antistar of the vertex v 188
Asc(σ) {j ∈ [d− 1] : σ(j) < σ(j + 1)}, the ascent set of σ 214
asc(σ) |Asc(σ)|, the ascent number of σ 225
Bd Boolean lattice of all subsets of [d] 34
b(H) number of relatively bounded regions of H 90
C a polyhedral cone 55
C∨ polar cone 62
cpΠ,φ(n) number of (Π, φ)-chain partitions of n 138
CPΠ,φ(n) generating function of (Π, φ)-chain partitions of n 138
CΠ vector space of functions Π→ C 41
C[x] vector space of polynomials with complex coefficients 108
C[x]≤d polynomials with complex coefficients of degree ≤ d 108
C�z� vector space of formal power series 110
cA(n) number of compositions of n with parts in A 116
cΠ(n) number of compositions of n that respect the poset Π 227
comaj(σ)

∑
j∈Ascσ j, the comajor index of σ 226
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Symbol Meaning Page

χ(P) Euler characteristic of the polyhedron P 77
χ(P) another Euler characteristic 86
χG(n) chromatic polynomial of the graph G 2
χH(t) characteristic polynomial of the arrangement H 90
χΠ(t) characteristic polynomial of the poset Π 88
cone(S) conical hull of S ⊆ Rd 61
conv(V ) convex hull of V ⊆ Rd 26
Des(σ) {j ∈ [d− 1] : σ(j) > σ(j + 1)}, the descent set of σ 213
des(σ) |Des(σ)|, the descent number of σ 219
dimQ dimension of the polyhedron Q 58
 a simplex 64
(Δf)(n) f(n+ 1)− f(n), the difference operator of f(n) 109
(d, k) the (d, k)-hypersimplex 191
Δ(a,b),Δ(Π) order complex of a poset 140
Eω(V ) convex epigraph of ω 159
ehrP(t)

∣∣tP ∩ Zd
∣∣, the Ehrhart (quasi-)polynomial of P 17

EhrP(z)
∑

t≥0 ehrP(t) z
t, the Ehrhart series of P 124

EhrP◦(z)
∑

t>0 ehrP◦(t) zt, the Ehrhart series of P◦ 137
ev for v in a set V , standard basis vectors of RV 185
ϕG(n) number of nowhere-zero Zn-flows on the graph G 11
fk(Q) number of faces of Q of dimension k 68
Φ(Q) face lattice of the polyhedron Q 67
G = (V,E) a graph with vertex set V and edge set E 1

ρG an orientation of the graph G 5
G∗ dual graph of G 8
G \ e graph G with edge e deleted 3
G/e graph G with edge e contracted 3
H an (oriented) hyperplane 53
H≥, H≤ halfspaces defined by the hyperplane H 53
H a hyperplane arrangement 73
HG {xi = xj : ij ∈ E}, the graphical arrangement of G 240
h∗P(z) h∗-polynomial of the polytope P 176
HqP P \ |Visq(P)|, a half-open polyhedron 170
HqP another half-open polyhedron 170
haC(n) Hilbert function of the cone C with grading a 129
Ha

C(n) Hilbert series of the cone C with grading a 129
hom(S) homogenization of S ⊆ Rd 56
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Symbol Meaning Page

J (Π) lattice of order ideals of the poset Π 30
(I f)(n) f(n), the identity operator applied to f(n) 109
I(Π) incidence algebra of the poset Π 30
IP,H(t) Ehrhart function of inside-out polytope (P,H) 245
JH(Π)

{
τ ∈ Sd : τ−1 ∈ Lin(Π)

}
, Jordan–Hölder set of Π 211

[k] set {1, 2, . . . , k} ix
Kd complete graph on d nodes 24
KΠ order cone of the poset Π 203
K1 + K2 Minkowski sum of K1,K2 ⊆ Rd 64
lΠ(x, y) length of a maximal chain in [x, y] in the poset Π 38
lineal(Q) lineality space of the polyhedron Q 57
Lin(Π) set of linear extensions of the poset Π 206
LipΠ Lipschitz polytope of the poset Π 255
L(G) flats of the graph G partially ordered by inclusion 42
L(H) intersection poset of the hyperplane arrangement H 88
maj(σ)

