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Preface

This text is designed for a first course in complex analysis for beginning
graduate students or for well-prepared undergraduates whose background
includes multivariable calculus, linear algebra, and advanced calculus. In
this course the student will learn that all the basic functions that arise
in calculus, first derived as functions of a real variable—such as powers
and fractional powers, exponentials and logs, trigonometric functions and
their inverses, as well as many new functions that the student will meet—
are naturally defined for complex arguments. Furthermore, this expanded
setting reveals a much richer understanding of such functions.

Care is taken to first introduce these basic functions in real settings. In
the opening section on complex power series and exponentials, in Chapter 1,
the exponential function is first introduced for real values of its argument as
the solution to a differential equation. This is used to derive its power series,
and from there extend it to complex argument. Similarly sin t and cos t are
first given geometrical definitions for real angles and the Euler identity is
established based on the geometrical fact that eit is a unit-speed curve on
the unit circle for real t. Then one sees how to define sin z and cos z for
complex z.

The central objects in complex analysis are functions that are complex-
differentiable (i.e., holomorphic). One goal in the early part of the text is to
establish an equivalence between being holomorphic and having a convergent
power series expansion. Half of this equivalence, namely the holomorphy of
convergent power series, is established in Chapter 1.

Chapter 2 starts with two major theoretical results: the Cauchy integral
theorem and its corollary, the Cauchy integral formula. These theorems have
a major impact on the rest of the text, including the demonstration that if

vii
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a function f(z) is holomorphic on a disk, then it is given by a convergent
power series on that disk. A useful variant of such power series is the Laurent
series for a function holomorphic on an annulus.

The text segues from Laurent series to Fourier series in Chapter 3 and
from there to the Fourier transform and the Laplace transform. These three
topics have many applications in analysis, such as constructing harmonic
functions and providing other tools for differential equations. The Laplace
transform of a function has the important property of being holomorphic on
a half-space. It is convenient to have a treatment of the Laplace transform
after the Fourier transform, since the Fourier inversion formula serves to
motivate and provide a proof of the Laplace inversion formula.

Results on these transforms illuminate the material in Chapter 4. For
example, these transforms are a major source of important definite integrals
that one cannot evaluate by elementary means, but that are amenable to
analysis by residue calculus, a key application of the Cauchy integral theo-
rem. Chapter 4 starts with this and proceeds to the study of two important
special functions: the Gamma function and the Riemann zeta function.

The Gamma function, which is the first “higher” transcendental func-
tion, is essentially a Laplace transform. The Riemann zeta function is a
basic object of analytic number theory arising in the study of prime num-
bers. One sees in Chapter 4 the roles of Fourier analysis, residue calculus,
and the Gamma function in the study of the zeta function. For example,
a relation between Fourier series and the Fourier transform, known as the
Poisson summation formula, plays an important role in its study.

In Chapter 5, the text takes a geometrical turn, viewing holomorphic
functions as conformal maps. This notion is pursued not only for maps be-
tween planar domains but also for maps to surfaces in R3. The standard
case is the unit sphere S2 and the associated stereographic projection. The
text also considers other surfaces. It constructs conformal maps from planar
domains to general surfaces of revolution, deriving for the map a first-order
differential equation, nonlinear but separable. These surfaces are discussed

as examples of Riemann surfaces. The Riemann sphere Ĉ = C∪{∞} is also
discussed as a Riemann surface, conformally equivalent to S2. One sees the
group of linear fractional transformations as a group of conformal automor-

phisms of Ĉ and certain subgroups as groups of conformal automorphisms
of the unit disk and of the upper half-plane.

We also bring in the theory of normal families of holomorphic maps.
We use this to prove the Riemann mapping theorem, which states that
if Ω ⊂ C is simply connected and Ω �= C, then there is a holomorphic
diffeomorphism Φ : Ω → D, the unit disk. Application of this theorem to
a special domain, together with a reflection argument, shows that there is
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a holomorphic covering of C \ {0, 1} by the unit disk. This leads to key
results of Picard and Montel, applications to the behavior of iterations of

holomorphic maps R : Ĉ → Ĉ, and the study of the associated Fatou and
Julia sets, on which these iterates behave tamely and wildly, respectively.

The treatment of Riemann surfaces includes some differential geometric
material. In an appendix to Chapter 5, we introduce the concept of a metric
tensor and show how it is associated to a surface in Euclidean space and
how the metric tensor behaves under smooth mappings, in particular how
this behavior characterizes conformal mappings. We discuss the notion of
metric tensors beyond the setting of metrics induced on surfaces in Euclidean
space. In particular, we introduce a special metric on the unit disk, called
the Poincaré metric, which has the property of being invariant under all
conformal automorphisms of the disk. We show how the geometry of the
Poincaré metric leads to another proof of Picard’s theorem and also provides
a different perspective on the proof of the Riemann mapping theorem.

The text next examines elliptic functions in Chapter 6. These are dou-
bly periodic functions on C, holomorphic except at poles (that is, mero-
morphic). Such a function can be regarded as a meromorphic function on
the torus TΛ = C/Λ, where Λ ⊂ C is a lattice. A prime example is the
Weierstrass function ℘Λ(z), defined by a double series. Analysis shows that
℘′
Λ(z)

2 is a cubic polynomial in ℘Λ(z), so the Weierstrass function inverts an
elliptic integral. Elliptic integrals arise in many situations in geometry and
mechanics, including arclengths of ellipses and pendulum problems, to men-
tion two basic cases. The analysis of general elliptic integrals leads to the
problem of finding the lattice whose associated elliptic functions are related
to these integrals. This is the Abel inversion problem. Section 6.5 of the
text tackles this problem by constructing the Riemann surface associated to√
p(z), where p(z) is a cubic or quartic polynomial.

Early in this text, the exponential function was defined by a differential
equation and given a power series solution, and these two characterizations
were used to develop its properties. Coming full circle, we devote Chapter 7
to other classes of differential equations and their solutions. We first study
a special class of functions known as Bessel functions, characterized as solu-
tions to Bessel equations. Part of the central importance of these functions
arises from their role in producing solutions to partial differential equations
in several variables, as explained in an appendix. The Bessel functions for
real values of their arguments arise as solutions to wave equations, and for
imaginary values of their arguments they arise as solutions to diffusion equa-
tions. Thus it is very useful that they can be understood as holomorphic
functions of a complex variable. Next, Chapter 7 deals with more general
differential equations on a complex domain. Results include constructing
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solutions as convergent power series and the analytic continuation of such
solutions to larger domains. General results here are used to put the Bessel
equations in a larger context. This includes a study of equations with “regu-
lar singular points.” Other classes of equations with regular singular points
are presented, particularly hypergeometric equations.

The text ends with a short collection of appendices. Some of these
survey background material that the reader might have seen in an advanced
calculus course, including material on convergence and compactness, and
differential calculus of several variables. Others develop tools that prove
useful in the text, such as the Laplace asymptotic method, the Stieltjes
integral, and results on Abelian and Tauberian theorems. The last appendix
shows how to solve cubic and quartic equations via radicals and introduces
a special function, called the Bring radical, to treat quintic equations. (In
Chapter 7 the Bring radical is shown to be given in terms of a generalized
hypergeometric function.)

As indicated in the discussion above, while the first goal of this text is
to present the beautiful theory of functions of a complex variable, we have
the further objective of placing this study within a broader mathematical
framework. Examples of how this text differs from many others in the area
include the following.

1) A greater emphasis on Fourier analysis, both as an application of basic
results in complex analysis and as a tool of more general applicability in
analysis. We see the use of Fourier series in the study of harmonic func-
tions. We see the influence of the Fourier transform on the study of the
Laplace transform, and then the Laplace transform as a tool in the study of
differential equations.

2) The use of geometrical techniques in complex analysis. This clarifies the
study of conformal maps, extends the usual study to more general surfaces,
and shows how geometrical concepts are effective in classical problems from
the Riemann mapping theorem to Picard’s theorem. An appendix discusses
applications of the Poincaré metric on the disk.

3) Connections with differential equations. The use of techniques of complex
analysis to study differential equations is a strong point of this text. This
important area is frequently neglected in complex analysis texts, and the
treatments one sees in many differential equations texts are often confined
to solutions for real variables and may furthermore lack a complete analysis
of crucial convergence issues. Material here also provides a more detailed
study than one usually sees of significant examples, such as Bessel functions.

4) Special functions. In addition to material on the Gamma function and
the Riemann zeta function, the text has a detailed study of elliptic functions
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and Bessel functions and also material on Airy functions, Legendre functions,
and hypergeometric functions.

We follow this introduction with a record of some standard notation that
will be used throughout this text.

Acknowledgments
Thanks to Shrawan Kumar for testing this text in his Complex Analysis
course, for pointing out corrections, and for other valuable advice.

During the preparation of this book, my research has been supported by a
number of NSF grants, most recently DMS-1500817.





Some basic notation

R is the set of real numbers.

C is the set of complex numbers.

Z is the set of integers.

Z+ is the set of integers ≥ 0.

N is the set of integers ≥ 1 (the “natural numbers”).

x ∈ R means x is an element of R, i.e., x is a real number.

(a, b) denotes the set of x ∈ R such that a < x < b.

[a, b] denotes the set of x ∈ R such that a ≤ x ≤ b.

{x ∈ R : a ≤ x ≤ b} denotes the set of x in R such that a ≤ x ≤ b.

[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}.

z = x− iy if z = x+ iy ∈ C, x, y ∈ R.

Ω denotes the closure of the set Ω.

xiii
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f : A → B denotes that the function f takes points in the set A to points
in B. One also says f maps A to B.

x → x0 means the variable x tends to the limit x0.

f(x) = O(x) means f(x)/x is bounded. Similarly g(ε) = O(εk) means
g(ε)/εk is bounded.

f(x) = o(x) as x → 0 (resp., x →∞) means f(x)/x → 0 as x tends to the
specified limit.

S = sup
n

|an| means S is the smallest real number that satisfies S ≥ |an| for
all n. If there is no such real number then we take S = +∞.

lim sup
k→∞

|ak| = lim
n→∞

(
sup
k≥n

|ak|
)
.





