GRADUATE STUDIES IN MATHEMATICS

Combinatorial Reciprocity Theorems

An Invitation to
Enumerative Geometric
Combinatorics
Matthias Beck
Raman Sanyal

Combinatorial Reciprocity Theorems An Invitation to Enumerative Geometric Combinatorics

Matthias Beck
Raman Sanyal

Combinatorial Reciprocity Theorems

 An Invitation to Enumerative Geometric CombinatoricsMatthias Beck Raman Sanyal

EDITORIAL COMMITTEE

Daniel S. Freed (Chair)
Bjorn Poonen
Gigliola Staffilani
Jeff A. Viaclovsky

2010 Mathematics Subject Classification. Primary 05Axx, 05C31, 05E45, 11P21, 52B05, 52B11, 52B20, 52B45, 52C07, 68R05.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-195

Library of Congress Cataloging-in-Publication Data

Names: Beck, Matthias, author. | Sanyal, Raman, 1978-author.
Title: Combinatorial reciprocity theorems : an invitation to enumerative geometric combinatorics / Matthias Beck, Raman Sanyal.
Description: Providence, Rhode Island : American Mathematical Society, [2018] | Series: Graduate studies in mathematics; volume 195 | Includes bibliographical references and index.
Identifiers: LCCN 2018034294 | ISBN 9781470422004 (alk. paper)
Subjects: LCSH: Combinatorial geometry. | Combinatorial analysis. | AMS: Combinatorics Enumerative combinatorics - Enumerative combinatorics. msc - Combinatorics - Graph theory - Graph polynomials. msc | Combinatorics - Algebraic combinatorics - Combinatorial aspects of simplicial complexes. msc| Number theory - Additive number theory; partitions - Lattice points in specified regions. msc | Convex and discrete geometry - Polytopes and polyhedra - Combinatorial properties (number of faces, shortest paths, etc.). msc | Convex and discrete geometry - Polytopes and polyhedra - n-dimensional polytopes. msc | Convex and discrete geometry - Polytopes and polyhedra - Lattice polytopes (including relations with commutative algebra and algebraic geometry). msc | Convex and discrete geometry - Polytopes and polyhedra - Dissections and valuations (Hilbert's third problem, etc.). msc | Convex and discrete geometry - Discrete geometry - Lattices and convex bodies in n dimensions. msc \mid Computer science - Discrete mathematics in relation to computer science - Combinatorics. msc
Classification: LCC QA167.B3545 2018 | DDC 511/.6-dc23
LC record available at https://lccn.loc.gov/2018034294

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
(C) 2018 by the authors. All rights reserved.

Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

$$
10987654321 \quad 232221201918
$$

Contents

Preface ix
Chapter 1. Four Polynomials 1]
§1.1. Graph Colorings 1
§1.2. Flows on Graphs 7
§1.3. Order Polynomials 12
§1.4. Ehrhart Polynomials 15
Notes 21
Exercises 23
Chapter 2. Partially Ordered Sets 29
§2.1. Order Ideals and the Incidence Algebra 29
§2.2. The Möbius Function and Order Polynomial Reciprocity 33
§2.3. Zeta Polynomials, Distributive Lattices, and Eulerian Posets 36
§2.4. Inclusion-Exclusion and Möbius Inversion 39
Notes 45
Exercises 46
Chapter 3. Polyhedral Geometry 51
§3.1. Inequalities and Polyhedra 52
§3.2. Polytopes, Cones, and Minkowski-Weyl 60
§3.3. Faces, Partially Ordered by Inclusion 66
§3.4. The Euler Characteristic 72
§3.5. Möbius Functions of Face Lattices 81
§3.6. Uniqueness of the Euler Characteristics and Zaslavsky's Theorem 86
§3.7. The Brianchon-Gram Relation 91
Notes 94
Exercises 96
Chapter 4. Rational Generating Functions 107
§4.1. Matrix Powers and the Calculus of Polynomials 107
§4.2. Compositions 115
§4.3. Plane Partitions 117
§4.4. Restricted Partitions 120
§4.5. Quasipolynomials 122
§4.6. Integer-point Transforms and Lattice Simplices 124
§4.7. Gradings of Cones and Rational Polytopes 129
§4.8. Stanley Reciprocity for Simplicial Cones 132
§4.9. Chain Partitions and the Dehn-Sommerville Relations 137
Notes 143
Exercises 145
Chapter 5. Subdivisions 155
§5.1. Decomposing a Polyhedron 155
§5.2. Möbius Functions of Subdivisions 165
§5.3. Beneath, Beyond, and Half-open Decompositions 168
§5.4. Stanley Reciprocity 174
§5.5. h^{*}-vectors and f-vectors 176
§5.6. Self-reciprocal Complexes and Dehn-Sommerville Revisited 181
§5.7. A Combinatorial Triangulation 188
Notes 193
Exercises 195
Chapter 6. Partially Ordered Sets, Geometrically 203
§6.1. The Geometry of Order Cones 204
§6.2. Subdivisions, Linear Extensions, and Permutations 210
§6.3. Order Polytopes and Order Polynomials 214
$\S 6.4$. The Arithmetic of Order Cones and P-Partitions 220
Notes 229
Exercises 230
Chapter 7. Hyperplane Arrangements 235
§7.1. Chromatic, Order Polynomials, and Subdivisions Revisited 236
§7.2. Flats and Regions of Hyperplane Arrangements 239
§7.3. Inside-out Polytopes 245
§7.4. Alcoved Polytopes 250
§7.5. Zonotopes and Tilings 261
§7.6. Graph Flows and Totally Cyclic Orientations 273
Notes 280
Exercises 281
Bibliography 287
Notation Index 297
Index 301

Preface

Combinatorics is not a field, it's an attitude.
Anon

A combinatorial reciprocity theorem relates two classes of combinatorial objects via their counting functions: consider a class \mathcal{X} of combinatorial objects and let $f(n)$ be the function that counts the number of objects in \mathcal{X} of size n, where size refers to some specific quantity that is naturally associated with the objects in \mathcal{X}. Similar to canonization, it requires two miracles for a combinatorial reciprocity to occur:

1. the function $f(n)$ is the restriction of some reasonable function (e.g., a polynomial) to the positive integers, and
2. the evaluation $f(-n)$ is an integer of the same sign $\sigma= \pm 1$ for all $n \in \mathbb{Z}_{>0}$.

In this situation it is only human to ask if $\sigma f(-n)$ has a combinatorial meaning, that is, if there is a natural class \mathcal{X}° of combinatorial objects such that $\sigma f(-n)$ counts the objects of \mathcal{X}° of size n (where size again refers to some specific quantity naturally associated to \mathcal{X}°). Combinatorial reciprocity theorems are among the most charming results in mathematics and, in contrast to canonization, can be found all over enumerative combinatorics and beyond.

As a first example we consider the class of maps $[k] \rightarrow \mathbb{Z}_{>0}$ from the finite set $[k]:=\{1,2, \ldots, k\}$ into the positive integers, and so $f(n)=n^{k}$ counts the number of maps with codomain [n]. Thus $f(n)$ is the restriction of a polynomial and $(-1)^{k} f(-n)=n^{k}$ satisfies our second requirement above. This relates the number of maps $[k] \rightarrow[n]$ to itself. This relation is a genuine combinatorial reciprocity but the impression one is left with is that of being
underwhelmed rather than charmed. Later in the book it will become clear that this example is not boring at all, but for now let's try again.

The term combinatorial reciprocity theorem was coined by Richard Stanley in his 1974 paper [162] of the same title, in which he developed a firm foundation of the subject. Stanley starts with an appealing reciprocity that he attributes to John Riordan: For a set S and $d \in \mathbb{Z}_{\geq 0}$, the collection of d-subsets ${ }^{1}$ of S is

$$
\binom{S}{d}:=\{A \subseteq S:|A|=d\}
$$

For d fixed, the number of d-subsets of S depends only on the cardinality $|S|$, and the number of d-subsets of an n-set is

$$
\begin{equation*}
f(n)=\binom{n}{d}=\frac{1}{d!} n(n-1) \cdots(n-d+2)(n-d+1) \tag{0.0.1}
\end{equation*}
$$

which is the restriction of a polynomial in n of degree d. From the factorization we can read off that $(-1)^{d} f(-n)$ is a positive integer for every $n>0$. More precisely,

$$
(-1)^{d} f(-n)=\frac{1}{d!} n(n+1) \cdots(n+d-2)(n+d-1)=\binom{n+d-1}{d}
$$

which is the number of d-multisubsets of an n-set, that is, the number of picking d elements from $[n]$ with repetition but without regard to the order in which the elements are picked. Now this is a combinatorial reciprocity! In formulas it reads

$$
\begin{equation*}
(-1)^{d}\binom{-n}{d}=\binom{n+d-1}{d} \tag{0.0.2}
\end{equation*}
$$

This is enticing in more than one way. The identity presents an intriguing connection between subsets and multisubsets via their counting functions, and its formal justification is completely within the realms of an undergraduate class in combinatorics. Equation (0.0.2) can be found in Riordan's book [143] on combinatorial analysis without further comment and, charmingly, Stanley states that his paper [162] can be considered as "further comment". That further comment is necessary is apparent from the fact that the formal proof above falls short of explaining why these two sorts of objects are related by a combinatorial reciprocity. In particular, comparing coefficients in (0.0.2) cannot be the method of choice for establishing more general reciprocity relations.

In this book we develop tools and techniques for handling combinatorial reciprocities. However, our own perspective is firmly rooted in geometric combinatorics and, thus, our emphasis is on the geometric nature of the

[^0]combinatorial reciprocities. That is, for every class of combinatorial objects we associate a geometric object (such as a polytope or a polyhedral complex) in such a way that combinatorial features, including counting functions and reciprocity, are reflected in the geometry. In short, this book can be seen as further comment with pictures. At any rate, our text was written with the intention to give a comprehensive introduction to contemporary enumerative geometric combinatorics.

A Quick Tour. The book naturally comes in two parts with a special role played by the first chapter: Chapter 1 introduces four combinatorial reciprocity theorems that we set out to establish in the course of the book. Chapters 2-4 are for-the-most-part-independent introductions to three major themes of combinatorics: partially ordered sets, polyhedra, and generating functions. Chapters $5 \cdot 7$ treat more sophisticated topics in geometric combinatorics and are meant to be digested in order. Here is what to expect.