∑
j∈Desσ j, the major index of σ 221

μΠ Möbius function of the poset Π 33(
n
d

)
binomial coefficient x

[n]q 1 + q + · · ·+ qn−1, a q-integer 221
N (Π,
) poset of refinements of the poset (Π,
) 210
OΠ order polytope of the poset Π 214
ΩΠ(n) order polynomial of the poset Π 14
Ω◦
Π(n) strict order polynomial of the poset Π 13

P,Q a polyhedron or polytope 16
P◦ relative interior of the polyhedron P 16
∂P relative boundary of the polyhedron P 59
PCd collection of polyconvex sets in Rd 72
PC(H) collection of H-polyconvex sets 74
(P,H) an inside-out polytope 246
[p,q] line segment with endpoints p and q 60
Π a poset 12
pΠ(n) number of Π-partitions of the integer n 228
p◦Π(n) number of strict Π-partitions of the integer n 228
PΠ(z)

∑
t≥0 pΠ(t) z

t 228

pA(n) restricted partition function for A 120
pl(n) number of plane partitions of n 117
Pull(P) pulling triangulation of a polytope P 189
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Symbol Meaning Page

r(H) number of regions of the arrangement H 90
rkΠ(x) the rank of x ∈ Π 48
rec(Q) recession cone of the polyhedron Q 55
[S] indicator function of the set S 91
|S| support of the polyhedral complex S 156
S(d, r) Stirling number of the second kind 14
c(d, r) Stirling number of the first kind 48
s(d, k) Eulerian number 192
(S f)(n) f(n+ 1), the shift operator applied to f(n) 109
supp(f) support of a flow (or vector) f 7(
S
d

)
{A ⊆ S : |A| = d} x

σS(z) integer-point transform of S 125
Sd set of bijections/permutations of [d] 49
T a triangulation 18
Tq(Q) tangent cone of the polyhedron Q at the point q 82
TF(Q) tangent cone of the polyhedron Q at the face F 83
v ∗ P pyramid with apex v and base P 71
vert(P) vertex set of the polytope P 61
vol(S) (relative) volume of S 152
Visp(P) complex of faces of P visible from p 91
Visp(S) subcomplex of cells of S visible from p 168
ξ(G) cyclotomic number of the graph G 12
ζΠ zeta function of the poset Π 31
ZΠ(n) zeta polynomial of the poset Π 36
Z(z1, . . . , zm) a zonotope 261

0̂ minimum of a poset 32

1̂ maximum of a poset 32
x ∨ y join of elements in a poset 37
x ∧ y join of elements in a poset 37

, 
Π partial order relation (of a poset Π) 12� (half-open) parallelpiped 127�̂, q� fundamental parallelpipeds 134� an exercise used in the text xii
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acyclic orientation, 6, 242, 263