Appendix A

Complementary
material

In addition to various appendices scattered through Chapters 1–7, we have
six “global” appendices, collected here.

In Appendix A.1 we cover material on metric spaces and compactness,
such as what one might find in a good advanced calculus course (cf. [44] and
[45]). This material applies both to subsets of the complex plane and to
various sets of functions. In the latter category, we have the Arzela-Ascoli
theorem, which is an important ingredient in the theory of normal families.
We also have the Contraction Mapping Theorem, of use in Appendix A.2.

In Appendix A.2 we discuss the derivative of a function of several real
variables and prove the Inverse Function Theorem, in the real context, which
is of use in §1.5 of Chapter 1 to get the Inverse Function Theorem for
holomorphic functions on domains in C. It is also useful for the treatment
of surfaces in Chapter 5.

Appendix A.3 treats a method of analyzing an integral of the form

(A.0.1)

∫ ∞

−∞
e−tϕ(x)g(x) dx

for large t, known as the Laplace asymptotic method. This is applied here
to analyze the behavior of Γ(z) for large z (Stirling’s formula). Also, in
§7.1 of Chapter 7, this method is applied to analyze the behavior of Bessel
functions for a large argument.

417



418 A. Complementary material

Appendix A.4 provides some basic results on the Stieltjes integral

(A.0.2)

∫ b

a
f(x) du(x).

We assume that f ∈ C([a, b]) and u : [a, b] → R is increasing. Possibly b =
∞, and then there are restrictions on the behavior of f and u at infinity. The
Stieltjes integral provides a convenient language to use to relate functions
that count primes to the Riemann zeta function, and we make use of it in
§4.4 of Chapter 4. It also provides a convenient setting for the material in
Appendix A.5.

Appendix A.5 deals with Abelian theorems and Tauberian theorems.
These are results to the effect that one sort of convergence implies another.
In a certain sense, Tauberian theorems are partial converses to Abelian
theorems. One source for such results is the following: in many proofs of
the prime number theorem, including the one given in §4.4 of Chapter 4,
the last step involves using a Tauberian theorem. The particular Tauberian
theorem needed to end the analysis in §4.4 is given a short proof in Appendix
A.5, as a consequence of a result of broad general use known as Karamata’s
Tauberian theorem.

In Appendix A.6 we show how the formula

(A.0.3) sin 3z = −4 sin3 z + 3 sin z

enables one to solve cubic equations, and move on to seek formulas for
solutions to quartic equations and quintic equations. In the latter case this
cannot necessarily be done in terms of radicals, and this appendix introduces
a special function, called the Bring radical, to treat quintic equations.

A.1. Metric spaces, convergence, and compactness

A metric space is a set X, together with a distance function d : X ×X →
[0,∞), having the properties that

(A.1.1)

d(x, y) = 0 ⇐⇒ x = y,

d(x, y) = d(y, x),

d(x, y) ≤ d(x, z) + d(y, z).

The third of these properties is called the triangle inequality. An example
of a metric space is the set of rational numbers Q, with d(x, y) = |x − y|.
Another example is X = Rn, with

(A.1.2) d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

If (xν) is a sequence in X, indexed by ν = 1, 2, 3, . . . , i.e., by ν ∈ N, one
says xν → y if d(xν , y) → 0, as ν → ∞. One says (xν) is a Cauchy sequence
if d(xν , xμ) → 0 as μ, ν → ∞. One says X is a complete metric space if
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every Cauchy sequence converges to a limit in X. Some metric spaces are
not complete; for example, Q is not complete. You can take a sequence (xν)
of rational numbers such that xν →

√
2, which is not rational. Then (xν) is

Cauchy in Q, but it has no limit in Q.

If a metric space X is not complete, one can construct its completion X̂

as follows. Let an element ξ of X̂ consist of an equivalence class of Cauchy
sequences in X, where we say (xν) ∼ (yν) provided d(xν , yν) → 0. We write
the equivalence class containing (xν) as [xν ]. If ξ = [xν ] and η = [yν ], we
can set d(ξ, η) = limν→∞ d(xν , yν), and verify that this is well defined and

makes X̂ a complete metric space.

If the completion of Q is constructed by this process, you get R, the set
of real numbers. This construction provides a good way to develop the basic
theory of the real numbers. A detailed construction of R using this method
is given in Chapter 1 of [44].

There are a number of useful concepts related to the notion of closeness.
We define some of them here. First, if p is a point in a metric space X and
r ∈ (0,∞), the set

(A.1.3) Br(p) = {x ∈ X : d(x, p) < r}

is called the open ball about p of radius r. Generally, a neighborhood of
p ∈ X is a set containing such a ball, for some r > 0.

A set U ⊂ X is called open if it contains a neighborhood of each of its
points. The complement of an open set is said to be closed. The following
result characterizes closed sets.

Proposition A.1.1. A subset K ⊂ X of a metric space X is closed if and
only if

(A.1.4) xj ∈ K, xj → p ∈ X =⇒ p ∈ K.

Proof. Assume K is closed, xj ∈ K, xj → p. If p /∈ K, then p ∈ X \K,
which is open, so some Bε(p) ⊂ X \ K, and d(xj, p) ≥ ε for all j. This
contradiction implies p ∈ K.

Conversely, assume (A.1.4) holds, and let q ∈ U = X \K. If B1/n(q) is
not contained in U for any n, then there exists xn ∈ K ∩B1/n(q), and hence
xn → q, contradicting (A.1.4). This completes the proof. �

The following is straightforward.

Proposition A.1.2. If Uα is a family of open sets in X, then
⋃

α Uα is
open. If Kα is a family of closed subsets of X, then

⋂
αKα is closed.
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Given S ⊂ X, we denote by S (the closure of S) the smallest closed
subset of X containing S, i.e., the intersection of all the closed sets Kα ⊂ X
containing S. The following result is straightforward.

Proposition A.1.3. Given S ⊂ X, p ∈ S if and only if there exist xj ∈ S
such that xj → p.

Given S ⊂ X, p ∈ X, we say p is an accumulation point of S if and only
if, for each ε > 0, there exists q ∈ S ∩ Bε(p), q �= p. It follows that p is an
accumulation point of S if and only if each Bε(p), ε > 0, contains infinitely
many points of S. One straightforward observation is that all points of S \S
are accumulation points of S.

The interior of a set S ⊂ X is the largest open set contained in S, i.e.,
the union of all the open sets contained in S. Note that the complement of
the interior of S is equal to the closure of X \ S.

We now turn to the notion of compactness. We say a metric space X is
compact provided the following property holds:

(A.1.5) Each sequence (xk) in X has a convergent subsequence.

We will establish various properties of compact metric spaces and provide
various equivalent characterizations. For example, it is easily seen that
(A.1.5) is equivalent to:

(A.1.6) Each infinite subset S ⊂ X has an accumulation point.

The following property is known as total boundedness:

Proposition A.1.4. If X is a compact metric space, then

(A.1.7)
Given ε > 0, ∃ finite set {x1, . . . , xN}
such that Bε(x1), . . . , Bε(xN ) covers X.

Proof. Take ε > 0 and pick x1 ∈ X. If Bε(x1) = X, we are done. If not,
pick x2 ∈ X \ Bε(x1). If Bε(x1) ∪ Bε(x2) = X, we are done. If not, pick
x3 ∈ X\[Bε(x1)∪Bε(x2)]. Continue, taking xk+1 ∈ X\[Bε(x1)∪· · ·∪Bε(xk)]
if Bε(x1) ∪ · · · ∪Bε(xk) �= X. Note that, for 1 ≤ i, j ≤ k,

(A.1.8) i �= j =⇒ d(xi, xj) ≥ ε.

If one never covers X this way, consider S = {xj : j ∈ N}. This is an infinite
set with no accumulation point, so property (A.1.6) is contradicted. �

Corollary A.1.5. If X is a compact metric space, it has a countable dense
subset.

Proof. Given ε = 2−n, let Sn be a finite set of points xj such that {Bε(xj)}
covers X. Then C =

⋃
n Sn is a countable dense subset of X. �
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Here is another useful property of compact metric spaces, which will
eventually be generalized even further, in (A.1.13) below.

Proposition A.1.6. Let X be a compact metric space. Assume K1 ⊃ K2 ⊃
K3 ⊃ · · · form a decreasing sequence of closed subsets of X. If each Kn �= ∅,
then

⋂
n Kn �= ∅.

Proof. Pick xn ∈ Kn. If (A) holds, (xn) has a convergent subsequence,
xnk

→ y. Since {xnk
: k ≥ �} ⊂ Kn�

, which is closed, we have y ∈
⋂

nKn.
�

Corollary A.1.7. Let X be a compact metric space. Assume U1 ⊂ U2 ⊂
U3 ⊂ · · · form an increasing sequence of open subsets of X. If

⋃
n Un = X,

then UN = X for some N .

Proof. Consider Kn = X \ Un. �

The following is an important extension of Corollary A.1.7.

Proposition A.1.8. If X is a compact metric space, then it has the prop-
erty:

(A.1.9) Every open cover {Uα : α ∈ A} of X has a finite subcover.

Proof. Each Uα is a union of open balls, so it suffices to show that (A.1.5)
implies the following:

(A.1.10)
Every cover {Bα : α ∈ A} of X by open balls

has a finite subcover.

Let C = {zj : j ∈ N} ⊂ X be a countable dense subset of X, as in Corollary
A.1.7. Each Bα is a union of balls Brj (zj), with zj ∈ C ∩ Bα, rj rational.
Thus it suffices to show that

(A.1.11)
Every countable cover {Bj : j ∈ N} of X

by open balls has a finite subcover.

For this, we set

(A.1.12) Un = B1 ∪ · · · ∪Bn

and apply Corollary A.1.7. �

The following is a convenient alternative to property (A.1.9):

(A.1.13)
If Kα ⊂ X are closed and

⋂
α

Kα = ∅,

then some finite intersection is empty.

Considering Uα = X \Kα, we see that

(A.1.14) (A.1.9) ⇐⇒ (A.1.13).
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The following result completes Proposition A.1.8.