Chapter 1 sets the rhythm. We introduce four functions to count colorings and flows on graphs, order-preserving functions on partially ordered sets, and lattice points in dilations of lattice polygons. The definitions in this chapter are kept somewhat informal, to provide an easy entry into the themes of the later chapters. In all four cases we state a surprising combinatorial reciprocity and we point to some of the relations and connections between these examples, which will make repeated appearances later on. All in all, this chapter is a source of examples and motivation. You should revisit it from time to time to see how the various ways to view these objects shape your perspective.

Chapter 2 gives an introduction to partially ordered sets (posets, for short). Relating posets by means of order-preserving maps gives rise to the order polynomials from Chapter [1. One of the highlights here is a purely combinatorial proof of the reciprocity surrounding order polynomials (and only later will we see that there was geometry behind it). This gives us an opportunity to introduce important machinery, including Möbius inversion, zeta polynomials, and Eulerian posets in a hands-on and nonstandard form.

Geometry enters (quite literally) the picture in Chapter 3, in which we introduce convex polyhedra. Polyhedra are wonderful objects to study in their own right, as we hope to convey here, and much of their combinatorial structure comes in poset-theoretic terms. Our main motivation, however, is to develop a language that enables us to give the objects from Chapters 1 and 2 a geometric incarnation. The main player in Chapter 3 is the Euler characteristic, which is a powerful tool to obtain combinatorial truths from geometry. Two applications of the Euler characteristic, which we will witness
in this chapter, are Zaslavsky's theorem for hyperplane arrangements and the Brianchon-Gram relation for polytopes.

Chapter 4 sets up the main algebraic machinery for our book: (rational) generating functions. We start gently with natural examples of compositions and partitions, and combinatorial reciprocity theorems appear almost instantly and just as naturally. The second half of Chapter 4 connects the world of generating functions with that of polyhedra and cones, where we develop Ehrhart and Hilbert series from first principles, including Stanley's reciprocity theorem for rational simplicial cones, which is at the heart of this book. This connection, in turn, allows us to view the first half of Chapter 4 from a new, geometric, perspective.

Chapter 5 is devoted to decomposing polyhedra into simple pieces. In particular, organizing the various pieces automatically suggests to view triangulations and, more generally, subdivisions as posets. Together with the technologies developed in the first part of the book, this culminates in a proof of our main combinatorial reciprocity theorems for polytopes and cones. The theory of subdividing polyhedra is worthy of study in its own right and we only glimpse at it by studying various ways to subdivide polytopes in a geometric, algorithmic, and, of course, combinatorial fashion. A powerful tool is that of half-open decompositions that quite remarkably help us to see some deep combinatorics in a clear way.

In Chapter we give general posets life in Euclidean space as polyhedral cones. The theory of order cones allows us to utilize Chapters 25 , often in surprisingly interconnected ways, to study posets using geometric means and, at the same time, interesting arithmetic objects derived from posets. Just as interesting are applications of this theory, which include permutation statistics, order polytopes, P-partitions, and their combinatorial reciprocity theorems.

Chapter 7 finishes the framework that was started in Chapter 1; we develop a unifying geometric approach to certain families of combinatorial polynomials. The last missing piece of the puzzle is formed by hyperplane arrangements, which constitute the main players of Chapter 7. They open a window to certain families of graph polynomials, including chromatic and flow polynomials, and we prove combinatorial reciprocity theorems for both. Hyperplane arrangements also naturally connect to two important families of polytopes, namely, alcoved polytopes and zonotopes.

The prerequisites for this book are minimal: undergraduate knowledge of linear algebra and combinatorics should suffice. The numerous exercises throughout the text are designed so that the book could easily be used for a graduate class in combinatorics or discrete geometry. The exercises that are needed for the main body of the text are marked by \square.

Acknowledgments. The first (and very preliminary) version of this manuscript was tried on some patient and error-forgiving students and researchers at the Mathematical Sciences Research Institute in Spring 2008 and in a course at the Freie Universität Berlin in Fall 2011. We thank them for their crucial input at the early stages of this book. In particular Lennart Claus, who took the 2011 class and did not see this book finally being finished, is vividly remembered for his keen interest, his active participation, and his Mandelkekse.

Since then, the book has, like its authors, matured (and aged). In particular it has expanded in breadth and depth (and, inevitably, length). We have had the fortune of receiving many valuable suggestions and corrections; we would like to thank in particular Tewodros Amdeberhan, Spencer Backman, Hélène Barcelo, Seth Chaiken, Adam Chavin, Susanna Fishel, Curtis Greene, Christian Haase, Max Hlavacek, Katharina Jochemko, Florian Kohl, Cailan Li, Sebastian Manecke, Jeremy Martin, Tyrrell McAllister, Louis Ng, Peter Paule, Bruce Sagan, Steven Sam, Paco Santos, Miriam Schlöter, Tom Schmidt, Christina Schulz, Matthias Schymura, Sam Sehayek, Richard Sieg, Christian Stump, Ngô Viêt Trung, Andrés Vindas Meléndez, Wei Wang, Russ Woodroofe, Tom Zaslavsky, and Günter Ziegler. Richard Stanley does not only also belong to this list, but he deserves special thanks: as one can see in the references throughout this text, he has been the main creative mind behind the material that forms the core of this book.

We thank the organizers and students of several classes, graduate schools, and workshops, in which we could test run various parts of the book: the 2011 Rocky Mountain Mathematics Consortium in Laramie, the 2013 Spring School in Hanoi, a Winter 2014 combinatorics class at the Freie Universität Berlin, and the 2015 Summer School at the Research Institute for Symbolic Computation in Linz.

We are grateful to the editorial staff at the American Mathematical Society, particularly Sergei Gelfand, who was relentlessly cheerful of this book project from its inception to its final polishing; his patience and wit have not only been much appreciated but needed. We thank Ed Dunne, Chris Thivierge, and the Editorial Committee and reviewers for many helpful insights, Mary Letourneau for her meticulous copy-editing, and the AMS TEX gurus, particularly Brian Bartling and Barbara Beeton, for invaluable assistance. David Austin made much of the geometry in this book come to life in the figures featured here; we are big fans of his art.

We thank the US National Science Foundation for their support, San Francisco State University for a presidential award (the resulting sabbatical allowed M.B. to give the above-mentioned lectures at MSRI), and the DFG Collaborative Research Center TRR 109 Discretization in Geometry and

Dynamics (sponsoring M.B.'s guest professorship at Freie Univerität in Fall 2014).
M.B. is deeply grateful to Tendai for her love, support, and patience while he tries to turn coffee into theorems, to Kumi for her energy and emotional support, and to his family zuhause and kumusha for their love. The idea for this book was conceived on numerous long trips to spend precious time with his Papa during the last months of his life. He dedicates this book to his memory.
R.S. is eternally grateful to Vanessa and Konstantin for their support, their patience, and, above all, for their love. When living with somebody who often times concentratedly stares at nothing (while figuring something out), all three merits are surely necessary. This book is dedicated to them. R.S. also thanks the Villa people at Freie Universität Berlin in the years 2011-2016, in particular Günter, for sharing the atmosphere, the freedom, and their wisdom (mathematically and otherwise).