unique source, 244

acyclotope, 281

admissible hyperplane, 66

affine hull, 58

affine linear combination, 99

affine subspace, 53
skew, 101

affinely independent, 63

alcove, 252

alcoved polytope, 252

alcoved triangulation, 253

Andrews, George, 144

antichain, 14, 30, 204

antistar, 188

Appel, Kenneth, 2, 21

Archimedes, 94

arrangement of hyperplanes, 73

ascent, 192, 214
2-ascent, 259

big, 259

number of, 225

Barlow, Peter, 144

Barvinok, Alexander, 195

barycentric subdivision, 196

base orientation, 273

Batyrev, Victor, 194

Bell, Eric Temple, 45

beneath, 91

beneath-beyond method, 194

Bernoulli number, 147

Bernoulli polynomial, 147, 232

Betke, Ulrich, 195

beyond, 91, 168

big ascent, 259

Billera, Louis J., 95

binomial coefficient, 108, 115

binomial theorem, 32, 46, 108

Birkhoff lattice, 30, 216
Birkhoff’s theorem, 38

Birkhoff, Garrett, 45

Birkhoff, George, 2, 21

Boolean arrangement, 104

characteristic polynomial of, 247

Boolean lattice, 34, 40, 143

boundary, 59

boundary complex, 183

braid arrangement, 104

characteristic polynomial of, 247

Brianchon, Charles Julien, 96

Brianchon–Gram relation, 91, 175
bridge, 8, 277

Brion’s theorem, 175

Brion, Michel, 194

Bruggesser, Heinz, 95

b-transshipments, 281

calculus of finite differences, 109

Cayley, Arthur, 144

cell, 156

chain, 12, 204

in a poset, 35

length, 35

maximal, 35

saturated, 35
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unrefineable, 35
chain partition, 137, 187

reciprocity theorem, 140
characteristic polynomial

of a graded poset, 88

of a graphical arrangement, 248
of a hyperplane arrangement, 90, 243
of the Boolean arrangement, 247
of the braid arrangement, 247

chromatic polynomial, 3, 15, 39, 236

reciprocity theorem, 6
reciprocity theorem for, 250

cographical arrangement, 277
coin-exchange problem, 144
coloring, 2

color gradient, 6

proper, 2
comajor index, 226
combinatorial reciprocity theorem, x

for P -partitions, 229
for binomial coefficients, x

for chain partitions, 140
for chromatic polynomials, 6, 238, 250
for compositions respecting a poset,

227
for flow polynomials, 12, 278
for half-open lattice polytopes, 173
for half-open lattice simplices, 172
for half-open rational cones, 174
for Hilbert series, 136, 175

for inside-out polytopes, 249
for integer-point transforms, 134, 174
for lattice polygons, 17
for lattice polytopes, 167
for order polynomials, 15, 36, 225

for plane partition diamonds, 148
for rational cones, 174
for rational polytopes, 167
for restricted partition functions, 122
for Stirling numbers, 48
for zeta polynomials of Eulerian

posets, 39, 85
for zeta polynomials of finite

distributive lattices, 38
complete bipartite graph, 24
complete graph, 24
composition, 115, 226

part of, 115
strictly respects, 227
with odd parts, 116
with parts ≥ 2, 116

cone, 55, 61
finitely generated, 61
generators, 61
graded, 125
half-open, 133
order, 203
pointed, 58, 61, 79, 129
polar, 62, 98
polyhedral, 55
rational, 61, 129
simplicial, 64, 128
unimodular, 126

conical hull, 61
connected component, 8
conservation of flow, 7, 274
constituent, 122
contraction, 3, 241
convex, 16, 60
convex epigraph, 159
convex hull, 60
convolution, 121, 149
cover relation, 12, 204
Coxeter arrangements, 280
Cramer’s rule, 150
Crapo, Henry, 280
cross polytope, 59, 197
crosscut, 211
cube, 59, 237

face lattice of, 71
pulling triangulation of, 190, 191
regular unimodular triangulation, 163

cycle, 23, 269
basis, 275
fundamental, 275

cyclotomic number, 11, 274

Dedekind, Richard, 45
Dehn, Max, 95
Dehn–Sommerville relations, 86, 147,

186
generalized, 152

Delaunay, Boris, 193
deletion, 3
delta function, 31
derangement number, 49
derivative, 110
descent, 192, 213, 256