Theorem A.1.9. For a metric space X,

(A.1.15) (A.1.5) ⇐⇒ (A.1.9).

Proof. By Proposition A.1.8, (A.1.5) ⇒ (A.1.9). To prove the converse, it
will suffice to show that (A.1.13) ⇒ (A.1.6). So let S ⊂ X and assume S
has no accumulation point. We claim:

(A.1.16) Such S must be closed.

Indeed, if z ∈ S and z /∈ S, then z would have to be an accumulation
point. Say S = {xα : α ∈ A}. Set Kα = S \ {xα}. Then each Kα has no
accumulation point, hence Kα ⊂ X is closed. Also

⋂
αKα = ∅. Hence there

exists a finite set F ⊂ A such that
⋂

α∈F Kα = ∅, if (A.1.13) holds. Hence
S =

⋃
α∈F{xα} is finite, so indeed (A.1.13) ⇒ (A.1.6). �

Remark. So far we have that for every metric space X,

(A.1.17) (A.1.5) ⇐⇒ (A.1.6) ⇐⇒ (A.1.9) ⇐⇒ (A.1.13) =⇒ (A.1.7).

We claim that (A.1.7) implies the other conditions if X is complete. Of
course, compactness implies completeness, but (A.1.7) may hold for incom-
plete X, e.g., X = (0, 1) ⊂ R.

Proposition A.1.10. If X is a complete metric space with property (A.1.7),
then X is compact.

Proof. It suffices to show that (A.1.7) ⇒ (A.1.6) if X is a complete metric
space. So let S ⊂ X be an infinite set. Cover X by a finite number of balls,
B1/2(x1), . . . , B1/2(xN ). One of these balls contains infinitely many points

of S, and so does its closure, say X1 = B1/2(y1). Now cover X by finitely
many balls of radius 1/4; their intersection with X1 provides a cover of X1.
One such set contains infinitely many points of S, and so does its closure
X2 = B1/4(y2) ∩X1. Continue in this fashion, obtaining

(A.1.18) X1 ⊃ X2 ⊃ X3 ⊃ · · · ⊃ Xk ⊃ Xk+1 ⊃ · · · , Xj ⊂ B2−j (yj),

each containing infinitely many points of S. One sees that (yj) forms a
Cauchy sequence. If X is complete, it has a limit, yj → z, and z is seen to
be an accumulation point of S. �

If Xj , 1 ≤ j ≤ m, is a finite collection of metric spaces, with metrics dj ,
we can define a Cartesian product metric space

(A.1.19) X =
m∏
j=1

Xj , d(x, y) = d1(x1, y1) + · · ·+ dm(xm, ym).
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Another choice of metric is δ(x, y) =
√

d1(x1, y1)2 + · · ·+ dm(xm, ym)2. The
metrics d and δ are equivalent, i.e., there exist constants C0, C1 ∈ (0,∞)
such that

(A.1.20) C0δ(x, y) ≤ d(x, y) ≤ C1δ(x, y), ∀ x, y ∈ X.

A key example is Rm, the Cartesian product of m copies of the real line R.

We describe some important classes of compact spaces.

Proposition A.1.11. If Xj are compact metric spaces, 1 ≤ j ≤ m, so is
X =

∏m
j=1Xj .

Proof. If (xν) is an infinite sequence of points inX, say xν = (x1ν , . . . , xmν),
pick a convergent subsequence of (x1ν) inX1, and consider the corresponding
subsequence of (xν), which we relabel (xν). Using this, pick a convergent
subsequence of (x2ν) in X2. Continue. Having a subsequence such that
xjν → yj inXj for each j = 1, . . . ,m, we then have a convergent subsequence
in X. �

The following result is useful for calculus on Rn.

Proposition A.1.12. If K is a closed bounded subset of Rn, then K is
compact.

Proof. The discussion above reduces the problem to showing that any
closed interval I = [a, b] in R is compact. This compactness is a corol-
lary of Proposition A.1.10. For pedagogical purposes, we redo the argument
here, since in this concrete case it can be streamlined.

Suppose S is a subset of I with infinitely many elements. Divide I into
2 equal subintervals, I1 = [a, b1], I2 = [b1, b], b1 = (a+ b)/2. Then either I1
or I2 must contain infinitely many elements of S. Say Ij does. Let x1 be any
element of S lying in Ij . Now divide Ij in two equal pieces, Ij = Ij1 ∪ Ij2.
One of these intervals (say Ijk) contains infinitely many points of S. Pick
x2 ∈ Ijk to be one such point (different from x1). Then subdivide Ijk into
two equal subintervals, and continue. We get an infinite sequence of distinct
points xν ∈ S, and |xν − xν+k| ≤ 2−ν(b− a), for k ≥ 1. Since R is complete,
(xν) converges, say to y ∈ I. Any neighborhood of y contains infinitely many
points in S, so we are done. �

If X and Y are metric spaces, a function f : X → Y is said to be
continuous provided xν → x in X implies f(xν) → f(x) in Y. An equivalent
condition, which the reader is invited to verify, is

(A.1.21) U open in Y =⇒ f−1(U) open in X.

Proposition A.1.13. If X and Y are metric spaces, f : X → Y continuous,
and K ⊂ X compact, then f(K) is a compact subset of Y.
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Proof. If (yν) is an infinite sequence of points in f(K), pick xν ∈ K such
that f(xν) = yν . If K is compact, we have a subsequence xνj → p in X, and
then yνj → f(p) in Y. �

If F : X → R is continuous, we say f ∈ C(X). A useful corollary of
Proposition A.1.13 is:

Proposition A.1.14. If X is a compact metric space and f ∈ C(X), then
f assumes a maximum and a minimum value on X.

Proof. We know from Proposition A.1.13 that f(X) is a compact subset of
R. Hence f(X) is bounded, say f(X) ⊂ I = [a, b]. Repeatedly subdividing
I into equal halves, as in the proof of Proposition A.1.12, at each stage
throwing out intervals that do not intersect f(X), and keeping only the
leftmost and rightmost interval amongst those remaining, we obtain points
α ∈ f(X) and β ∈ f(X) such that f(X) ⊂ [α, β]. Then α = f(x0) for some
x0 ∈ X is the minimum and β = f(x1) for some x1 ∈ X is the maximum. �

If S ⊂ R is a nonempty, bounded set, Proposition A.1.12 implies S is
compact. The function η : S → R, η(x) = x is continuous, so by Proposition
A.1.14 it assumes a maximum and a minimum on S. We set

(A.1.22) sup S = max
s∈S

x, inf S = min
x∈S

x,

when S is bounded. More generally, if S ⊂ R is nonempty and bounded
from above, say S ⊂ (−∞, B], we can pick A < B such that S ∩ [A,B] is
nonempty, and set

(A.1.23) sup S = sup S ∩ [A,B].

Similarly, if S ⊂ R is nonempty and bounded from below, say S ⊂ [A,∞),
we can pick B > A such that S ∩ [A,B] is nonempty, and set

(A.1.24) inf S = inf S ∩ [A,B].

If X is a nonempty set and f : X → R is bounded from above, we set

(A.1.25) sup
x∈X

f(x) = sup f(X),

and if f : X → R is bounded from below, we set

(A.1.26) inf
x∈X

f(x) = inf f(X).

If f is not bounded from above, we set sup f = +∞, and if f is not bounded
from below, we set inf f = −∞.

Given a set X, f : X → R, and xn → x, we set

(A.1.27) lim sup
n→∞

f(xn) = lim
n→∞

(
sup
k≥n

f(xk)
)
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and

(A.1.28) lim inf
n→∞

f(xn) = lim
n→∞

(
inf
k≥n

f(xk)
)
.

We return to the notion of continuity. A function f ∈ C(X) is said to
be uniformly continuous provided that, for any ε > 0, there exists δ > 0
such that

(A.1.29) x, y ∈ X, d(x, y) ≤ δ =⇒ |f(x)− f(y)| ≤ ε.

An equivalent condition is that f have a modulus of continuity, i.e., a mono-
tonic function ω : [0, 1) → [0,∞) such that δ ↘ 0 ⇒ ω(δ) ↘ 0, and such
that

(A.1.30) x, y ∈ X, d(x, y) ≤ δ ≤ 1 =⇒ |f(x)− f(y)| ≤ ω(δ).

Not all continuous functions are uniformly continuous. For example, if X =
(0, 1) ⊂ R, then f(x) = sin 1/x is continuous, but not uniformly continuous,
on X. The following result is useful, for example, in the development of the
Riemann integral.

Proposition A.1.15. If X is a compact metric space and f ∈ C(X), then
f is uniformly continuous.

Proof. If not, there exist xν , yν ∈ X and ε > 0 such that d(xν , yν) ≤ 2−ν

but

(A.1.31) |f(xν)− f(yν)| ≥ ε.

Taking a convergent subsequence xνj → p, we also have yνj → p. Now
continuity of f at p implies f(xνj) → f(p) and f(yνj ) → f(p), contradicting
(A.1.31). �

If X and Y are metric spaces, the space C(X,Y ) of continuous maps f :
X → Y has a natural metric structure, under some additional hypotheses.
We use

(A.1.32) D(f, g) = sup
x∈X

d
(
f(x), g(x)

)
.

This sup exists provided f(X) and g(X) are bounded subsets of Y, where to
say B ⊂ Y is bounded is to say d : B×B → [0,∞) has a bounded image. In
particular, this supremum exists if X is compact. The following is a natural
completeness result.

Proposition A.1.16. If X is a compact metric space and Y is a complete
metric space, then C(X,Y ), with the metric (A.1.32), is complete.
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Proof. That D(f, g) satisfies the conditions to define a metric on C(X,Y ) is
straightforward. We check completeness. Suppose (fν) is a Cauchy sequence
in C(X,Y ), so, as ν →∞,

(A.1.33) sup
k≥0

sup
x∈X

d
(
fν+k(x), fν(x)

)
≤ εν → 0.

Then in particular (fν(x)) is a Cauchy sequence in Y for each x ∈ X, so it
converges, say to g(x) ∈ Y . It remains to show that g ∈ C(X,Y ) and that
fν → g in the metric (A.1.24).