San Francisco Matthias Beck
Frankfurt
Raman Sanyal
June 2018

Bibliography

[1] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2014.
[2] Karim A. Adiprasito and Raman Sanyal, Relative Stanley-Reisner theory and upper bound theorems for Minkowski sums, Publ. Math. Inst. Hautes Études Sci. 124 (2016), 99-163, DOI 10.1007/s10240-016-0083-7. MR3578915
[3] Edward E. Allen, Descent monomials, P-partitions and dense Garsia-Haiman modules, J. Algebraic Combin. 20 (2004), no. 2, 173-193, DOI 10.1023/B:JACO.0000047281.84115.b7. MR2104675
[4] George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR 1634067
[5] George E. Andrews and Kimmo Eriksson, Integer partitions, Cambridge University Press, Cambridge, 2004. MR 2122332
[6] George E. Andrews, Peter Paule, and Axel Riese, MacMahon's partition analysis. VIII. Plane partition diamonds, Special issue in honor of Dominique Foata's 65th birthday (Philadelphia, PA, 2000), Adv. in Appl. Math. 27 (2001), no. 2-3, 231-242, DOI 10.1006/aama.2001.0733. MR 1868964
[7] Kenneth Appel and Wolfgang Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (1977), no. 3, 429-490. MR0543792
[8] Kenneth Appel, Wolfgang Haken, and John Koch, Every planar map is four colorable. II. Reducibility, Illinois J. Math. 21 (1977), no. 3, 491-567. MR0543793
[9] Federico Ardila, Thomas Bliem, and Dido Salazar, Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes, J. Combin. Theory Ser. A 118 (2011), no. 8, 2454-2462, DOI 10.1016/j.jcta.2011.06.004. MR2834187
[10] Isao Arima and Hiroyuki Tagawa, Generalized (P, ω)-partitions and generating functions for trees, J. Combin. Theory Ser. A 103 (2003), no. 1, 137-150, DOI 10.1016/S0097-3165(03)00091-8. MR1986835
[11] Christos A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields, Adv. Math. 122 (1996), no. 2, 193-233, DOI 10.1006/aima.1996.0059. MR 1409420
[12] Christos A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, J. Reine Angew. Math. 583 (2005), 163-174, DOI 10.1515/crll.2005.2005.583.163. MR 2146855
[13] Peter Barlow, An Elementary Investigation of the Theory of Numbers, J. Johnson \& Co., London, 1811.
[14] Alexander I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994), no. 4, 769-779, DOI 10.1287/moor.19.4.769. MR1304623
[15] Alexander Barvinok, A course in convexity, Graduate Studies in Mathematics, vol. 54, American Mathematical Society, Providence, RI, 2002. MR 1940576
[16] Alexander Barvinok, Integer points in polyhedra, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR2455889
[17] Alexander Barvinok and James E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New perspectives in algebraic combinatorics (Berkeley, CA, 1996), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91-147. MR1731815
[18] Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), no. 3, 493-535. MR1269718
[19] Margaret M. Bayer and Louis J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Invent. Math. 79 (1985), no. 1, 143-157, DOI 10.1007/BF01388660. MR 774533
[20] Matthias Beck and Benjamin Braun, Euler-Mahonian statistics via polyhedral geometry, Adv. Math. 244 (2013), 925-954, DOI 10.1016/j.aim.2013.06.002. MR3077893
[21] Matthias Beck, Jesús A. De Loera, Mike Develin, Julian Pfeifle, and Richard P. Stanley, Coefficients and roots of Ehrhart polynomials, Integer points in polyhedra-geometry, number theory, algebra, optimization, Contemp. Math., vol. 374, Amer. Math. Soc., Providence, RI, 2005, pp. 15-36, DOI 10.1090/conm/374/06897. MR 2134759
[22] Matthias Beck, Christian Haase, and Frank Sottile, Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones, Math. Intelligencer 31 (2009), no. 1, 9-17, DOI 10.1007/s00283-008-9013-y. MR2480796
[23] Matthias Beck and Neville Robbins, Variations on a generating-function theme: enumerating compositions with parts avoiding an arithmetic sequence, Amer. Math. Monthly 122 (2015), no. 3, 256-263, DOI 10.4169/amer.math.monthly.122.03.256. MR 3327715
[24] Matthias Beck and Sinai Robins, Computing the continuous discretely, Integer-point enumeration in polyhedra; With illustrations by David Austin, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York, 2015. MR 3410115
[25] Matthias Beck and Thomas Zaslavsky, Inside-out polytopes, Adv. Math. 205 (2006), no. 1, 134-162, DOI 10.1016/j.aim.2005.07.006. MR2254310
[26] Matthias Beck and Thomas Zaslavsky, The number of nowhere-zero flows on graphs and signed graphs, J. Combin. Theory Ser. B 96 (2006), no. 6, 901-918, DOI 10.1016/j.jctb.2006.02.011. MR2274083
[27] Dale Beihoffer, Jemimah Hendry, Albert Nijenhuis, and Stan Wagon, Faster algorithms for Frobenius numbers, Electron. J. Combin. 12 (2005), Research Paper 27, 38. MR2156681
[28] Ulrich Betke and Peter McMullen, Lattice points in lattice polytopes, Monatsh. Math. 99 (1985), no. 4, 253-265, DOI 10.1007/BF01312545. MR 799674
[29] Louis J. Billera and Gábor Hetyei, Linear inequalities for flags in graded partially ordered sets, J. Combin. Theory Ser. A 89 (2000), no. 1, 77-104, DOI 10.1006/jcta.1999.3008. MR 1736134
[30] Louis J. Billera and Carl W. Lee, A proof of the sufficiency of McMullen's conditions for f vectors of simplicial convex polytopes, J. Combin. Theory Ser. A 31 (1981), no. 3, 237-255, DOI 10.1016/0097-3165(81)90058-3. MR 635368
[31] Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, vol. 25, American Mathematical Society, Providence, R.I., 1979. MR 598630
[32] George D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. of Math. (2) 14 (1912/13), no. 1-4, 42-46, DOI 10.2307/1967597. MR1502436
[33] Anders Björner, Topological methods, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 1819-1872. MR 1373690
[34] Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
[35] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler, Oriented matroids, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge, 1999. MR1744046
[36] Ethan D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345, DOI 10.2307/1995073. MR0256265
[37] Felix Breuer and Raman Sanyal, Ehrhart theory, modular flow reciprocity, and the Tutte polynomial, Math. Z. 270 (2012), no. 1-2, 1-18, DOI 10.1007/s00209-010-0782-6. MR 2875820
[38] Charles J. Brianchon, Théorème nouveau sur les polyèdres, J. Ecole (Royale) Polytechnique 15 (1837), 317-319.
[39] Graham Brightwell and Peter Winkler, Counting linear extensions, Order 8 (1991), no. 3, 225-242, DOI 10.1007/BF00383444. MR 1154926
[40] Michel Brion, Points entiers dans les polyèdres convexes (French), Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 653-663. MR982338
[41] Heinz Bruggesser and Peter Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197-205 (1972), DOI 10.7146/math.scand.a-11045. MR0328944
[42] Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and K-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009. MR 2508056
[43] Winfried Bruns and Tim Römer, h-vectors of Gorenstein polytopes, J. Combin. Theory Ser. A 114 (2007), no. 1, 65-76, DOI 10.1016/j.jcta.2006.03.003. MR2275581
[44] Thomas Brylawski and James Oxley, The Tutte polynomial and its applications, Matroid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 123-225, DOI 10.1017/CBO9780511662041.007. MR 1165543
[45] Arthur Cayley, The collected mathematical papers. Volume 10, Cambridge Library Collection, Cambridge University Press, Cambridge, 2009. Reprint of the 1896 original. MR 2866374
[46] Anastasia Chavez and Nicole Yamzon, The Dehn-Sommerville relations and the Catalan matroid, Proc. Amer. Math. Soc. 145 (2017), no. 9, 4041-4047, DOI 10.1090/proc/13554. MR 3665055
[47] William Y. C. Chen, Alan J. X. Guo, Peter L. Guo, Harry H. Y. Huang, and Thomas Y. H. Liu, s-inversion sequences and P-partitions of type B, SIAM J. Discrete Math. 30 (2016), no. 3, 1632-1643, DOI 10.1137/130942140. MR3539893
[48] Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR 0290980
[49] Jesús A. De Loera, David Haws, Raymond Hemmecke, Peter Huggins, and Ruriko Yoshida, A User's Guide for LattE v1.1, software package LattE, 2004. Electronically available at https://www.math.ucdavis.edu/~latte/.
[50] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida, Effective lattice point counting in rational convex polytopes, J. Symbolic Comput. 38 (2004), no. 4, 1273-1302, DOI 10.1016/j.jsc.2003.04.003. MR2094541
[51] Jesús A. De Loera, Jörg Rambau, and Francisco Santos, Triangulations, Structures for algorithms and applications, Algorithms and Computation in Mathematics, vol. 25, SpringerVerlag, Berlin, 2010. MR2743368
[52] Max Dehn, Die Eulersche Formel im Zusammenhang mit dem Inhalt in der NichtEuklidischen Geometrie (German), Math. Ann. 61 (1906), no. 4, 561-586, DOI 10.1007/BF01449498. MR 1511363
[53] Boris N. Delaunay, Sur la sphère vide., Bull. Acad. Sci. URSS 1934 (1934), no. 6, 793-800.
[54] Graham Denham, Short generating functions for some semigroup algebras, Electron. J. Combin. 10 (2003), Research Paper 36, 7. MR 2014523
[55] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 7.6), 2017, http://www.sagemath.org.
[56] Richard Ehrenborg and Margaret A. Readdy, On valuations, the characteristic polynomial, and complex subspace arrangements, Adv. Math. 134 (1998), no. 1, 32-42, DOI 10.1006/aima.1997.1693. MR1612379
[57] Eugène Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions (French), C. R. Acad. Sci. Paris 254 (1962), 616-618. MR 0130860
[58] Eugène Ehrhart, Sur la partition des nombres (French), C. R. Acad. Sci. Paris 259 (1964), 3151-3153. MR0168517
[59] Eugène Ehrhart, Sur un problème de géométrie diophantienne linéaire. I. Polyèdres et réseaux (French), J. Reine Angew. Math. 226 (1967), 1-29, DOI 10.1515/crll.1967.226.1. MR 0213320
[60] Eugène Ehrhart, Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires (French), J. Reine Angew. Math. 227 (1967), 25-49, DOI 10.1515/crll.1967.227.25. MR0217010
[61] Leonhard Euler, Demonstatio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita, Novi Comm. Acad. Sci. Imp. Petropol. 4 (1752/53), 140-160.
[62] Leonhard Euler, Elementa doctrinae solidorum, Novi Comm. Acad. Sci. Imp. Petropol. 4 (1752/53), 109-140.
[63] William Feller, An introduction to probability theory and its applications. Vol. I, Third edition, John Wiley \& Sons, Inc., New York-London-Sydney, 1968. MR 0228020
[64] Valentin Féray and Victor Reiner, P-partitions revisited, J. Commut. Algebra 4 (2012), no. 1, 101-152, DOI 10.1216/JCA-2012-4-1-101. MR 2913529
[65] Dominique Foata, Distributions eulériennes et mahoniennes sur le groupe des permutations (French), Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 31, Reidel, Dordrecht-Boston, Mass., 1977, pp. 27-49. With a comment by Richard P. Stanley. MR519777
[66] Hans Freudenthal, Simplizialzerlegungen von beschränkter Flachheit (German), Ann. of Math. (2) 43 (1942), 580-582, DOI 10.2307/1968813. MR0007105
[67] Wei Gao, Qing-Hu Hou, and Guoce Xin, On P-partitions related to ordinal sums of posets, European J. Combin. 30 (2009), no. 5, 1370-1381, DOI 10.1016/j.ejc.2008.10.007. MR 2514659
[68] Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes, Polytopes-combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43-73. MR 1785292
[69] Ladnor Geissinger, The face structure of a poset polytope, Proceedings of the Third Caribbean Conference on Combinatorics and Computing (Bridgetown, 1981), Univ. West Indies, Cave Hill Campus, Barbados, 1981, pp. 125-133. MR657196
[70] Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. Reprint of the 1994 edition. MR2394437
[71] Laura Gellert and Raman Sanyal, On degree sequences of undirected, directed, and bidirected graphs, European J. Combin. 64 (2017), 113-124, DOI 10.1016/j.ejc.2017.04.002. MR 3658823
[72] Ira M. Gessel, A historical survey of P-partitions, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 169-188. MR 3617222
[73] Jørgen P. Gram, Om Rumvinklerne i et Polyeder, Tidsskrift for Math. (Copenhagen) 4 (1874), no. 3, 161-163.
[74] Curtis Greene, Acyclic orientations, Higher Combinatorics (M. Aigner, ed.), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 31, Reidel, Dordrecht, 1977, pp. 65-68.
[75] Curtis Greene and Thomas Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math. Soc. 280 (1983), no. 1, 97-126, DOI 10.2307/1999604. MR712251
[76] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
[77] Branko Grünbaum, Arrangements and spreads, American Mathematical Society Providence, R.I., 1972. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 10. MR0307027
[78] Branko Grünbaum, Convex polytopes, 2nd ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. MR 1976856
[79] Branko Grünbaum, Configurations of points and lines, Graduate Studies in Mathematics, vol. 103, American Mathematical Society, Providence, RI, 2009. MR 2510707
[80] Philip Hall, The Eulerian functions of a group, Q. J. Math. 7 (1936), 134-151.
[81] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
[82] Silvia Heubach and Toufik Mansour, Combinatorics of compositions and words, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2010. MR 2531482
[83] Takayuki Hibi, Algebraic combinatorics on convex polytopes, Carslaw Publications, Glebe, 1992. MR 3183743
[84] Takayuki Hibi, Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), no. 2, 237-240, DOI 10.1007/BF01204726. MR1179260
[85] Takayuki Hibi, Stanley's problem on (P, ω)-partitions, Words, Languages and Combinatorics (Kyoto, 1990), World Sci. Publ., River Edge, NJ, 1992, pp. 187-201.
[86] Friedrich Hirzebruch, Eulerian polynomials, Münster J. Math. 1 (2008), 9-14. MR2502493
[87] Verner E. Hoggatt Jr. and D. A. Lind, Fibonacci and binomial properties of weighted compositions, J. Combinatorial Theory 4 (1968), 121-124. MR 0218253
[88] John F. P. Hudson, Piecewise linear topology, University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New YorkAmsterdam, 1969. MR0248844
[89] June Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Amer. Math. Soc. 25 (2012), no. 3, 907-927, DOI 10.1090/S0894-0347-2012-00731-0. MR2904577
[90] June Huh and Eric Katz, Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math. Ann. 354 (2012), no. 3, 1103-1116, DOI 10.1007/s00208-011-0777-6. MR2983081
[91] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR1066460
[92] Masa-Nori Ishida, Polyhedral Laurent series and Brion's equalities, Internat. J. Math. 1 (1990), no. 3, 251-265, DOI 10.1142/S0129167X90000150. MR 1078514