Π-descents, 260
number of, 219

descent-compatible permutation, 256
difference operator, 85, 109
dilate, 16
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dimension, 58, 63
of a polyhedron, 58
of an order cone, 205
of an abstract simplicial complex, 185

directed cycle, 6
directed path, 5
disjoint union, 69, 132
displacement, 53
dissection, 156

unimodular, 178
distributive lattice, 37, 72
divisor, 47
dual graph, 8
dual order ideal, 30

edge, 66
contraction of, 3
deletion of, 3
interior, 18
of a graph, 1
of a polygon, 16
of a polyhedron, 66

edge cut, 277
Ehrhart function, 17, 124, 155
Ehrhart polynomial, 17, 126, 161, 269

of a lattice polytopal complex, 181
Ehrhart series, 125, 176

of an open polytope, 137
Ehrhart’s theorem, 128, 161
Ehrhart, Eugène, 144, 194
Ehrhart–Macdonald reciprocity, 17,

167, 249, 276
embedded sublattice, 231
eta function, 32
Euler characteristic, 77, 86, 162
Euler, Leonhard, 95, 143, 229
Euler–Mahonian statistic, 223
Euler–Poincaré formula, 77
Eulerian complex, 184
Eulerian number, 192, 220
Eulerian polynomial, 220, 258
Eulerian poset, 38
eventually polynomial, 114, 147

face, 18, 66, 157
boundary, 18
figure, 103
interior, 18
numbers, 68
proper, 66

face lattice, 67
face poset

of a hyperplane arrangement, 264
of a polyhedron, 67

facet, 66
facet-defining hyperplane, 69
fan, 156
Feller, William, 144
Fibonacci number, 112
filter, 30, 207

connected, 208
neighbor closed chain, 255
neighborhood of, 255

finite reflection group, 280
finite-field method, 280
Five-flow Conjecture, 11, 22
fixed point, 49
flag f -vector, 139
flat, 88

of a graph, 42, 240
of a hyperplane arrangement, 88

flow, 7
conservation of, 274
integral, 279, 286
nowhere zero, 273

flow polynomial, 11, 273
reciprocity theorem, 12, 278

flow space, 274
forest, 269
formal Laurent series, 126
formal power series, 110
Four-color Theorem, 2
f -polynomial, 180
fractional part, 149
Freudenthal, Hans, 193
Frobenius number, 144
Frobenius problem, 144
Frobenius, Georg, 144
fundamental cycle, 275
fundamental parallelepiped, 134, 176
fundamental theorem of calculus, 47
f -vector

of a polyhedron, 68
of a simplicial complex, 142

Gelfand, Israel, 193
general position, 104, 266
generating function, 110

derivative, 110
formal reciprocity, 114
rational, 111

generic relative to, 170
geometric lattice, 280
geometric series, 117
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Gorenstein polytope, 198, 258
Grünbaum, Branko, 194, 280
graded poset, 38

characteristic polynomial of, 88
Gram, Jørgen, 96
graph, 1

acyclic orientation, 263
chromatic polynomial of, 3
complete, 24
complete bipartite, 24
connected, 8
connected component of, 8
contraction, 241
dual, 8
flat, 240
flat of, 42, 240
flow space of, 274
isomorphic, 23
orientation on, 5
planar, 2
source, 242

graphical arrangement, 240
characteristic polynomial of, 248

graphical zonotope, 262
vertices of, 263

greater index, 229
greatest lower bound, 37
Greene, Curtis, 280
g-Theorem, 95
Guthrie, Francis, 2

Haken, Wolfgang, 2, 21
half-open decomposition, 172
half-open polyhedron, 170
halfspace, 53

irredundant, 55
open, 74

Hall, Philip, 45
Hardy, Godfrey Harold, 143
Hasse diagram, 12
height

of a poset, 260
Hibi, Takayuki, 194
Hilbert function, 129
Hilbert series, 129, 175

reciprocity theorem, 136, 175
homogenization, 56, 125
H-polyconvex set, 74
h∗-polynomial, 152, 176
Huh, June, 22
h-vector, 95, 143, 185
hyperplane, 53

admissible, 66
arrangement of, 73
facet-defining, 69
halfspace, 53
oriented, 53
separating, 62
supporting, 66