In fact, taking k → ∞ in the estimate above, we have

(A.1.34) sup
x∈X

d
(
g(x), fν(x)

)
≤ εν → 0,

i.e., fν → g uniformly. It remains only to show that g is continuous. For
this, let xj → x in X and fix ε > 0. Pick N so that εN < ε. Since fN is
continuous, there exists J such that j ≥ J ⇒ d(fN (xj), fN (x)) < ε. Hence
(A.1.35)

j ≥ J ⇒ d
(
g(xj), g(x)

)
≤ d
(
g(xj), fN (xj)

)
+ d
(
fN (xj), fN (x)

)
+ d
(
fN (x), g(x)

)
< 3ε.

This completes the proof. �

In case Y = R, C(X,R) = C(X), introduced earlier in this appendix.
The distance function (A.1.32) can be written

(A.1.36) D(f, g) = ‖f − g‖sup, ‖f‖sup = sup
x∈X

|f(x)|.

‖f‖sup is a norm on C(X).

Generally, a norm on a vector space V is an assignment f �→ ‖f‖ ∈
[0,∞), satisfying

(A.1.37) ‖f‖ = 0 ⇔ f = 0, ‖af‖ = |a| ‖f‖, ‖f + g‖ ≤ ‖f‖+ ‖g‖,

given f, g ∈ V and a a scalar (in R or C). A vector space equipped with
a norm is called a normed vector space. It is then a metric space, with
distance function D(f, g) = ‖f − g‖. If the space is complete, one calls V a
Banach space.

In particular, by Proposition A.1.16, C(X) is a Banach space when X
is a compact metric space.

We next give a couple of slightly more sophisticated results on com-
pactness. The following extension of Proposition A.1.11 is a special case of
Tychonov’s Theorem.

Proposition A.1.17. If {Xj : j ∈ Z+} are compact metric spaces, so is
X =

∏∞
j=1Xj .
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Here, we can make X a metric space by setting

(A.1.38) d(x, y) =
∞∑
j=1

2−j dj(pj(x), pj(y))

1 + dj(pj(x), pj(y))
,

where pj : X → Xj is the projection onto the jth factor. It is easy to verify
that, if xν ∈ X, then xν → y in X, as ν → ∞, if and only if, for each
j, pj(xν) → pj(y) in Xj.

Proof. Following the argument in Proposition A.1.11, if (xν) is an infinite
sequence of points in X, we obtain a nested family of subsequences

(A.1.39) (xν) ⊃ (x1ν) ⊃ (x2ν) ⊃ · · · ⊃ (xjν) ⊃ · · ·

such that p�(x
j
ν) converges in X�, for 1 ≤ � ≤ j. The next step is a diagonal

construction. We set

(A.1.40) ξν = xνν ∈ X.

Then, for each j, after throwing away a finite number N(j) of elements, one
obtains from (ξν) a subsequence of the sequence (xjν) in (A.1.39), so p�(ξν)
converges in X� for all �. Hence (ξν) is a convergent subsequence of (xν). �

The next result is known as the Arzela-Ascoli Theorem. It is useful in
the theory of normal families, developed in §5.2.

Proposition A.1.18. Let X and Y be compact metric spaces, and fix a
modulus of continuity ω(δ). Then

(A.1.41) Cω =
{
f ∈ C(X,Y ) : d

(
f(x), f(x′)

)
≤ ω
(
d(x, x′)

)
∀x, x′ ∈ X

}
is a compact subset of C(X,Y ).

Proof. Let (fν) be a sequence in Cω. Let Σ be a countable dense subset of
X, as in Corollary A.1.5. For each x ∈ Σ, (fν(x)) is a sequence in Y, which
hence has a convergent subsequence. Using a diagonal construction similar
to that in the proof of Proposition A.1.17, we obtain a subsequence (ϕν) of
(fν) with the property that ϕν(x) converges in Y, for each x ∈ Σ, say

(A.1.42) ϕν(x) → ψ(x),

for all x ∈ Σ, where ψ : Σ → Y.

So far, we have not used (A.1.41). This hypothesis will now be used to
show that ϕν converges uniformly on X. Pick ε > 0. Then pick δ > 0 such
that ω(δ) < ε/3. Since X is compact, we can cover X by finitely many balls
Bδ(xj), 1 ≤ j ≤ N, xj ∈ Σ. Pick M so large that ϕν(xj) is within ε/3 of
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its limit for all ν ≥ M (when 1 ≤ j ≤ N). Now, for any x ∈ X, picking
� ∈ {1, . . . , N} such that d(x, x�) ≤ δ, we have, for k ≥ 0, ν ≥ M,

(A.1.43)

d
(
ϕν+k(x), ϕν(x)

)
≤ d
(
ϕν+k(x), ϕν+k(x�)

)
+ d
(
ϕν+k(x�), ϕν(x�)

)
+ d
(
ϕν(x�), ϕν(x)

)
≤ ε/3 + ε/3 + ε/3.

Thus (ϕν(x)) is Cauchy in Y for all x ∈ X, and hence convergent. Call
the limit ψ(x), so we now have (A.1.42) for all x ∈ X. Letting k → ∞ in
(A.1.43) we have uniform convergence of ϕν to ψ. Finally, passing to the
limit ν →∞ in

(A.1.44) d(ϕν(x), ϕν(x
′)) ≤ ω(d(x, x′))

gives ψ ∈ Cω. �

We want to re-state Proposition A.1.18, bringing in the notion of equicon-
tinuity. Given metric spaces X and Y , and a set of maps F ⊂ C(X,Y ), we
say F is equicontinuous at a point x0 ∈ X provided

(A.1.45)
∀ ε > 0, ∃ δ > 0 such that ∀x ∈ X, f ∈ F ,

dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε.

We say F is equicontinuous on X if it is equicontinuous at each point of X.
We say F is uniformly equicontinuous on X provided

(A.1.46)
∀ ε > 0, ∃ δ > 0 such that ∀x, x′ ∈ X, f ∈ F ,

dX(x, x′) < δ =⇒ dY (f(x), f(x
′)) < ε.

Note that (A.1.46) is equivalent to the existence of a modulus of continuity
ω such that F ⊂ Cω, given by (A.1.41). It is useful to record the following
result.

Proposition A.1.19. Let X and Y be metric spaces, F ⊂ C(X,Y ). As-
sume X is compact. Then

(A.1.47) F equicontinuous =⇒ F is uniformly equicontinuous.

Proof. The argument is a variant of the proof of Proposition A.1.15. In
more detail, suppose there exist xν , x

′
ν ∈ X, ε > 0, and fν ∈ F such that

d(xν , x
′
ν) ≤ 2−ν but

(A.1.48) d(fν(xν), fν(x
′
ν)) ≥ ε.

Taking a convergent subsequence xνj → p ∈ X, we also have x′νj → p. Now
equicontinuity of F at p implies that there exists N < ∞ such that

(A.1.49) d(g(xνj), g(p)) <
ε

2
, ∀ j ≥ N, g ∈ F ,

contradicting (A.1.48). �
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Putting together Propositions A.1.18 and A.1.19 then gives the follow-
ing.

Proposition A.1.20. Let X and Y be compact metric spaces. If F ⊂
C(X,Y ) is equicontinuous on X, then it has compact closure in C(X,Y ).

We next define the notion of a connected space. A metric space X is
said to be connected provided that it cannot be written as the union of two
disjoint nonempty open subsets. The following is a basic class of examples.

Proposition A.1.21. Each interval I in R is connected.

Proof. Suppose A ⊂ I is nonempty, with nonempty complement B ⊂ I,
and both sets are open. Take a ∈ A, b ∈ B; we can assume a < b. Let
ξ = sup{x ∈ [a, b] : x ∈ A}. This exists as a consequence of the basic fact
that R is complete.

Now we obtain a contradiction, as follows. Since A is closed ξ ∈ A. But
then, since A is open, there must be a neighborhood (ξ− ε, ξ+ ε) contained
in A; this is not possible. �

We say X is path-connected if, given any p, q ∈ X, there is a contin-
uous map γ : [0, 1] → X such that γ(0) = p and γ(1) = q. It is an easy
consequence of Proposition A.1.21 that X is connected whenever it is path-
connected.

The next result, known as the Intermediate Value Theorem, is frequently
useful.

Proposition A.1.22. Let X be a connected metric space and f : X → R
continuous. Assume p, q ∈ X, and f(p) = a < f(q) = b. Then, given any
c ∈ (a, b), there exists z ∈ X such that f(z) = c.

Proof. Under the hypotheses, A = {x ∈ X : f(x) < c} is open and contains
p, while B = {x ∈ X : f(x) > c} is open and contains q. If X is connected,
then A ∪ B cannot be all of X; so any point in its complement has the
desired property. �

The next result is known as the Contraction Mapping Principle, and it
has many uses in analysis. In particular, we will use it in the proof of the
Inverse Function Theorem, in Appendix A.2.

Theorem A.1.23. Let X be a complete metric space, and let T : X → X
satisfy

(A.1.50) d(Tx, Ty) ≤ r d(x, y),

for some r < 1. (We say T is a contraction.) Then T has a unique fixed
point x. For any y0 ∈ X, T ky0 → x as k → ∞.
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Proof. Pick y0 ∈ X and let yk = T ky0. Then d(yk, yk+1) ≤ rk d(y0, y1), so

(A.1.51)

d(yk, yk+m) ≤ d(yk, yk+1) + · · ·+ d(yk+m−1, yk+m)

≤ (rk + · · ·+ rk+m−1) d(y0, y1)

≤ rk(1− r)−1 d(y0, y1).

It follows that (yk) is a Cauchy sequence, so it converges; yk → x. Since
Tyk = yk+1 and T is continuous, it follows that Tx = x, i.e., x is a fixed
point. Uniqueness of the fixed point is clear from the estimate d(Tx, Tx′) ≤
r d(x, x′), which implies d(x, x′) = 0 if x and x′ are fixed points. This proves
Theorem A.1.23. �

Exercises

1. If X is a metric space, with distance function d, show that

(A.1.52) |d(x, y)− d(x′, y′)| ≤ d(x, x′) + d(y, y′),

and hence

(A.1.53) d : X ×X −→ [0,∞) is continuous.