[93] François Jaeger, On nowhere-zero flows in multigraphs, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Utilitas Math., Winnipeg, Man., 1976, pp. 373-378. Congressus Numerantium, No. XV. MR0395778
[94] François Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979), no. 2, 205-216, DOI 10.1016/0095-8956(79)90057-1. MR532588
[95] Katharina Jochemko and Raman Sanyal, Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings, SIAM J. Discrete Math. 28 (2014), no. 3, 15401558, DOI 10.1137/130944849. MR3262594
[96] Katharina Jochemko and Raman Sanyal, Combinatorial mixed valuations, Adv. Math. 319 (2017), 630-652, DOI 10.1016/j.aim.2017.08.032. MR3695886
[97] Katharina Jochemko and Raman Sanyal Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem, J. Eur. Math. Soc. 20 (2018), no. 9, 2181-2208.
[98] Ravi Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992), no. 2, 161-177, DOI 10.1007/BF01204720. MR 1179254
[99] Daniel A. Klain and Gian-Carlo Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1997. MR 1608265
[100] Victor Klee, A combinatorial analogue of Poincaré's duality theorem, Canad. J. Math. 16 (1964), 517-531, DOI 10.4153/CJM-1964-053-0. MR 0189039
[101] Donald E. Knuth, A note on solid partitions, Math. Comp. 24 (1970), 955-961, DOI 10.2307/2004628. MR0277401
[102] Matthias Köppe, A primal Barvinok algorithm based on irrational decompositions, SIAM J. Discrete Math. 21 (2007), no. 1, 220-236, DOI 10.1137/060664768. Software LattE macchiato available at http://www.math.ucdavis.edu/~mkoeppe/latte/. MR2299706
[103] Matthias Köppe and Sven Verdoolaege, Computing parametric rational generating functions with a primal Barvinok algorithm, Electron. J. Combin. 15 (2008), no. 1, Research Paper 16, 19. MR2383436
[104] Michael Koren, Extreme degree sequences of simple graphs, J. Combinatorial Theory Ser. B 15 (1973), 213-224. MR0329967
[105] Maximilian Kreuzer and Harald Skarke, Classification of reflexive polyhedra in three dimensions, Adv. Theor. Math. Phys. 2 (1998), no. 4, 853-871, DOI 10.4310/ATMP.1998.v2.n4.a5. MR 1663339
[106] Maximilian Kreuzer and Harald Skarke, Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1209-1230, DOI 10.4310/ATMP.2000.v4.n6.a2. MR 1894855
[107] Joseph P. S. Kung, Gian-Carlo Rota, and Catherine H. Yan, Combinatorics: the Rota way, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2009. MR 2483561
[108] Thomas Lam and Alexander Postnikov, Alcoved polytopes. II, Preprint (arXiv:math/1202.4015), July 2006.
[109] Thomas Lam and Alexander Postnikov, Alcoved polytopes. I, Discrete Comput. Geom. 38 (2007), no. 3, 453-478, DOI 10.1007/s00454-006-1294-3. MR2352704
[110] Jim Lawrence, Valuations and polarity, Discrete Comput. Geom. 3 (1988), no. 4, 307-324, DOI 10.1007/BF02187915. MR 947219
[111] Jim Lawrence, Polytope volume computation, Math. Comp. 57 (1991), no. 195, 259-271, DOI 10.2307/2938672. MR1079024
[112] Jim Lawrence, A short proof of Euler's relation for convex polytopes, Canad. Math. Bull. 40 (1997), no. 4, 471-474, DOI 10.4153/CMB-1997-056-4. MR 1611351
[113] Nan Li, Ehrhart h^{*}-vectors of hypersimplices, Discrete Comput. Geom. 48 (2012), no. 4, 847-878, DOI 10.1007/s00454-012-9452-2. MR3000568
[114] László Lovász, Combinatorial problems and exercises, 2nd ed., North-Holland Publishing Co., Amsterdam, 1993. MR 1265492
[115] Ian G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181-192, DOI $10.1112 / \mathrm{jlms} / \mathrm{s} 2-4.1 .181$. MR 0298542
[116] Percy A. MacMahon, Memoir on the theory of the partitions of numbers. Part V. Partitions in two-dimensional space, Proc. Roy. Soc. London Ser. A 85 (1911), no. 578, 304-305.
[117] Percy A. MacMahon, Combinatory analysis, Two volumes (bound as one), Chelsea Publishing Co., New York, 1960. MR0141605
[118] Claudia Malvenuto, P-partitions and the plactic congruence, Graphs Combin. 9 (1993), no. 1, 63-73, DOI 10.1007/BF01195328. MR 1215586
[119] P. McMullen, The numbers of faces of simplicial polytopes, Israel J. Math. 9 (1971), 559-570, DOI 10.1007/BF02771471. MR0278183
[120] Peter McMullen, Lattice invariant valuations on rational polytopes, Arch. Math. (Basel) 31 (1978/79), no. 5, 509-516, DOI 10.1007/BF01226481. MR526617
[121] Peter McMullen, On simple polytopes, Invent. Math. 113 (1993), no. 2, 419-444, DOI 10.1007/BF01244313. MR 1228132
[122] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
[123] Hermann Minkowski, Volumen und Oberfläche (German), Math. Ann. 57 (1903), no. 4, 447-495, DOI 10.1007/BF01445180. MR1511220
[124] Hermann Minkowski, Gesammelte Abhandlungen von Hermann Minkowski. Unter Mitwirkung von Andreas Speiser und Hermann Weyl, herausgegeben von David Hilbert. Band I, II., Leipzig u. Berlin: B. G. Teubner. Erster Band. Mit einem Bildnis Hermann Minkowskis und 6 Figuren im Text. xxxvi, 371 S.; Zweiter Band. Mit einem Bildnis Hermann Minkowskis, 34 Figuren in Text und einer Doppeltafel. iv, 466 S. gr. 8° (1911)., 1911.
[125] Leo Moser and E. L. Whitney, Weighted compositions, Canad. Math. Bull. 4 (1961), 39-43, DOI 10.4153/CMB-1961-006-0. MR0125060
[126] James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR755006
[127] Isabella Novik and Ed Swartz, Applications of Klee's Dehn-Sommerville relations, Discrete Comput. Geom. 42 (2009), no. 2, 261-276, DOI 10.1007/s00454-009-9187-x. MR 2519879
[128] Kathryn L. Nyman, The peak algebra of the symmetric group, J. Algebraic Combin. 17 (2003), no. 3, 309-322, DOI 10.1023/A:1025000905826. MR2001673
[129] Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167-189, DOI 10.1007/BF01392549. MR558866
[130] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, SpringerVerlag, Berlin, 1992. MR 1217488
[131] James Oxley, Matroid theory, 2nd ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. MR 2849819
[132] SeungKyung Park, P-partitions and q-Stirling numbers, J. Combin. Theory Ser. A 68 (1994), no. 1, 33-52, DOI 10.1016/0097-3165(94)90090-6. MR 1295782
[133] Sam Payne, Ehrhart series and lattice triangulations, Discrete Comput. Geom. 40 (2008), no. 3, 365-376, DOI 10.1007/s00454-007-9002-5. MR2443289
[134] Micha A. Perles and Geoffrey C. Shephard, Angle sums of convex polytopes, Math. Scand. 21 (1967), 199-218 (1969), DOI 10.7146/math.scand.a-10860. MR0243425
[135] T. Kyle Petersen, Enriched P-partitions and peak algebras, Adv. Math. 209 (2007), no. 2, 561-610, DOI 10.1016/j.aim.2006.05.016. MR2296309
[136] Georg Alexander Pick, Geometrisches zur Zahlenlehre, Sitzenber. Lotos (Prague) 19 (1899), 311-319.
[137] Henri Poincaré, Sur la généralisation d'un theorem d'Euler relatif aux polyèdres, C. R. Acad. Sci. Paris (1893), 144-145.
[138] Alexander Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN 6 (2009), 1026-1106, DOI 10.1093/imrn/rnn153. MR2487491
[139] Jorge L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications, vol. 30, Oxford University Press, Oxford, 2005. MR 2260521
[140] Ronald C. Read, An introduction to chromatic polynomials, J. Combinatorial Theory 4 (1968), 52-71. MR0224505
[141] Victor Reiner and Volkmar Welker, On the Charney-Davis and Neggers-Stanley conjectures, J. Combin. Theory Ser. A 109 (2005), no. 2, 247-280, DOI 10.1016/j.jcta.2004.09.003. MR2121026
[142] Jürgen Richter-Gebert and Günter M. Ziegler, Zonotopal tilings and the Bohne-Dress theorem, Jerusalem combinatorics '93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 211-232, DOI 10.1090/conm/178/01902. MR 1310586
[143] John Riordan, An introduction to combinatorial analysis, Dover Publications, Inc., Mineola, NY, 2002. Reprint of the 1958 original [Wiley, New York; MR0096594 (20 \#3077)]. MR 1949650
[144] Neville Robbins, On Tribonacci numbers and 3-regular compositions, Fibonacci Quart. 52 (2014), no. 1, 16-19. MR3181091
[145] Neville Robbins, On r-regular compositions, J. Combin. Math. Combin. Comput. 96 (2016), 195-199. MR3495368
[146] Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340-368 (1964), DOI 10.1007/BF00531932. MR 0174487
[147] Steven V Sam, A bijective proof for a theorem of Ehrhart, Amer. Math. Monthly 116 (2009), no. 8, 688-701, DOI 10.4169/193009709X460813. MR2572104
[148] Francisco Santos and Günter M. Ziegler, Unimodular triangulations of dilated 3-polytopes, Trans. Moscow Math. Soc., posted on 2013, 293-311, DOI 10.1090/s0077-1554-2014-00220-x. MR 3235802
[149] Raman Sanyal and Christian Stump, Lipschitz polytopes of posets and permutation statistics, J. Combin. Theory Ser. A 158 (2018), 605-620, DOI 10.1016/j.jcta.2018.04.006. MR3800139
[150] Ludwig Schläfli, Gesammelte mathematische Abhandlungen. Band I (German), Verlag Birkhäuser, Basel, 1950. MR0034587
[151] Pieter Hendrik Schoute, Analytic treatment of the polytopes regularly derived from the regular polytopes, Verhandelingen der Koninklijke Akademie von Wetenschappen te Amsterdam 11 (1911), no. 3.
[152] Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley \& Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR 874114
[153] Alexander Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. C, Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003. Disjoint paths, hypergraphs; Chapters 70-83. MR 1956926
[154] Paul D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981), no. 2, 130-135, DOI 10.1016/0095-8956(81)90058-7. MR615308
[155] Geoffrey C. Shephard, An elementary proof of Gram's theorem for convex polytopes, Canad. J. Math. 19 (1967), 1214-1217, DOI 10.4153/CJM-1967-110-7. MR0225228
[156] Geoffrey C. Shephard, Combinatorial properties of associated zonotopes, Canad. J. Math. 26 (1974), 302-321, DOI 10.4153/CJM-1974-032-5. MR0362054
[157] Andrew V. Sills, Compositions, partitions, and Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 4, 348-354. MR2852008
[158] Duncan M. Y. Sommerville, The relation connecting the angle-sums and volume of a polytope in space of n dimensions, Proc. Royal Soc. Lond. Ser. A 115 (1927), 103-119.
[159] Eugene Spiegel and Christopher J. O'Donnell, Incidence algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 206, Marcel Dekker, Inc., New York, 1997. MR 1445562
[160] Richard P. Stanley, Ordered structures and partitions, American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 119. MR0332509
[161] Richard P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178, DOI 10.1016/0012-365X(73)90108-8. MR0317988
[162] Richard P. Stanley, Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194253, DOI 10.1016/0001-8708(74)90030-9. MR0411982
[163] Richard P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342. Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978). MR 593545
[164] Richard P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), no. 3, 236-238, DOI 10.1016/0001-8708(80)90050-X. MR563925
[165] Richard P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), no. 2, 132-161, DOI 10.1016/0097-3165(82)90017-6. MR654618
[166] Richard P. Stanley, Two poset polytopes, Discrete Comput. Geom. 1 (1986), no. 1, 9-23, DOI 10.1007/BF02187680. MR824105
[167] Richard P. Stanley, A zonotope associated with graphical degree sequences, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 555-570. MR1116376
[168] Richard P. Stanley, A monotonicity property of h-vectors and h^{*}-vectors, European J. Combin. 14 (1993), no. 3, 251-258, DOI 10.1006/eujc.1993.1028. MR 1215335
[169] Richard P. Stanley, An introduction to hyperplane arrangements, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 389-496. MR 2383131
[170] Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
[171] Richard P. Stanley and Jim Pitman, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom. 27 (2002), no. 4, 603-634, DOI 10.1007/s00454-002-2776-6. MR 1902680
[172] Alan Stapledon, Weighted Ehrhart theory and orbifold cohomology, Adv. Math. 219 (2008), no. 1, 63-88, DOI 10.1016/j.aim.2008.04.010. MR2435420
[173] Alan Stapledon, Inequalities and Ehrhart δ-vectors, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5615-5626, DOI 10.1090/S0002-9947-09-04776-X. MR2515826
[174] Alan Stapledon, Additive number theory and inequalities in Ehrhart theory, Int. Math. Res. Not. IMRN 5 (2016), 1497-1540, DOI 10.1093/imrn/rnv186. MR3509934
[175] Jakob Steiner, Einige Gesetze über die Theilung der Ebene und des Raumes (German), J. Reine Angew. Math. 1 (1826), 349-364, DOI 10.1515/crll.1826.1.349. MR1577621
[176] Ernst Steinitz, Polyeder und Raumeinteilungen, Encyclopädie der mathematischen Wissenschaften, Band 3 (Geometrie), Teil 3AB12 (1922), 1-139.
[177] John R. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997), no. 2, 763-788, DOI 10.1090/S0002-9947-97-01804-7. MR1389788
[178] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949
[179] William T. Tutte, A ring in graph theory, Proc. Cambridge Philos. Soc. 43 (1947), 26-40. MR 0018406
[180] Alexander N. Varchenko, Combinatorics and topology of the arrangement of affine hyperplanes in the real space (Russian), Funktsional. Anal. i Prilozhen. 21 (1987), no. 1, 11-22. MR 888011
[181] Sven Verdoolaege, Software package barvinok, (2004), electronically available at http://freshmeat.net/projects/barvinok/.
[182] Hermann Weyl, Elementare Theorie der konvexen Polyeder (German), Comment. Math. Helv. 7 (1934), no. 1, 290-306, DOI 10.1007/BF01292722. MR1509514
[183] Neil White (ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications, vol. 26, Cambridge University Press, Cambridge, 1986. MR849389
[184] Hassler Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), no. 8, 572-579, DOI 10.1090/S0002-9904-1932-05460-X. MR1562461
[185] Herbert S. Wilf, Which polynomials are chromatic? (English, with Italian summary), Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Accad. Naz. Lincei, Rome, 1976, pp. 247-256. Atti dei Convegni Lincei, No. 17. MR0453579
[186] Herbert S. Wilf, generatingfunctionology, 3rd ed., A K Peters, Ltd., Wellesley, MA, 2006. MR2172781
[187] Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102. MR0357135
[188] Thomas Zaslavsky, Signed graph coloring, Discrete Math. 39 (1982), no. 2, 215-228, DOI 10.1016/0012-365X(82)90144-3. MR675866
[189] Doron Zeilberger, The composition enumeration reciprocity theorem, Personal Journal of Shalosh B. Ekhad and Doron Zeilberger (2012), http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/comp.html.
[190] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, SpringerVerlag, New York, 1995. MR1311028