hyperplane arrangement, 73, 88, 96, 239
affine reflection, 280
affinization, 267
central, 89, 239
cographical, 277
Coxeter, 280
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flat of, 88, 239
general position, 104
graphical, 240
lineality space of, 89
localization of, 243
rational, 245
real braid, 247
reflection, 280
region, 90
restriction of, 241
simple, 271
vertices, 272

hypersimplex, 94, 191, 252
(Π, k)-hypersimplex, 260
pulling triangulation of, 191

identity operator, 109
incidence algebra, 30, 41

invertible elements, 33
operating on functions, 41

inclusion–exclusion, 18, 39, 73, 156
incomparable, 210
indicator function, 91, 175
induced sublattice, 231
inner product, 53
inside-out polytope, 246

reciprocity theorem, 249
integer partition, 120
integer-point transform, 125

reciprocity theorem, 134, 174
integral flow, 279, 286
interior, 16, 58

relative, 58
topological, 58

interior point, 97
intersection poset, 43, 88, 239

closed set of, 43
interval, 35
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irredundant halfspace, 55
isomorphic posets, 35
isthmus, 8

Jaeger, François, 22
Jochemko, Katharina, 194
join, 37, 71
join irreducible, 48
Jordan normal form, 145
Jordan–Hölder set, 211

Kapranov, Mikhail, 193
Katz, Eric, 22
Klee, Victor, 195
Knuth, Donald, 229
Köppe, Matthias, 194
Koren, Michael, 281

Lam, Thomas, 280
lattice

(poset), 37
Birkhoff, 30
Boolean, 34
distributive, 37, 72
face, 67
integer, 16
of flats, 42, 243
of order ideals, 30

lattice basis, 126, 150
lattice length, 26
lattice path, 202
lattice polygon, 18
lattice polytope, 60, 94

reciprocity theorem, 167
lattice segment, 26
Laurent series, 126
least upper bound, 37
Lee, Carl W., 95
length

of a chain, 35, 44
of a poset, 35

lexicographic ordering, 284
Li, Nan, 281
line free, 57
line segment, 60, 261
lineality space, 57
linear extension, 33, 206
linear optimization, 94
linear programming, 94
linear recurrence, 112
linear subspace, 53

linearly ordered, 12
Lipschitz continuity, 254
Lipschitz polytope, 255
log concave, 23
loop, 1

Macdonald, I. G., 194
MacMahon, Percy, 144, 229
major index, 221
Mani, Peter, 95
map coloring, 21
maximal chain, 38
McMullen, Peter, 95, 194, 281
meet, 37
meet semilattice, 46, 68, 104
Minkowski sum, 64, 261
Minkowski, Hermann, 94, 193
Minkowski–Weyl theorem, 64, 170
Möbius function, 19, 33, 165

number theoretic, 47
of a face lattice, 81, 103
of order ideals, 35
of the lattice of flats, 243

Möbius inversion, 41, 158, 246
multichain, 30
multiplicity, 249
multisubset, x, 40

n-flow, 25
augmenting path, 25

nilpotent, 46, 108
node, 1
normal, 53
nowhere-zero flow, 8, 273, 286

octahedron, 197
order complex, 140, 216
order cone, 203, 257

dimension of, 205
faces of, 207
irredundant representation of, 204
unimodular triangulation of, 212

order ideal, 30
principal, 30

order polynomial, 14, 32, 215
reciprocity theorem, 15, 36, 225

order polytope, 214, 252
canonical triangulation of, 217

order-preserving map, 13, 29, 225
ranked, 139
strictly, 13
surjective, 46
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acyclic, 5, 242
base, 273
induced by a coloring, 6
totally cyclic, 11, 276

oriented matroids, 281

parallelepiped, 72, 127, 261
half-open, 127

part, 120
partially ordered set, 12
partition, 45, 120, 226

function, 149
part of, 120

path, 23
Paule, Peter, 144
periodic function, 119
permutahedron, 281, 284
permutation, 48, 162