2. Let ϕ : [0,∞) → [0,∞) be a C2 function. Assume

(A.1.54) ϕ(0) = 0, ϕ′ > 0, ϕ′′ < 0.

Prove that if d(x, y) is symmetric and satisfies the triangle inequality, so
does

(A.1.55) δ(x, y) = ϕ(d(x, y)).

Hint. Show that such ϕ satisfies ϕ(s+ t) ≤ ϕ(s) + ϕ(t), for s, t ∈ R+.

3. Show that the function d(x, y) defined by (A.1.38) satisfies (A.1.1).

Hint. Consider ϕ(r) = r/(1 + r).

4. Let X be a compact metric space. Assume fj , f ∈ C(X) and

(A.1.56) fj(x) ↗ f(x), ∀x ∈ X.

Prove that fj → f uniformly on X. (This result is called Dini’s theorem.)

Hint. For ε > 0, let Kj(ε) = {x ∈ X : f(x) − fj(x) ≥ ε}. Note that
Kj(ε) ⊃ Kj+1(ε) ⊃ · · · .
5. In the setting of (A.1.19), let

(A.1.57) δ(x, y) =
{
d1(x1, y1)

2 + · · ·+ dm(xm, ym)2
}1/2

.

Show that

(A.1.58) δ(x, y) ≤ d(x, y) ≤
√
mδ(x, y).
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6. Let X and Y be compact metric spaces. Show that if F ⊂ C(X,Y )
is compact, then F is equicontinuous. (This is a converse to Proposition
A.1.20.)

7. Recall that a Banach space is a complete normed linear space. Consider
C1(I), where I = [0, 1], with norm

(A.1.59) ‖f‖C1 = sup
I

|f |+ sup
I

|f ′|.

Show that C1(I) is a Banach space.

8. Let F = {f ∈ C1(I) : ‖f‖C1 ≤ 1}. Show that F has compact closure in
C(I). Find a function in the closure of F that is not in C1(I).

A.2. Derivatives and diffeomorphisms

To start this section off, we define the derivative and discuss some of its basic
properties. Let O be an open subset of Rn, and F : O → Rm a continuous
function. We say F is differentiable at a point x ∈ O, with derivative L, if
L : Rn → Rm is a linear transformation such that, for y ∈ Rn, small,

(A.2.1) F (x+ y) = F (x) + Ly +R(x, y)

with

(A.2.2)
‖R(x, y)‖

‖y‖ → 0 as y → 0.

We denote the derivative at x by DF (x) = L. With respect to the standard
bases of Rn and Rm, DF (x) is simply the matrix of partial derivatives,

(A.2.3) DF (x) =

(
∂Fj

∂xk

)
,

so that if v = (v1, . . . , vn)
t (regarded as a column vector). then

(A.2.4) DF (x)v =
(∑

k

∂F1

∂xk
vk, . . . ,

∑
k

∂Fm

∂xk
vk

)t
.

It will be shown below that F is differentiable whenever all the partial
derivatives exist and are continuous on O. In such a case we say F is a C1

function on O. More generally, F is said to be Ck if all its partial derivatives
of order ≤ k exist and are continuous. If F is Ck for all k, we say F is C∞.

In (A.2.2), we can use the Euclidean norm on Rn and Rm. This norm is
defined by

(A.2.5) ‖x‖ =
(
x21 + · · ·+ x2n

)1/2
for x = (x1, . . . , xn) ∈ Rn. Any other norm would do equally well.

We now derive the chain rule for the derivative. Let F : O → Rm be
differentiable at x ∈ O, as above, let U be a neighborhood of z = F (x) in
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Rm, and let G : U → Rk be differentiable at z. Consider H = G ◦ F. We
have

(A.2.6)

H(x+ y) = G(F (x+ y))

= G
(
F (x) +DF (x)y +R(x, y)

)
= G(z) +DG(z)

(
DF (x)y +R(x, y)

)
+R1(x, y)

= G(z) +DG(z)DF (x)y +R2(x, y)

with

(A.2.7)
‖R2(x, y)‖

‖y‖ → 0 as y → 0.

Thus G ◦ F is differentiable at x, and

(A.2.8) D(G ◦ F )(x) = DG(F (x)) ·DF (x).

Another useful remark is that, by the fundamental theorem of calculus,
applied to ϕ(t) = F (x+ ty),

(A.2.9) F (x+ y) = F (x) +

∫ 1

0
DF (x+ ty)y dt,

provided F is C1. A closely related application of the fundamental theorem
of calculus is that if we assume F : O → Rm is differentiable in each variable
separately, and that each ∂F/∂xj is continuous on O, then
(A.2.10)

F (x+ y) = F (x) +
n∑

j=1

[
F (x+ zj)− F (x+ zj−1)

]
= F (x) +

n∑
j=1

Aj(x, y)yj,

Aj(x, y) =

∫ 1

0

∂F

∂xj

(
x+ zj−1 + tyjej

)
dt,

where z0 = 0, zj = (y1, . . . , yj , 0, . . . , 0), and {ej} is the standard basis
of Rn. Now (A.2.10) implies F is differentiable on O, as we stated below
(A.2.4). Thus we have established the following.

Proposition A.2.1. If O is an open subset of Rn and F : O → Rm is of
class C1, then F is differentiable at each point x ∈ O.

As is shown in many calculus texts, one can use the mean value theorem
instead of the fundamental theorem of calculus, and obtain a slightly sharper
result.

For the study of higher order derivatives of a function, the following
result is fundamental.
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Proposition A.2.2. Assume F : O → Rm is of class C2, with O open in
Rn. Then, for each x ∈ O, 1 ≤ j, k ≤ n,

(A.2.11)
∂

∂xj

∂F

∂xk
(x) =

∂

∂xk

∂F

∂xj
(x).

To prove Proposition A.2.2, it suffices to treat real valued functions, so
consider f : O → R. For 1 ≤ j ≤ n, set

(A.2.12) Δj,hf(x) =
1

h

(
f(x+ hej)− f(x)

)
,

where {e1, . . . , en} is the standard basis of Rn. The mean value theorem (for
functions of xj alone) implies that if ∂jf = ∂f/∂xj exists on O, then, for
x ∈ O, h > 0 sufficiently small,

(A.2.13) Δj,hf(x) = ∂jf(x+ αjhej),

for some αj ∈ (0, 1), depending on x and h. Iterating this, if ∂j(∂kf) exists
on O, then, for x ∈ O and h > 0 sufficiently small,

(A.2.14)

Δk,hΔj,hf(x) = ∂k(Δj,hf)(x+ αkhek)

= Δj,h(∂kf)(x+ αkhek)

= ∂j∂kf(x+ αkhek + αjhej),

with αj , αk ∈ (0, 1). Here we have used the elementary result

(A.2.15) ∂kΔj,hf = Δj,h(∂kf).

We deduce the following.

Proposition A.2.3. If ∂kf and ∂j∂kf exist on O and ∂j∂kf is continuous
at x0 ∈ O, then

(A.2.16) ∂j∂kf(x0) = lim
h→0

Δk,hΔj,hf(x0).

Clearly

(A.2.17) Δk,hΔj,hf = Δj,hΔk,hf,

so we have the following, which easily implies Proposition A.2.2.

Corollary A.2.4. In the setting of Proposition A.2.3, if also ∂jf and ∂k∂jf
exist on O and ∂k∂jf is continuous at x0, then

(A.2.18) ∂j∂kf(x0) = ∂k∂jf(x0).

If U and V are open subsets of Rn and F : U → V is a C1 map, we
say F is a diffeomorphism of U onto V provided F maps U one-to-one and
onto V , and its inverse G = F−1 is a C1 map. If F is a diffeomorphism, it
follows from the chain rule that DF (x) is invertible for each x ∈ U . We now
present a partial converse of this, the Inverse Function Theorem, which is a
fundamental result in multivariable calculus.
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Theorem A.2.5. Let F be a Ck map from an open neighborhood Ω of p0 ∈
Rn to Rn, with q0 = F (p0). Assume k ≥ 1. Suppose the derivative DF (p0)
is invertible. Then there is a neighborhood U of p0 and a neighborhood V of
q0 such that F : U → V is one-to-one and onto, and F−1 : V → U is a Ck

map. (So F : U → V is a diffeomorphism.)

First we show that F is one-to-one on a neighborhood of p0, under these
hypotheses. In fact, we establish the following result, of interest in its own
right.

Proposition A.2.6. Assume Ω ⊂ Rn is open and convex, and let f : Ω →
Rn be C1. Assume that the symmetric part of Df(u) is positive-definite, for
each u ∈ Ω. Then f is one-to-one on Ω.

Proof. Take distinct points u1, u2 ∈ Ω, and set u2 − u1 = w. Consider
ϕ : [0, 1] → R, given by

(A.2.19) ϕ(t) = w · f(u1 + tw).

Then ϕ′(t) = w · Df(u1 + tw)w > 0 for t ∈ [0, 1], so ϕ(0) �= ϕ(1). But
ϕ(0) = w · f(u1) and ϕ(1) = w · f(u2), so f(u1) �= f(u2). �

To continue the proof of Theorem A.2.5, let us set

(A.2.20) f(u) = A
(
F (p0 + u)− q0

)
, A = DF (p0)

−1.

Then f(0) = 0 and Df(0) = I, the identity matrix. We show that f maps
a neighborhood of 0 one-to-one and onto some neighborhood of 0. We can
write

(A.2.21) f(u) = u+R(u), R(0) = 0, DR(0) = 0,

and R is C1. Pick b > 0 such that

(A.2.22) ‖u‖ ≤ 2b =⇒ ‖DR(u)‖ ≤ 1

2
.

Then Df = I +DR has a positive definite symmetric part on

(A.2.23) B2b(0) = {u ∈ Rn : ‖u‖ < 2b},
so by Proposition A.2.6,

(A.2.24) f : B2b(0) −→ Rn is one-to-one.