Notation Index

The following table contains a list of symbols that are frequently used throughout the book. The page numbers refer to the first appearance/definition of each symbol.

Notation	Meaning	Page
$[a, b]$	an interval in a poset	$[12$
$a \prec b$	cover relation in a poset	12
aff (S)	affine hull of $S \subseteq \mathbb{R}^{d}$	58
Ast $_{\mathbf{v}}(\mathrm{P})$	$\{\mathrm{F} \in \Phi(\mathrm{P}): \mathbf{v} \notin \mathrm{F}\}$, the antistar of the vertex \mathbf{v}	188
$\operatorname{Asc}(\sigma)$	$\{j \in[d-1]: \sigma(j)<\sigma(j+1)\}$, the ascent set of σ	214
$\operatorname{asc}(\sigma)$	\mid Asc $(\sigma) \mid$, the ascent number of σ	225
B_{d}	Boolean lattice of all subsets of $[d]$	$[34$
$b(\mathcal{H})$	number of relatively bounded regions of \mathcal{H}	90
C	a polyhedral cone	$[55$
C^{\vee}	polar cone	62
$c p_{\Pi, \phi}(n)$	number of (Π, ϕ)-chain partitions of n	138
$C P_{\Pi, \phi}(n)$	generating function of (Π, ϕ)-chain partitions of n	138
$\mathbb{C} \Pi$	vector space of functions $\Pi \rightarrow \mathbb{C}$	41
$\mathbb{C}[x]$	vector space of polynomials with complex coefficients	108
$\mathbb{C}[x]_{\leq d}$	polynomials with complex coefficients of degree $\leq d$	108
$\mathbb{C}[z]$	vector space of formal power series	110
$c_{A}(n)$	number of compositions of n with parts in A	$[116$
$c_{\Pi}(n)$	number of compositions of n that respect the poset Π	227
$\operatorname{comaj}(\sigma)$	$\sum_{j \in \text { Asc } \sigma} j$, the comajor index of σ	226