2-ascent of, 259
big ascent of, 259
descent of, 254
descent-compatible, 256
fixed point of, 49
inversion of, 231
major index of, 221
statistics, 223

Petersen graph, 26
Philip Hall’s theorem, 44
Pick, Georg, 22
placing triangulation, 169
plane partition, 117, 130, 226

diamond, 148
Plato, 94
Poincaré, Henri, 95
pointed cone, 79
polar cone, 98
polyconvex, 72
polygon, 16

lattice, 18
polyhedral complex, 156, 188

dimension, 181
Eulerian, 184
of visible faces, 168
pure, 184
support of, 156

polyhedral cone, 55
polyhedron, 52

admissible hyperplane, 66
admissible projective transform, 97
convex, 60
direct sum, 101

face of, 66
free sum, 101
half-open, 170
join, 101
line free, 57
linearly isomorphic, 56
pointed, 66
product, 72, 101
projection, 65, 68
projectively isomorphic, 97
proper, 54, 68
rational, 52
supporting hyperplane, 66
unbounded, 55
wedge, 102

polynomial, 14, 32, 107, 109, 122
basis, 14, 108
Bernoulli, 147
characteristic, 88, 243
chromatic, 3, 236
Ehrhart, 17, 126, 161, 269
Eulerian, 220, 258
f , 180
flow, 11, 273
generating function of, 111
h∗, 176
order, 13, 32, 215
zeta, 36, 108

polytopal complex, 156
self-reciprocal, 182

polytope, 16, 60
0/1, 202, 215
2-level, 202
alcoved, 252
centrally-symmetric, 257
compressed, 192, 202, 283
Gorenstein, 198, 258
inside-out, 246
lattice, 60, 94
Lipschitz, 255
order, 214
rational, 60, 132, 167
reflexive, 198
simplicial, 70, 85, 141, 188
vertex set, 61
vertices, 61
zonotope, 261

poset, 12, 29, 203
anti-isomorphic, 264
connected, 206
direct product, 34, 46
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dual naturally labelled, 228
Eulerian, 38, 48, 85, 140, 184
from graph, 15
graded, 38, 67, 183, 232
intersection, 43
interval, 35
isomorphic, 35
isomorphism, 13
linear extension of, 206
Lipschitz function on, 254
maximum of, 32
minimum of, 32
naturally labelled, 204
of partitions, 45
rank of, 38
rank of an element, 48
ranked, 257
refinement, 210
rooted tree, 283

Postnikov, Alexander, 280
P -partition, 228

reciprocity theorem, 229
(P, ω)-partition, 233
principal order ideal, 30
product in an incidence algebra, 31
product of simplices, 202
projection, 65
projective transformation, 97
proper coloring, 2
pulling triangulation, 189

of an order polytope, 216
pushing triangulation, 169
pyramid, 67, 71, 168, 197

q-factorial, 222
q-integer, 221
quasipolynomial, 119

constituents of, 122
convolution of, 121, 149
degree of, 122
Ehrhart, 132, 167
period of, 122

Rademacher, Hans, 143
Ramanujan, Srinivasa, 143
rank, 48

of a poset, 38
rational cone, 61

reciprocity theorem, 174
rational function, 111

improper, 114
rational generating function, 111

rational polytope, 60, 132
reciprocity theorem, 167

ray, 66
Read, Ronald, 22
real braid arrangement, 104
recession cone, 55
reciprocal domain, 194
refinement, 45
reflection arrangements, 280
reflexive polytope, 198
region, 90

(relatively) bounded, 90
of an inside-out polytope, 249

regular triangulation, 163
relative boundary, 59
relative interior, 58
relative volume, 152
restricted partition function, 120, 137

reciprocity theorem, 122
ridge, 66
Riese, Axel, 144
Riordan, John, x
root system, 280
rooted tree, 283
Rota’s crosscut theorem, 35
Rota, Gian-Carlo, 45, 280