We will show that the range f(B2b(0)) contains Bb(0), that is to say, we can
solve

(A.2.25) f(u) = v,

given v ∈ Bb(0), for some (unique) u ∈ B2b(0). This is equivalent to u +
R(u) = v.



A.2. Derivatives and diffeomorphisms 435

To get this solution, we set

(A.2.26) Tv(u) = v −R(u).

Then solving (A.2.25) is equivalent to solving

(A.2.27) Tv(u) = u.

We look for a fixed point

(A.2.28) u = K(v) = f−1(v).

Also we want to show that DK(0) = I, i.e., that

(A.2.29) K(v) = v + r(v), r(v) = o(‖v‖).

If we succeed in doing this, it follows that, for y close to q0, G(y) = F−1(y)
is defined. Also, taking

(A.2.30) x = p0 + u, y = F (x), v = f(u) = A(y − q0),

as in (A.2.20), we have, via (A.2.29),

(A.2.31)

G(y) = p0 + u = p0 +K(v)

= p0 +K(A(y − q0))

= p0 +A(y − q0) + o(‖y − q0‖).
Hence G is differentiable at q0 and

(A.2.32) DG(q0) = A = DF (p0)
−1.

A parallel argument, with p0 replaced by a nearby x and y = F (x), gives

(A.2.33) DG(y) =
(
DF (G(y))

)−1
.

A tool we will use to solve (A.2.27) is the Contraction Mapping Principle,
established in Appendix A.1, which states that if X is a complete metric
space, and if T : X → X satisfies

(A.2.34) dist(Tx, Ty) ≤ r dist(x, y),

for some r < 1 (we say T is a contraction), then T has a unique fixed point
x ∈ X.

We prepare to solve (A.2.27). Having b as in (A.2.22), we claim that

(A.2.35) ‖v‖ ≤ b =⇒ Tv : Xv → Xv,

where

(A.2.36)
Xv = {u ∈ B2b(0) : ‖u− v‖ ≤ Av},
Av = sup

‖w‖≤2‖v‖
‖R(w)‖.
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Note from (A.2.21)–(A.2.22) that

(A.2.37) ‖w‖ ≤ 2b =⇒ ‖R(w)‖ ≤ 1

2
‖w‖ and ‖R(w)‖ = o(‖w‖).

Hence

(A.2.38) ‖v‖ ≤ b =⇒ Av ≤ ‖v‖ and Av = o(‖v‖).

Thus ‖u− v‖ ≤ Av ⇒ u ∈ Xv. Also,

(A.2.39)

u ∈ Xv =⇒ ‖u‖ ≤ 2‖v‖
=⇒ ‖R(u)‖ ≤ Av

=⇒ ‖Tv(u)− v‖ ≤ Av,

so (A.2.35) holds.

As for the contraction property, given uj ∈ Xv, ‖v‖ ≤ b,

(A.2.40)

‖Tv(u1)− Tv(u2)‖ = ‖R(u2)−R(u1)‖

≤ 1

2
‖u1 − u2‖,

the last inequality by (A.2.22), so the map (A.2.35) is a contraction. Hence
there is a unique fixed point, u = K(v) ∈ Xv. Also, since u ∈ Xv,

(A.2.41) ‖K(v)− v‖ ≤ Av = o(‖v‖).

Thus we have (A.2.29). This establishes the existence of the inverse function
G = F−1 : V → U , and we have the formula (A.2.33) for the derivative DG.
Since G is differentiable on V , it is certainly continuous, so (A.2.33) implies
DG is continuous, given F ∈ C1(U). An inductive argument then shows
that G is Ck if F is Ck.

This completes the proof of Theorem A.2.5.

Thus if DF is invertible on the domain of F, F is a local diffeomorphism.
Stronger hypotheses are needed to guarantee that F is a global diffeomor-
phism onto its range. Proposition A.2.6 provides one tool for doing this.
Here is a slight strengthening.

Corollary A.2.7. Assume Ω ⊂ Rn is open and convex, and that F : Ω →
Rn is C1. Assume there exist n × n matrices A and B such that the sym-
metric part of ADF (u)B is positive definite for each u ∈ Ω. Then F maps
Ω diffeomorphically onto its image, an open set in Rn.

Proof. Exercise. �
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A.3. The Laplace asymptotic method and Stirling’s formula

Recall that the Gamma function is given by

(A.3.1) Γ(z) =

∫ ∞

0
e−ttz−1 dt,

for Re z > 0. We aim to analyze its behavior for large z, particularly in a
sector

(A.3.2) Aβ = {reiθ : r > 0, |θ| ≤ β},
for β < π/2. Let us first take z > 0, and set t = sz, and then s = ey, to
write

(A.3.3)

Γ(z) = zz
∫ ∞

0
e−z(s−log s)s−1 ds

= zze−z

∫ ∞

−∞
e−z(ey−y−1) dy.

Having done this, we see that each side of (A.3.3) is holomorphic in the half
plane Re z > 0, so the identity holds for all such z. The last integral has the
form

(A.3.4) I(z) =

∫ ∞

−∞
e−zϕ(y)A(y) dy,

with A(y) ≡ 1 in this case, and ϕ(y) = ey − y − 1. Note that ϕ(y) is real
valued and has a nondegenerate minimum at y = 0,

(A.3.5) ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) > 0.

Furthermore,

(A.3.6)
ϕ(y) ≥ ay2 for |y| ≤ 1,

a for |y| ≥ 1,

for some a > 0.

The Laplace asymptotic method analyzes the asymptotic behavior of
such an integral, as z →∞ in a sector Aπ/2−δ. In addition to the hypotheses
(A.3.5)–(A.3.6), we assume that ϕ and A are smooth, and we assume that,
given α > 0, there exists β > 0 such that

(A.3.7)
∣∣∣ ∫
|y|>α

e−zϕ(y)A(y) dy
∣∣∣ ≤ Ce−βRe z, for Re z ≥ 1.

These hypotheses are readily verified for the integral that arises in (A.3.3).

Given these hypotheses, our first step to tackle (A.3.4) is to pick b ∈
C∞(R) such that b(y) = 1 for |y| ≤ α and b(y) = 0 for |y| ≥ 2α, and set

(A.3.8) A0(y) = b(y)A(y), A1(y) = (1− b(y))A(y),
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so

(A.3.9)
∣∣∣∫ ∞

−∞
e−zϕ(y)A1(y) dy

∣∣∣ ≤ Ce−βRe z,

for Re z ≥ 1. It remains to analyze

(A.3.10) I0(z) =

∫ ∞

−∞
e−zϕ(y)A0(y) dy.

Pick α sufficiently small that you can write

(A.3.11) ϕ(y) = ξ(y)2, for |y| ≤ 2α,

where ξ maps [−2α, 2α] diffeomorphically onto an interval about 0 in R.
Then

(A.3.12) I0(z) =

∫ ∞

−∞
e−zξ2B0(ξ) dξ,

with B0(ξ) = A0(y(ξ))y
′(ξ), where y(ξ) denotes the map inverse to ξ(y).

Hence B0 ∈ C∞
0 (R).

To analyze (A.3.12), we use the Fourier transform

(A.3.13) B̂0(x) =
1√
2π

∫ ∞

−∞
B0(ξ)e

−ixξ dξ,

studied in §3.2. Arguing as in the calculation (3.2.13)–(3.2.14), we have, for
Re z > 0,

(A.3.14) Ez(ξ) = e−zξ2 =⇒ Êz(x) =
( 1

2z

)1/2
e−x2/4z.

Hence, by Plancherel’s theorem, for Re z > 0,

(A.3.15)
I0(z) = (2ζ)1/2

∫ ∞

−∞
e−ζx2

B̂0(x) dx

= (2ζ)1/2I0(ζ), ζ =
1

4z
.

Now, given B0 ∈ C∞
0 (R), one has B̂0 ∈ C∞(R), and

(A.3.16)
∣∣xjB̂(k)

0 (x)
∣∣ ≤ Cjk, ∀x ∈ R.

We say B̂0 ∈ S(R). Using this, it follows that

(A.3.17) I0(ζ) =
∫ ∞

−∞
e−ζx2

B̂0(x) dx

is holomorphic on {ζ ∈ C : Re ζ > 0} and C∞ on {ζ ∈ C : Re ζ ≥ 0}. We
have

(A.3.18) I0(0) =
∫ ∞

−∞
B̂0(x) dx =

√
2πB0(0).



A.3. The Laplace asymptotic method and Stirling’s formula 439

It follows that, for Re ζ ≥ 0,

(A.3.19) I0(ζ) =
√
2πB0(0) +O(|ζ|), as ζ → 0,

and hence, for Re z ≥ 0, z �= 0,

(A.3.20) I0(z) =
(π
z

)1/2
B0(0) +O(|z|−3/2), as z →∞.

If we apply this to (A.3.3)–(A.3.9), we obtain Stirling’s formula,

(A.3.21) Γ(z) = zze−z
(2π

z

)1/2[
1 +O(|z|−1)

]
,

for z ∈ Aπ/2−δ, taking into account that in this case B0(0) =
√
2.

Asymptotic analysis of the Hankel function, done in §7.1, leads to an
integral of the form (A.3.4) with

(A.3.22) ϕ(y) =
sinh2 y

cosh y
,

and

(A.3.23) A(y) = e−νu(y)u′(y), u(y) = y + i tan−1(sinh y),

so u′(y) = 1 + i/ cosh y. The conditions for applicability of (A.3.5)–(A.3.9)
are readily verified for this case, yielding the asymptotic expansion in Propo-
sition 7.1.3.

Returning to Stirling’s formula, we mention another approach which
gives more precise information. It involves the ingenious identity

(A.3.24) log Γ(z) =
(
z − 1

2

)
log z − z +

1

2
log 2π + ω(z),

with a convenient integral formula for ω(z), namely

(A.3.25) ω(z) =

∫ ∞

0
f(t)e−tz dt,

for Re z > 0, with

(A.3.26)

f(t) =
(1
2
− 1

t
+

1

et − 1

)1
t

=
1

t

(1
2

cosh t/2

sinh t/2
− 1

t

)
,

which is a smooth, even function of t on R, asymptotic to 1/2t as t ↗ +∞.
A proof of (A.3.24) can be found in §1.4 of [27].