Symbol	Meaning	Page
$\chi(\mathrm{P})$	Euler characteristic of the polyhedron P	77
$\bar{\chi}(\mathrm{P})$	another Euler characteristic	86
$\chi_{G}(n)$	chromatic polynomial of the graph G	2
$\chi_{\mathcal{H}}(t)$	characteristic polynomial of the arrangement \mathcal{H}	90
$\chi_{\Pi}(t)$	characteristic polynomial of the poset Π	88
cone(S)	conical hull of $S \subseteq \mathbb{R}^{d}$	61
conv (V)	convex hull of $V \subseteq \mathbb{R}^{d}$	6
Des(σ)	$\{j \in[d-1]: \sigma(j)>\sigma(j+1)\}$, the descent set of	213
$\operatorname{des}(\sigma)$	$\|\operatorname{Des}(\sigma)\|$, the descent number of	219
dim Q	dimension of the polyhedron Q	58
\triangle	a simplex	64
$(\Delta f)(n)$	$f(n+1)-f(n)$, the difference operator of $f(n)$	109
$\triangle(d, k)$	the (d, k)-hypersimplex	191
$\Delta_{(a, b)}, \Delta(\Pi)$	order complex of a poset	140
$\mathrm{E}^{\omega}(V)$	convex epigraph of ω	159
$\operatorname{ehrp}_{\mathrm{P}}(t)$	$\left\|t \mathrm{P} \cap \mathbb{Z}^{d}\right\|$, the Ehrhart (quasi-)polynomial of P	17
$\operatorname{Ehr}_{\mathrm{P}}(z)$	$\sum_{t \geq 0} \operatorname{ehrP}(t) z^{t}$, the Ehrhart series of P	124
Ehrpo (z)	$\sum_{t>0} \operatorname{ehr}^{\circ}(t) z^{t}$, the Ehrhart series of P ${ }^{\circ}$	137
\mathbf{e}_{v}	for v in a set V, standard basis vectors of \mathbb{R}^{V}	185
$\varphi_{G}(\underline{ })$	number of nowhere-zero \mathbb{Z}_{n}-flows on the graph G	11
$f_{k}(\mathrm{Q})$	number of faces of Q of dimension k	68
$\Phi(\mathrm{Q})$	face lattice of the polyhedron Q	67
$G=(V, E)$	a graph with vertex set V and edge set E	1
${ }_{\rho} G$	an orientation of the graph G	5
G^{*}	dual graph of G	8
$G \backslash e$	graph G with edge e delet	3
G / e	graph G with edge e contracted	3
H	an (oriented) hyperplane	53
$\mathrm{H}^{\geq}, \mathrm{H}^{\leq}$	halfspaces defined by the hyperplane H	53
\mathcal{H}	a hyperplane arrangement	73
\mathcal{H}_{G}	$\left\{x_{i}=x_{j}: i j \in E\right\}$, the graphical arrangement of G	240
$h_{\mathrm{P}}^{*}(z)$	h^{*}-polynomial of the polytope P	176
$\mathbb{H}_{\mathbf{q}} \mathrm{P}$	$\mathrm{P} \backslash\left\|\mathrm{Vis}_{\mathbf{q}}(\mathrm{P})\right\|$, a half-open polyhedron	170
$\mathbb{H}^{\text {q }}$ P	another half-open polyhedron	170
$h_{C}^{\text {a }}(n)$	Hilbert function of the cone C with grading a	129
$H_{\text {C }}^{\text {a }}(n)$	Hilbert series of the cone C with grading a	129
hom(S)	homogenization of $S \subseteq \mathbb{R}^{d}$	56

Symbol	Meaning	Page
$\mathcal{J}(\Pi)$	lattice of order ideals of the poset Π	30
$(I f)(n)$	$f(n)$, the identity operator applied to $f(n)$	109
$I(\Pi)$	incidence algebra of the poset Π	30
$I_{\mathrm{P}, \mathcal{H}}(t)$	Ehrhart function of inside-out polytope (P, \mathcal{H})	245
JH(П)	$\left\{\tau \in \mathfrak{S}_{d}: \tau^{-1} \in \operatorname{Lin}(\Pi)\right\}$, Jordan-Hölder set of Π	211
[k]	set $\{1,2, \ldots, k\}$	ix
K_{d}	complete graph on d nodes	24
K_{Π}	order cone of the poset Π	203
$\mathrm{K}_{1}+\mathrm{K}_{2}$	Minkowski sum of $\mathrm{K}_{1}, \mathrm{~K}_{2} \subseteq \mathbb{R}^{d}$	64
$l_{\Pi}(x, y)$	length of a maximal chain in $[x, y]$ in the poset Π	38
lineal(Q)	lineality space of the polyhedron Q	57
Lin(П)	set of linear extensions of the poset Π	206
Lip_{Π}	Lipschitz polytope of the poset Π	255
$\mathcal{L}(G)$	flats of the graph G partially ordered by inclusion	42
$\mathcal{L}(\mathcal{H})$	intersection poset of the hyperplane arrangement \mathcal{H}	88
$\operatorname{maj}(\sigma)$	$\sum_{j \in \operatorname{Des} \sigma} j$, the major index of σ	221
μ_{Π}	Möbius function of the poset Π	33
$\binom{n}{d}$	binomial coefficient	区
$[n]_{q}$	$1+q+\cdots+q^{n-1}$, a q-integer	221
$\mathcal{N}(\Pi, \preceq)$	poset of refinements of the poset (Π, \preceq)	210
$\mathrm{O}_{\text {П }}$	order polytope of the poset Π	214
$\Omega_{\Pi}(n)$	order polynomial of the poset Π	14
$\Omega_{\Pi}^{\circ}(n)$	strict order polynomial of the poset Π	13
P, Q	a polyhedron or polytope	16
P°	relative interior of the polyhedron P	16
$\partial \mathrm{P}$	relative boundary of the polyhedron P	59
PC_{d}	collection of polyconvex sets in \mathbb{R}^{d}	72
$\mathrm{PC}(\mathcal{H})$	collection of \mathcal{H}-polyconvex sets	74
(P, H)	an inside-out polytope	246
[p,q]	line segment with endpoints \mathbf{p} and \mathbf{q}	60
Π	a poset	12
$p_{\Pi}(n)$	number of Π-partitions of the integer n	228
$p_{\Pi}^{\circ}(n)$	number of strict Π-partitions of the integer n	228
$P_{\Pi}(z)$	$\sum_{t \geq 0} p_{\Pi}(t) z^{t}$	228
$p_{A}(n)$	restricted partition function for A	120
$p l(n)$	number of plane partitions of n	117
Pull(P)	pulling triangulation of a polytope P	189

Symbol	Meaning	Page
$r(\mathcal{H})$	number of regions of the arrangement \mathcal{H}	90
$\mathrm{rk}_{\Pi}(x)$	the rank of $x \in \Pi$	48
$\operatorname{rec}(\mathrm{Q})$	recession cone of the polyhedron Q	55
[S]	indicator function of the set S	91
$\|\mathcal{S}\|$	support of the polyhedral complex \mathcal{S}	156
$S(d, r)$	Stirling number of the second kind	14
$c(d, r)$	Stirling number of the first kind	48
$s(d, k)$	Eulerian number	192
$(S f)(n)$	$f(n+1)$, the shift operator applied to $f(n)$	109
$\operatorname{supp}(f)$	support of a flow (or vector) f	7
$\binom{$ S }{$d}$	$\{A \subseteq S:\|A\|=d\}$	区
$\sigma_{S}(\mathbf{z})$	integer-point transform of S	125
\mathfrak{S}_{d}	set of bijections/permutations of [d]	49
\mathcal{T}	a triangulation	18
$\mathrm{T}_{\mathbf{q}}(\mathrm{Q})$	tangent cone of the polyhedron Q at the point \mathbf{q}	82
$\mathrm{T}_{\mathrm{F}}(\mathrm{Q})$	tangent cone of the polyhedron Q at the face F	83
$\mathbf{v} * \mathrm{P}$	pyramid with apex \mathbf{v} and base P	71
vert(P)	vertex set of the polytope P	61
$\operatorname{vol}(S)$	(relative) volume of S	152
$\operatorname{Vis}_{\mathbf{p}}(\mathrm{P})$	complex of faces of P visible from \mathbf{p}	91
$\operatorname{Vis}_{\mathbf{p}}(\mathcal{S})$	subcomplex of cells of \mathcal{S} visible from \mathbf{p}	168
$\xi(G)$	cyclotomic number of the graph G	12
ζ_{Π}	zeta function of the poset Π	31
$Z_{\Pi}(n)$	zeta polynomial of the poset Π	36
$\mathrm{Z}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right)$	a zonotope	261
O	minimum of a poset	32
1	maximum of a poset	32
$x \vee y$	join of elements in a poset	37
$x \wedge y$	join of elements in a poset	37
\preceq, \preceq_{Π}	partial order relation (of a poset Π)	12
\square	(half-open) parallelpiped	127
¢, ${ }_{\square}^{\text {■ }}$	fundamental parallelpipeds	134
\checkmark	an exercise used in the text	xii

Index

acyclic orientation, 6, 242, 263
unique source, 244
acyclotope, 281
admissible hyperplane, 66
affine hull, 58
affine linear combination, 99
affine subspace, 53
skew, 101
affinely independent, 63
alcove, 252
alcoved polytope, 252
alcoved triangulation, 253
Andrews, George, 144
antichain, 14, 30, 204,
antistar, 188
Appel, Kenneth, 2, 21
Archimedes, 94
arrangement of hyperplanes, 73
ascent, 192, 214
2-ascent, 259
big, 259
number of, 225

Barlow, Peter, 144
Barvinok, Alexander, 195
barycentric subdivision, 196
base orientation, 273
Batyrev, Victor, 194
Bell, Eric Temple, 45
beneath, 91
beneath-beyond method, 194
Bernoulli number, 147
Bernoulli polynomial, 147, 232