Sanyal, Raman, 194
Schläfli, Ludwig, 95
Schrijver, Alexander, 94
self-reciprocal, 119, 182
separating hyperplane, 62
separation theorem, 62, 94
Seymour, Paul, 11
Shephard, Geoffrey, 281
shift operator, 109
simplex, 63

barycenter, 253
unimodular, 128

simplicial complex, 141, 156
abstract, 141, 156, 184
canonical realization of, 185
dimension of, 185
face, 141
geometric, 156, 184
order complex, 141
pure, 141

simplicial cone, 64, 128
simplicial polytope, 70, 85, 95, 141
solid partition, 229
Sommerville, D. M. Y., 95
source, 242
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Stanley, Richard, x, 5, 22, 45, 95, 144,

194, 229, 280
Stanley–Reisner ring, 145
Steiner, Jakob, 280
Steinitz’s theorem, 95
Steinitz, Ernst, 95
Stirling number

of the first kind, 48
of the second kind, 14, 48

strict order polynomial, 13
strictly order-preserving map, 30
Sturmfels, Bernd, 281
subdivision, 157, 168

barycentric, 196
coherent, 161
proper, 157
regular, 161

sublattice
embedded, 231
induced, 231

support, 7, 141, 156
supporting hyperplane, 66
surjective order-preserving map, 46
symmetric group, 163

tangent cone, 82, 91, 165
tiling, 265

regular, 266
zonotopal, 265

total order, 12
totally cyclic, 11, 276
totally ordered, 12
transversal, 249
tree, 269
triangle, 16, 126

unimodular, 27
triangulation, 17, 157, 169, 174

alcoved, 253
lattice, 158
placing, 169
pulling, 189
pushing, 169
rational, 174
unimodular, 185

Tutte polynomial, 22
Tutte, William, 11
Tutte–Grothendieck invariant, 22

unimodal, 23

unimodular
cone, 126
dissection, 178
simplex, 128
triangulation, 163

unipotent, 107
unit disc, 102

valuation, 18, 73, 95, 155, 194
vector space

of polynomials, 108, 145
of valuations, 104

Verdoolaege, Sven, 194
vertex, 61, 66

figure, 103
of a polygon, 16
of a polyhedron, 66
of a simplicial complex, 156

visible, 91, 168
volume, 152

wedge, 57, 102
Weyl, Hermann, 94
wheel, 23
Whitney, Hassler, 3, 21
Wilf, Herbert, 22

Young diagram, 233
Young tableau, 233

Zaslavsky’s theorem, 90, 243
Zaslavsky, Thomas, 96, 280
Zelevinsky, Andrei, 193
zeta function, 31
zeta polynomial, 36, 107, 137, 186

for Boolean lattices, 48
for Eulerian posets, 39

Zn-flow, 7, 273
zonotopal tiling, 265

cubical, 265
fine, 265

zonotope, 261
graphical, 262
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Combinatorial reciprocity is a very interesting 
phenomenon, which can be described as follows:  
A polynomial, whose values at positive integers 
count combinatorial objects of some sort, may give 
the number of combinatorial objects of a different 
sort when evaluated at negative integers (and suit-
ably normalized). Such combinatorial reciprocity 
theorems occur in connections with graphs, partially 
ordered sets, polyhedra, and more. Using the 
combinatorial reciprocity theorems as a leitmotif, 
this book unfolds central ideas and techniques in 
enumerative and geometric combinatorics.

Written in a friendly writing style, this is an accessible graduate textbook with almost 
300 exercises, numerous illustrations, and pointers to the research literature. Topics 
include concise introductions to partially ordered sets, polyhedral geometry, and 
rational generating functions, followed by highly original chapters on subdivisions, 
geometric realizations of partially ordered sets, and hyperplane arrangements.

www.ams.org