We show how to derive a complete asymptotic expansion of the Laplace
transform (A.3.25), valid for z → ∞, Re z ≥ 0, just given that f ∈
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C∞([0,∞)) and that f (j) is integrable on [0,∞) for each j ≥ 1. To start,
integration by parts yields

(A.3.27)

∫ ∞

0
f(t)e−zt dt = −1

z

∫ ∞

0
f(t)

d

dt
e−zt dt

=
1

z

∫ ∞

0
f ′(t)e−zt dt+

f(0)

z
,

valid for Re z > 0. We can iterate this argument to obtain

(A.3.28) ω(z) =

N∑
k=1

f (k−1)(0)

zk
+

1

zN

∫ ∞

0
f (N)(t)e−zt dt

and
(A.3.29)∣∣∣∫ ∞

0
f (N)(t)e−zt dt

∣∣∣ ≤ ∫ ∞

0
|f (N)(t)| dt < ∞, for N ≥ 1, Re z ≥ 0.

By (A.3.24), ω(z) is holomorphic on C \ (−∞, 0]. Meanwhile, the right side
of (A.3.28) is continuous on {z ∈ C : Re z ≥ 0, z �= 0}, so equality in
(A.3.28) holds on this region.

To carry on, we note that, for |t| < 2π,

(A.3.30)
1

2
− 1

t
+

1

et − 1
=

∞∑
k=1

(−1)k−1

(2k)!
Bkt

2k−1,

where Bk are the Bernoulli numbers, introduced in §2.8, Exercises 6–8, and
related to ζ(2k) in §6.1. Hence, for |t| < 2π,

(A.3.31) f(t) =
∞∑
�=0

(−1)�

(2�+ 2)!
B�+1t

2�.

Thus

(A.3.32)

f (j)(0) = 0 j odd,

(−1)�B�+1

(2�+ 1)(2�+ 2)
j = 2�,

so

(A.3.33) ω(z) ∼
∑
�≥0

(−1)�B�+1

(2�+ 1)(2�+ 2)

1

z2�+1
, z →∞, Re z ≥ 0.

Thus there are Ak ∈ R such that

(A.3.34) eω(z) ∼ 1 +
∑
k≥1

Ak

zk
, z →∞, Re z ≥ 0.
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This yields the following refinement of (A.3.21):

(A.3.35) Γ(z) ∼ zze−z
(2π

z

)1/2[
1 +
∑
k≥1

Akz
−k
]
, |z| → ∞, Re z ≥ 0.

We can push the asymptotic analysis of Γ(z) into the left half-plane,
using the identity

(A.3.36) Γ(−z) sinπz = − π

zΓ(z)

to extend (A.3.24), i.e.,

(A.3.37) Γ(z) =
(z
e

)z√2π

z
eω(z), for Re z ≥ 0, z �= 0,

to the rest of C \ R−. If we define zz and
√
z in the standard fashion for

z ∈ (0,∞) and to be holomorphic on C \ R−, we get

(A.3.38) Γ(z) =
1

1− e2πiz

(z
e

)z√2π

z
e−ω(−z), for Re z ≤ 0, Im z > 0,

and

(A.3.39) Γ(z) =
1

1− e−2πiz

(z
e

)z√2π

z
e−ω(−z), for Re z ≤ 0, Im z < 0.

Comparing (A.3.37) and (A.3.38) for z = iy, y > 0, we see that

(A.3.40) e−ω(−iy) = (1− e−2πy)eω(iy), y > 0.

That e−ω(−iy) and eω(iy) have the same asymptotic behavior as y → +∞
also follows from the fact that only odd powers of z−1 appear in (A.3.33).

A.4. The Stieltjes integral

Here we develop basic results on integrals of the form

(A.4.1)

∫ b

a
f(x) du(x),

known as Stieltjes integrals. We assume that f ∈ C([a, b]) and that

(A.4.2) u : [a, b] −→ R is increasing,

i.e., x1 < x2 ⇒ u(x1) ≤ u(x2). We also assume u is right continuous, i.e.,

(A.4.3) u(x) = lim
y↘x

u(y), ∀x ∈ [a, b).

Note that (A.4.2) implies the existence for all x ∈ [a, b] of

(A.4.4) u+(x) = lim inf
y↘x

u(y), u−(x) = lim sup
y↗x

u(y)
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(with the convention that u−(a) = u(a) and u+(b) = u(b)). We have

(A.4.5) u−(x) ≤ u+(x), ∀x ∈ [a, b],

and (A.4.3) says u(x) = u+(x) for all x. Note that u is continuous at x
if and only if u−(x) = u+(x). If u is not continuous at x, it has a jump
discontinuity there, and it is easy to see that u can have at most countably
many such discontinuities.

We prepare to define the integral (A.4.1), mirroring a standard devel-
opment of the Riemann integral when u(x) = x. For now, we allow f to
be any bounded, real-valued function on [a, b], say |f(x)| ≤ M . To start,
we partition [a, b] into smaller intervals. A partition P of [a, b] is a finite
collection of subintervals {Jk : 0 ≤ k ≤ N − 1}, disjoint except for their
endpoints, whose union is [a, b]. We order the Jk so that Jk = [xk, xk+1],
where

(A.4.6) a = x0 < x1 < · · · < xN = b.

We call the points xk the endpoints of P. We set

(A.4.7)

IP(f du) =
N−1∑
k=0

(sup
Jk

f)[u(xk+1)− u(xk)],

IP(f du) =
N−1∑
k=0

(inf
Jk

f)[u(xk+1)− u(xk)].

Note that IP(f du) ≤ IP(f du). These quantities should be approximations
to (A.4.1) if the partition P is sufficiently “fine.”

To be more precise, if P and Q are two partitions of [a, b], we say P
refines Q, and write P % Q, if P is formed by partitioning the intervals in
Q. Equivalently, P % Q if and only if all the endpoints of Q are endpoints
of P. It is easy to see that any two partitions have a common refinement;
just take the union of their endpoint, to form a new partition. Note that

(A.4.8)
P % Q ⇒ IP(f du) ≤ IQ(f du) and

IP(f du) ≥ IQ(f du).

Consequently, if Pj are two partitions of [a, b] andQ is a common refinement,
we have

(A.4.9) IP1
(f du) ≤ IQ(f du) ≤ IQ(f du) ≤ IP2(f du).
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Thus, whenever f : [a, b] → R is bounded, the following quantities are well
defined:

(A.4.10)

I
b
a(f du) = inf

P∈Π[a,b]
IP(f du),

Iba(f du) = sup
P∈Π[a,b]

IP(f du),

where Π[a, b] denotes the set of all partitions of [a, b]. Clearly, by (A.4.9),

(A.4.11) Iba(f du) ≤ I
b
a(f du).

We say a bounded function f : [a, b] → R is Riemann-Stieltjes integrable
provided there is equality in (A.4.11). In such a case, we set

(A.4.12)

∫ b

a
f(x) du(x) = I

b
a(f du) = Iba(f du),

and we write f ∈ R([a, b], du). Though we will not emphasize it, another
notation for (A.4.12) is

(A.4.13)

∫
I

f(x) du(x), I = (a, b].

Our first basic result is that each continuous function on [a, b] is Riemann-
Stieltjes integrable.

Proposition A.4.1. If f : [a, b] → R is continuous, then f ∈ R([a, b], du).

Proof. Any continuous function on [a, b] is uniformly continuous (cf. Ap-
pendix A.1). Thus there is a function ω(δ) such that

(A.4.14) |x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ω(δ), ω(δ) → 0 as δ → 0.

Given Jk = [xk, xk+1], let us set �(Jk) = xk+1 − xk, and, for the partition P
with endpoints as in (A.4.6), set

(A.4.15) maxsize(P) = max
0≤k≤N−1

�(Jk).

Then

(A.4.16) maxsize(P) ≤ δ =⇒ IP(f du)− IP(f du) ≤ ω(δ)[u(b)− u(a)],

which yields the proposition. �

We will concentrate on (A.4.1) for continuous f , but there are a couple
of results that are conveniently established for more general integrable f .

Proposition A.4.2. If f, g ∈ R([a, b], du), then f + g ∈ R([a, b], du), and

(A.4.17)

∫ b

a
(f(x) + g(x)) du(x) =

∫ b

a
f(x) du(x) +

∫ b

a
g(x) du(x).
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Proof. If Jk is any subinterval of [a, b], then

(A.4.18)

sup
Jk

(f + g) ≤ sup
Jk

f + sup
Jk

g and

inf
Jk

(f + g) ≥ inf
Jk

f + inf
Jk

g,

so, for any partition P, we have IP(f + g) du) ≤ IP(f du) + IP(g du). Also,
using a common refinement of partitions, we can simultaneously approx-

imate I
b
a(f du) and I

b
a(g du) by IP(f du) and IP(g du), and likewise for

I
b
a((f + g) du). Then the characterization (A.4.10) implies I

b
a((f + g) du) ≤

I
b
a(f du)+I

b
a(g du). A parallel argument implies Iba((f+g) du) ≥ Iba(f du)+

Iba(g du), and the proposition follows. �

Here is another useful additivity result.

Proposition A.4.3. Let a < b < c, f : [a, c] → R, f1 = f |[a,b], f2 = f |[b,c].
Assume u : [a, c] → R is increasing and right continuous. Then

(A.4.19) f ∈ R([a, c], du) ⇔ f1 ∈ R([a, b], du) and f2 ∈ R([b, c], du),

and, if this holds,

(A.4.20)

∫ c

a
f(x) du(x) =

∫ b

a
f1(x) du(x) +

∫ c

b
f2(x) du(x).

Proof. Since any partition of [a, c] has a refinement for which b is an end-
point, we may as well consider a partition P = P1 ∪ P2, where P1 is a
partition of [a, b] and P2 is a partition of [b, c]. Then

(A.4.21) IP(f du) = IP1(f1 du) + IP2(f2 du),

with a parallel identity for IP(f du), so
(A.4.22)
IP(f du)−IP(f du) = {IP1(f1 du)−IP1

(f1 du)}+{IP2(f2 du)−IP2
(f2 du)}.