Betke, Ulrich, 195
beyond, 91168
big ascent, 259
Billera, Louis J., 95
binomial coefficient, 108,115
binomial theorem, 32, 46, 108
Birkhoff lattice, 30, 216
Birkhoff's theorem, 38
Birkhoff, Garrett, 45
Birkhoff, George, 2, 21
Boolean arrangement, 104
characteristic polynomial of, 247
Boolean lattice, 34, 40,143
boundary, 59
boundary complex, 183
braid arrangement, 104
characteristic polynomial of, 247
Brianchon, Charles Julien, 96
Brianchon-Gram relation, 91,175
bridge, 8, 277
Brion's theorem, 175
Brion, Michel, 194
Bruggesser, Heinz, 95
b-transshipments, 281
calculus of finite differences, 109
Cayley, Arthur, 144
cell, 156
chain, 12,204
in a poset, 35
length, 35
maximal, 35
saturated, 35
unrefineable, 35
chain partition, 137187
reciprocity theorem, 140
characteristic polynomial
of a graded poset, 88
of a graphical arrangement, 248
of a hyperplane arrangement, 90 , 243
of the Boolean arrangement, 247
of the braid arrangement, 247
chromatic polynomial, 3 (15) 39,236
reciprocity theorem, 6
reciprocity theorem for, 250
cographical arrangement, 277
coin-exchange problem, 144
coloring, 2
color gradient, 6
proper, [2]
comajor index, 226
combinatorial reciprocity theorem, 区
for P-partitions, 229
for binomial coefficients, \mathbf{X}
for chain partitions, 140
for chromatic polynomials, 6, 238, 250
for compositions respecting a poset, 227
for flow polynomials, [12] 278
for half-open lattice polytopes, [173]
for half-open lattice simplices, 172
for half-open rational cones, 174
for Hilbert series, 136
for inside-out polytopes, 249
for integer-point transforms, 134 , 174
for lattice polygons, 17
for lattice polytopes, 167
for order polynomials, 155 36, 225
for plane partition diamonds, 148
for rational cones, 174
for rational polytopes, 167
for restricted partition functions, 122
for Stirling numbers, 48
for zeta polynomials of Eulerian posets, 39, 85
for zeta polynomials of finite distributive lattices, 38
complete bipartite graph, 24]
complete graph, 24
composition, 115 226
part of, 115
strictly respects, $\lcm{227}$
with odd parts, 116
with parts $\geq 2,116$
cone, 55, 61
finitely generated, 61
generators, 61
graded, 125
half-open, 133
order, 203
pointed, 58, 61, 79,129
polar, 6298
polyhedral, 55
rational, 61] 129
simplicial, $64 \boxed{128}$
unimodular, 126
conical hull, 61
connected component, 8
conservation of flow, (7] [274]
constituent, 122
contraction, 3241
convex, 16,60
convex epigraph, 159
convex hull, 60
convolution, 121149
cover relation, 12, 204
Coxeter arrangements, 280
Cramer's rule, 150
Crapo, Henry, 280
cross polytope, 59197
crosscut, 211
cube, 59 237
face lattice of, 71
pulling triangulation of, 190, 191
regular unimodular triangulation, 163
cycle, 23, 269
basis, 275
fundamental, 275
cyclotomic number, 11, 274
Dedekind, Richard, 45
Dehn, Max, 95
Dehn-Sommerville relations, 86, 147 , 186
generalized, 152
Delaunay, Boris, 193
deletion, 3
delta function, 31
derangement number, 49
derivative, 110
descent, $192,213,256$
Π-descents, 260
number of, 219
descent-compatible permutation, 256
difference operator, 85109
dilate, 16
dimension, 58, 63
of a polyhedron, 58
of an order cone, 205
of an abstract simplicial complex, 185
directed cycle, 6
directed path, 5
disjoint union, 69 132
displacement, 53
dissection, 156
unimodular, 178
distributive lattice, 37, 72
divisor, 47
dual graph, 8
dual order ideal, 30
edge, 66
contraction of, 3
deletion of, 3
interior, 18
of a graph, 1
of a polygon, 16
of a polyhedron, 66
edge cut, 277
Ehrhart function, 17, 124,155
Ehrhart polynomial, 17, 126, 161, 269
of a lattice polytopal complex, 181
Ehrhart series, 125, 176
of an open polytope, 137
Ehrhart's theorem, 128161
Ehrhart, Eugène, 144, 194
Ehrhart-Macdonald reciprocity, 17
167, 249 276
embedded sublattice, 231
eta function, 32
Euler characteristic, 77, 86, 162
Euler, Leonhard, 95143,229
Euler-Mahonian statistic, 223
Euler-Poincaré formula, 77
Eulerian complex, 184
Eulerian number, 192,220
Eulerian polynomial, 220 258
Eulerian poset, 38
eventually polynomial, 114, 147
face, $18,66,157$
boundary, 18
figure, 103
interior, 18
numbers, 68
proper, 66
face lattice, 67
face poset
of a hyperplane arrangement, 264
of a polyhedron, 67
facet, 66
facet-defining hyperplane, 69
fan, 156
Feller, William, 144
Fibonacci number, 112
filter, 30,207
connected, 208
neighbor closed chain, 255
neighborhood of, 255
finite reflection group, 280
finite-field method, 280
Five-flow Conjecture, 11, 22
fixed point, 49
flag f-vector, 139
flat, 88
of a graph, 42, 240
of a hyperplane arrangement, 88
flow, 7
conservation of, 274
integral, 279, 286
nowhere zero, 273
flow polynomial, 11, 273
reciprocity theorem, 12, 278
flow space, 274
forest, 269
formal Laurent series, 126
formal power series, 110
Four-color Theorem, 2
f-polynomial, 180
fractional part, 149
Freudenthal, Hans, 193
Frobenius number, 144
Frobenius problem, 144
Frobenius, Georg, 144
fundamental cycle, 275
fundamental parallelepiped, 134176
fundamental theorem of calculus, 47
f-vector
of a polyhedron, 68
of a simplicial complex, 142
Gelfand, Israel, 193
general position, 104266
generating function, 110
derivative, 110
formal reciprocity, 114
rational, 111
generic relative to, 170
geometric lattice, 280
geometric series, 117

Gorenstein polytope, 198,258
Grünbaum, Branko, 194,280
graded poset, 38
characteristic polynomial of, 88
Gram, Jørgen, 96
graph, 1
acyclic orientation, 263
chromatic polynomial of, 3
complete, 24
complete bipartite, 24
connected, 8
connected component of, 8
contraction, 241
dual, 8
flat, 240
flat of, 42, 240
flow space of, 274
isomorphic, 23
orientation on, 5
planar, 2
source, 242
graphical arrangement, 240
characteristic polynomial of, 248
graphical zonotope, 262
vertices of, 263
greater index, 229
greatest lower bound, 37
Greene, Curtis, 280
g-Theorem, 95
Guthrie, Francis, 2
Haken, Wolfgang, 2, 21
half-open decomposition, 172
half-open polyhedron, 170
halfspace, 53
irredundant, 55
open, 74
Hall, Philip, 45
Hardy, Godfrey Harold, 143
Hasse diagram, 12
height
of a poset, 260
Hibi, Takayuki, 194
Hilbert function, 129
Hilbert series, 129, 175
reciprocity theorem, 136,175
homogenization, 56
\mathcal{H}-polyconvex set, 74
h^{*}-polynomial, 152176
Huh, June, 22
h-vector, 95, 143,185
hyperplane, 53
admissible, 66
arrangement of, 73
facet-defining, 69
halfspace, 53
oriented, 53
separating, 62
supporting, 66
hyperplane arrangement, 73, 88, 96, 239
affine reflection, 280
affinization, 267
central, 89, 239
cographical, 277
Coxeter, 280
essential, 89
flat of, 88,239
general position, 104
graphical, 240
lineality space of, 89
localization of, 243
rational, 245
real braid, 247
reflection, 280
region, 90
restriction of, 241
simple, 271
vertices, 272
hypersimplex, 94, 191,252
($\Pi, k)$-hypersimplex, 260
pulling triangulation of, 191
identity operator, 109
incidence algebra, 30,41
invertible elements, 33
operating on functions, 41
inclusion-exclusion, 18, 39, 73, 156
incomparable, 210
indicator function, 91,175
induced sublattice, 231
inner product, 53
inside-out polytope, 246
reciprocity theorem, 249
integer partition, 120
integer-point transform, 125
reciprocity theorem, 134,174
integral flow, 279, 286
interior, 16, 58
relative, 58
topological, 58
interior point, 97
intersection poset, $43,88,239$
closed set of, 43
interval, 35
inversion, 231
irredundant halfspace, 55
isomorphic posets, 35
isthmus, 8
Jaeger, François, 22
Jochemko, Katharina, 194
join, 37, 71
join irreducible, 48
Jordan normal form, 145
Jordan-Hölder set, 211
Kapranov, Mikhail, 193
Katz, Eric, 22
Klee, Victor, 195
Knuth, Donald, 229
Köppe, Matthias, 194
Koren, Michael, 281
Lam, Thomas, 280
lattice
(poset), 37
Birkhoff, 30
Boolean, 34
distributive, 37,72
face, 67
integer, 16
of flats, 42,243
of order ideals, 30
lattice basis, 126, 150
lattice length, 26
lattice path, 202
lattice polygon, 18
lattice polytope, 60, 94
reciprocity theorem, 167
lattice segment, 26
Laurent series, 126
least upper bound, 37
Lee, Carl W., 95
length
of a chain, 35,44
of a poset, 35
lexicographic ordering, 284
Li, Nan, 281
line free, 57
line segment, 60, 261
lineality space, 57
linear extension, 33206
linear optimization, 94
linear programming, 94
linear recurrence, 112
linear subspace, 53
linearly ordered, 12
Lipschitz continuity, 254
Lipschitz polytope, 255
log concave, 23
loop, 1
Macdonald, I. G., 194
MacMahon, Percy, 144, 229
major index, 221
Mani, Peter, 95
map coloring, 21
maximal chain, 38
McMullen, Peter, 95 , 194,281
meet, 37
meet semilattice, 46, 68, 104
Minkowski sum, 64, 261
Minkowski, Hermann, 94, 193
Minkowski-Weyl theorem, 64, 170
Möbius function, 19, 33, 165
number theoretic, 47
of a face lattice, 81, 103
of order ideals, 35
of the lattice of flats, 243
Möbius inversion, 41, 158, 246
multichain, 30
multiplicity, 249
multisubset, 区, 40
n-flow, 25
augmenting path, 25
nilpotent, 46, 108
node, 1
normal, 53
nowhere-zero flow, 8, 273, 286
octahedron, 197
order complex, 140,216
order cone, 203, 257
dimension of, 205
faces of, 207
irredundant representation of, 204
unimodular triangulation of, 212
order ideal, 30
principal, 30
order polynomial, 14, 32, 215 reciprocity theorem, 15, 36, 225
order polytope, 214, 252
canonical triangulation of, 217
order-preserving map, 13, 29, 225
ranked, 139
strictly, 13
surjective, 46
orientation, 5
acyclic, 5, 242
base, 273
induced by a coloring, 6
totally cyclic, 11, 276
oriented matroids, 281
parallelepiped, 72127,261
half-open, 127
part, 120
partially ordered set, 12
partition, 45, 120,226
function, 149
part of, 120
path, 23
Paule, Peter, 144
periodic function, 119
permutahedron, 281, 284
permutation, 48,162
2-ascent of, 259
big ascent of, 259
descent of, 254
descent-compatible, 256
fixed point of, 49
inversion of, 231
major index of, 221
statistics, 223
Petersen graph, 26
Philip Hall's theorem, 44
Pick, Georg, 22
placing triangulation, 169
plane partition, 117, 130, 226
diamond, 148
Plato, 94
Poincaré, Henri, 95
pointed cone, 79
polar cone, 98
polyconvex, 72
polygon, 16
lattice, 18
polyhedral complex, 156, 188
dimension, 181
Eulerian, 184
of visible faces, 168
pure, 184
support of, 156
polyhedral cone, 55
polyhedron, 52
admissible hyperplane, 66
admissible projective transform, 97
convex, 60
direct sum, 101
face of, 66
free sum, 101
half-open, 170
join, 101
line free, 57
linearly isomorphic, 56
pointed, 66
product, 72, 101
projection, 65, 68
projectively isomorphic, 97
proper, 54 68
rational, 52
supporting hyperplane, 66
unbounded, 55
wedge, 102
polynomial, 14, 32, 107 109, 122
basis, 14108
Bernoulli, 147
characteristic, 88, 243
chromatic, 3, 236
Ehrhart, 17, 126, 161, 269
Eulerian, 220, 258
$f, 180$
flow, 11273
generating function of, 111
$h^{*}, 176$
order, 13, 32,215
zeta, 36, 108
polytopal complex, 156
self-reciprocal, 182
polytope, 1660
$0 / 1,202,215$
2-level, 202
alcoved, 252
centrally-symmetric, 257
compressed, 192, 202, 283
Gorenstein, 198, 258
inside-out, 246
lattice, 60,94
Lipschitz, 255
order, 214
rational, 60132,167
reflexive, 198
simplicial, 70, 85, 14188
vertex set, 61
vertices, 61
zonotope, 261
poset, 12, 29203
anti-isomorphic, 264
connected, 206
direct product, 34, 46
dual naturally labelled, 228
Eulerian, 38, 48, 85, 140, 184
from graph, 15
graded, 38, 67, 183, 232
intersection, 43
interval, 35
isomorphic, 35
isomorphism, 13
linear extension of, 206
Lipschitz function on, 254
maximum of, 32
minimum of, 32
naturally labelled, 204
of partitions, 45
rank of, 38
rank of an element,48
ranked, 257
refinement, 210
rooted tree, 283
Postnikov, Alexander, 280
P-partition, 228
reciprocity theorem, 229
(P, ω)-partition, 233
principal order ideal, 30
product in an incidence algebra, 31
product of simplices, 202
projection, 65
projective transformation, 97
proper coloring, 2
pulling triangulation, 189
of an order polytope, 216
pushing triangulation, 169
pyramid, 67, 71, 168, 197
q-factorial, 222
q-integer, 221
quasipolynomial, 119
constituents of, 122
convolution of, 121, 149
degree of, 122
Ehrhart, 132167
period of, 122
Rademacher, Hans, 143
Ramanujan, Srinivasa, 143
rank, 48
of a poset, 38
rational cone, 61
reciprocity theorem, 174
rational function, 111
improper, 114
rational generating function, 111
rational polytope, 60, 132
reciprocity theorem, 167
ray, 66
Read, Ronald, 22
real braid arrangement, 104
recession cone, 55
reciprocal domain, 194
refinement, 45
reflection arrangements, 280
reflexive polytope, 198
region, 90
(relatively) bounded, 90
of an inside-out polytope, 249
regular triangulation, 163
relative boundary, 59
relative interior, 58
relative volume, 152
restricted partition function, 120,137
reciprocity theorem, 122
ridge, 66
Riese, Axel, 144
Riordan, John, 区
root system, 280
rooted tree, 283
Rota's crosscut theorem, 35
Rota, Gian-Carlo, 45, 280
Sanyal, Raman, 194
Schläfli, Ludwig, 95
Schrijver, Alexander, 94
self-reciprocal, 119,182
separating hyperplane, 62
separation theorem, 6294
Seymour, Paul, 11
Shephard, Geoffrey, 281
shift operator, 109
simplex, 63
barycenter, 253
unimodular, 128
simplicial complex, 141156
abstract, 141, 156, 184
canonical realization of, 185
dimension of, 185
face, 141
geometric, 156, 184
order complex, 141
pure, 141
simplicial cone, 64128
simplicial polytope, 70, 85, 95, 141
solid partition, 229
Sommerville, D. M. Y., 95
source, 242
spanning tree, 269275
square, 54
Stanley reciprocity, 134, 175
Stanley, Richard, 区, 5, 22, 45, 95,144, 194, 229 280
Stanley-Reisner ring, 145
Steiner, Jakob, 280
Steinitz's theorem, 95
Steinitz, Ernst, 95
Stirling number
of the first kind, 48
of the second kind, 14, 48
strict order polynomial, 13
strictly order-preserving map, 30
Sturmfels, Bernd, 281
subdivision, 157, 168
barycentric, 196
coherent, 161
proper, 157
regular, 161
sublattice
embedded, 231
induced, 231
support, 7141,156
supporting hyperplane, 66
surjective order-preserving map, 46
symmetric group, 163
tangent cone, 8291165
tiling, 265
regular, 266
zonotopal, 265
total order, 12
totally cyclic, 11 276
totally ordered, 12
transversal, 249
tree, 269
triangle, 16, 126
unimodular, 27
triangulation, 17, 157, 169, 174
alcoved, 253
lattice, 158
placing, 169
pulling, 189
pushing, 169
rational, 174
unimodular, 185
Tutte polynomial, 22
Tutte, William, 11
Tutte-Grothendieck invariant, 22
unimodular
cone, 126
dissection, 178
simplex, 128
triangulation, 163
unipotent, 107
unit disc, 102
valuation, $18,73,95,155,194$
vector space
of polynomials, 108145
of valuations, 104
Verdoolaege, Sven, 194
vertex, 61, 66
figure, 103
of a polygon, 16
of a polyhedron, 66
of a simplicial complex, 156
visible, 91, 168
volume, 152
wedge, 57, 102
Weyl, Hermann, 94
wheel, 23
Whitney, Hassler, 321
Wilf, Herbert, 22
Young diagram, 233
Young tableau, 233
Zaslavsky's theorem, 90243
Zaslavsky, Thomas, 96,280
Zelevinsky, Andrei, 193
zeta function, 31
zeta polynomial, 36, 107, 137, 186
for Boolean lattices, 48
for Eulerian posets, 39
\mathbb{Z}_{n}-flow, 72
zonotopal tiling, 265
cubical, 265
fine, 265
zonotope, 261
graphical, 262
unimodal, 23

Selected Published Titles in This Series

195 Matthias Beck and Raman Sanyal, Combinatorial Reciprocity Theorems, 2018
193 Martin Lorenz, A Tour of Representation Theory, 2018
192 Tai-Peng Tsai, Lectures on Navier-Stokes Equations, 2018
191 Theo Bühler and Dietmar A. Salamon, Functional Analysis, 2018
190 Xiang-dong Hou, Lectures on Finite Fields, 2018
189 I. Martin Isaacs, Characters of Solvable Groups, 2018
188 Steven Dale Cutkosky, Introduction to Algebraic Geometry, 2018
187 John Douglas Moore, Introduction to Global Analysis, 2017
186 Bjorn Poonen, Rational Points on Varieties, 2017
185 Douglas J. LaFountain and William W. Menasco, Braid Foliations in Low-Dimensional Topology, 2017
184 Harm Derksen and Jerzy Weyman, An Introduction to Quiver Representations, 2017
183 Timothy J. Ford, Separable Algebras, 2017
182 Guido Schneider and Hannes Uecker, Nonlinear PDEs, 2017
181 Giovanni Leoni, A First Course in Sobolev Spaces, Second Edition, 2017
180 Joseph J. Rotman, Advanced Modern Algebra: Third Edition, Part 2, 2017
179 Henri Cohen and Fredrik Strömberg, Modular Forms, 2017
178 Jeanne N. Clelland, From Frenet to Cartan: The Method of Moving Frames, 2017
177 Jacques Sauloy, Differential Galois Theory through Riemann-Hilbert Correspondence, 2016
176 Adam Clay and Dale Rolfsen, Ordered Groups and Topology, 2016
175 Thomas A. Ivey and Joseph M. Landsberg, Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Second Edition, 2016
174 Alexander Kirillov Jr., Quiver Representations and Quiver Varieties, 2016
173 Lan Wen, Differentiable Dynamical Systems, 2016
172 Jinho Baik, Percy Deift, and Toufic Suidan, Combinatorics and Random Matrix Theory, 2016
171 Qing Han, Nonlinear Elliptic Equations of the Second Order, 2016
170 Donald Yau, Colored Operads, 2016
169 András Vasy, Partial Differential Equations, 2015
168 Michael Aizenman and Simone Warzel, Random Operators, 2015
167 John C. Neu, Singular Perturbation in the Physical Sciences, 2015
166 Alberto Torchinsky, Problems in Real and Functional Analysis, 2015
165 Joseph J. Rotman, Advanced Modern Algebra: Third Edition, Part 1, 2015
164 Terence Tao, Expansion in Finite Simple Groups of Lie Type, 2015
163 Gérald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Third Edition, 2015
162 Firas Rassoul-Agha and Timo Seppäläinen, A Course on Large Deviations with an Introduction to Gibbs Measures, 2015
161 Diane Maclagan and Bernd Sturmfels, Introduction to Tropical Geometry, 2015
160 Marius Overholt, A Course in Analytic Number Theory, 2014
159 John R. Faulkner, The Role of Nonassociative Algebra in Projective Geometry, 2014
158 Fritz Colonius and Wolfgang Kliemann, Dynamical Systems and Linear Algebra, 2014
157 Gerald Teschl, Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators, Second Edition, 2014

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.

Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics.

Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.
 and updates on this book, visit www.ams.org/bookpages/gsm-I95

GSM/I95

[^0]: ${ }^{1}$ All our definitions will look like that: incorporated into the text but bold-faced and so hopefully clearly visible.