Since both terms in braces in (A.4.22) are ≥ 0, we have the equivalence in
(A.4.19). Then (A.4.20) follows from (A.4.21) upon taking sufficiently fine
partitions. �

In the classical case u(x) = x, we denote R([a, b], du) by R([a, b]), the
space of Riemann integrable functions on [a, b]. We record a few standard
results about the Riemann integral, whose proofs can be found in many
texts, including [44], Chapter 4, and [45], §0.

Proposition A.4.4. If u : [a, b] → R is increasing and right continuous,
then u ∈ R([a, b]).

Proposition A.4.5. If f, g ∈ R([a, b]), then fg ∈ R([a, b]).
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The next result is known as the Darboux theorem for the Riemann
integral.

Proposition A.4.6. Let Pν be a sequence of partitions of [a, b], into ν
intervals Jνk, 1 ≤ k ≤ ν, such that

(A.4.23) maxsize(Pν) −→ 0,

and assume f ∈ R([a, b]). Then

(A.4.24)

∫ b

a
f(x) dx = lim

ν→∞

ν∑
k=1

f(ξνk)�(Jνk),

for arbitrary ξνk ∈ Jνk, where �(Jνk) is the length of the interval Jνk.

We now present a very useful result, known as integration by parts for
the Stieltjes integral.

Proposition A.4.7. Let u : [a, b] → R be increasing and right continuous,
and let f ∈ C1([a, b]), so f ′ ∈ C([a, b]). Then

(A.4.25)

∫ b

a
f(x) du(x) = fu

∣∣∣b
a
−
∫ b

a
f ′(x)u(x) dx,

where

(A.4.26) fu
∣∣∣b
a
= f(b)u(b)− f(a)u(a).

Proof. Pick a partition P of [a, b] with endpoints xk, 0 ≤ k ≤ N , as in
(A.4.6). Then

(A.4.27)

∫ b

a
f(x) du(x) =

N−1∑
k=0

∫ xk+1

xk

f(x) du(x).

Now, given ε > 0, pick δ > 0 such that

(A.4.28) maxsize(P) ≤ δ =⇒ sup
ξ∈[xk,xk+1]

|f(ξ)− f(xk)| ≤ ε.

Then

(A.4.29)

∫ b

a
f(x) du(x) =

N−1∑
k=0

f(xk)[u(xk+1)− u(xk)] +O(ε).

We can write this last sum as

(A.4.30)
−f(x0)u(x0) + [f(x0)− f(x1)]u(x1) + · · ·

+ [f(xN−1)− f(xN )]u(xN) + f(xN )u(xN ),

so

(A.4.31)

∫ b

a
f(x) du(x) = fu

∣∣∣b
a
+

N−1∑
k=0

[f(xk)− f(xk+1)]u(xk) +O(ε).
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Now the mean value theorem implies

(A.4.32) f(xk)− f(xk+1) = −f ′(ζk)(xk+1 − xk),

for some ζk ∈ (xk, xk+1). Since f
′ ∈ C([a, b]), we have in addition to (A.4.28)

that, after perhaps shrinking δ,

(A.4.33) maxsize(P) ≤ δ ⇒ sup
ζ∈[xk,xk+1]

|f ′(ζ)− f ′(xk)| ≤ ε.

Hence

(A.4.34)

∫ b

a
f(x) du(x) = fu

∣∣∣b
a
−

N−1∑
k=0

f ′(xk)u(xk)(xk+1 − xk) +O(ε).

Now Propositions A.4.4–A.4.5 imply f ′u ∈ R([a, b]), and then Proposition
A.4.6, applied to f ′u, implies that, in the limit as maxsize(P) → 0, the sum
on the right side of (A.4.34) tends to

(A.4.35)

∫ b

a
f ′(x)u(x) dx.

This proves (A.4.25). �

We discuss some natural extensions of the integral (A.4.1). For one,
we can take w = u − v, where v : [a, b] → R is also increasing and right
continuous, and set

(A.4.36)

∫ b

a
f(x) dw(x) =

∫ b

a
f(x) du(x)−

∫ b

a
f(x) dv(x).

Let us take f ∈ C([a, b]). To see that (A.4.36) is well defined, suppose that
also w = u1 − v1, where u1 and v1 are also increasing and right continuous.
The identity of the right side of (A.4.36) with

(A.4.37)

∫ b

a
f(x) du1(x)−

∫ b

a
f(x) dv1(x)

is equivalent to the identity
(A.4.38)∫ b

a
f(x) du(x) +

∫ b

a
f(x) dv1(x) =

∫ b

a
f(x) du1(x) +

∫ b

a
f(x) dv(x),

and hence to

(A.4.39)

∫ b

a
f(x) du(x) +

∫ b

a
f(x) dv1(x) =

∫ b

a
f(x) d(u+ v1)(x),

which is readily established, via

(A.4.40) IP(f du) + IP(f dv1) = IP(f d(u+ v1))

and similar identities.



A.4. The Stieltjes integral 447

Another extension is to take u : [0,∞) → R, increasing and right con-
tinuous, and define

(A.4.41)

∫ ∞

0
f(x) du(x),

for a class of functions f : [0,∞) → R satisfying appropriate bounds at
infinity. For example, we might take

(A.4.42)
u(x) ≤ Cεe

εx, ∀ ε > 0,

|f(x)| ≤ Ce−ax, for some a > 0.

There are many variants. One then sets

(A.4.43)

∫ ∞

0
f(x) du(x) = lim

R→∞

∫ R

0
f(x) du(x).

Extending the integration by parts formula (A.4.25), we have

(A.4.44)

∫ ∞

0
f(x) du(x) = lim

R→∞
fu
∣∣∣R
0
−
∫ R

0
f ′(x)u(x) dx

= −f(0)u(0)−
∫ ∞

0
f ′(x)u(x) dx,

for f ∈ C1([0,∞)), under an appropriate additional condition on f ′(x), such
as

(A.4.45) |f ′(x)| ≤ Ce−ax,

when (A.4.42) holds.

In addition, one can also have v : [0,∞) → R, increasing and right
continuous, set w = u − v, and define

∫∞
0 f(x) dw(x), in a fashion parallel

to (A.4.36). If, for example, (A.4.42) also holds with u replaced by v, we
can extend (A.4.44) to

(A.4.46)

∫ ∞

0
f(x) dw(x) = −f(0)w(0)−

∫ ∞

0
f ′(x)w(x) dx.

The material developed above is adequate for use in §4.4 and Appendix
A.5, but we mention that further extension can be made to the Lebesgue-
Stieltjes integral. In this set-up, one associates a “measure” μ on [a, b] to
the function u, and places the integral (A.4.1) within the framework of the
Lebesgue integral with respect to a measure. Material on this can be found
in many texts on measure theory, such as [47], Chapters 5 and 13. In
this setting, the content of Proposition A.4.7 is that the measure μ is the
“weak derivative” of u, and one can extend the identity (A.4.25) to a class
of functions f much more general than f ∈ C1([a, b]).
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A.5. Abelian theorems and Tauberian theorems

Abelian theorems and Tauberian theorems are results to the effect that one
sort of convergence leads to another. We start with the original Abelian
theorem, due to Abel, and give some applications of that result, before
moving on to other Abelian theorems and to Tauberian theorems.

Proposition A.5.1. Assume we have a convergent series

(A.5.1)

∞∑
k=0

ak = A.

Then

(A.5.2) f(r) =
∞∑
k=0

akr
k

converges uniformly on [0, 1], so f ∈ C([0, 1]). In particular, f(r) → A as
r ↗ 1.

As a warm up, we look at the following somewhat simpler result. Com-
pare Propositions 3.1.2 and 2.11.4.

Proposition A.5.2. Assume we have an absolutely convergent series

(A.5.3)
∞∑
k=0

|ak| < ∞.

Then the series (A.5.2) converges uniformly on [−1, 1], so f ∈ C([−1, 1]).

Proof. Clearly

(A.5.4)
∣∣∣m+n∑
k=m

akr
k
∣∣∣ ≤ m+n∑

k=m

|ak|,

for r ∈ [−1, 1], so if (A.5.3) holds, then (A.5.2) converges uniformly for
r ∈ [−1, 1]. Of course, a uniform limit of a sequence of continuous functions
on [−1, 1] is also continuous on this set. �

Proposition A.5.1 is much more subtle than Proposition A.5.2. One
ingredient in the proof is the following summation by parts formula.

Proposition A.5.3. Let (aj) and (bj) be sequences, and let

(A.5.5) sn =
n∑

j=0

aj .
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If m > n, then

(A.5.6)

m∑
k=n+1

akbk = (smbm − snbn+1) +

m−1∑
k=n+1

sk(bk − bk+1).

Proof. Write the left side of (A.5.6) as

(A.5.7)

m∑
k=n+1

(sk − sk−1)bk.

It is then straightforward to obtain the right side. �

Before applying Proposition A.5.3 to the proof of Proposition A.5.1, we
note that, by Proposition 1.1.4 and its proof, especially (1.1.40), the power
series (A.5.2) converges uniformly on compact subsets of (−1, 1) and defines
f ∈ C((−1, 1)). Our task here is to get uniform convergence up to r = 1.

To proceed, we apply (A.5.6) with bk = rk and n + 1 = 0, s−1 = 0, to
get

(A.5.8)

m∑
k=0

akr
k = (1− r)

m−1∑
k=0

skr
k + smrm.

Now, we want to add and subtract a function gm(r), defined for 0 ≤ r < 1
by

(A.5.9)

gm(r) = (1− r)

∞∑
k=m

skr
k

= Arm + (1− r)

∞∑
k=m

σkr
k,

with A as in (A.5.1) and

(A.5.10) σk = sk −A −→ 0, as k → ∞.

Note that, for 0 ≤ r < 1, μ ∈ N,

(A.5.11)

(1− r)
∣∣∣ ∞∑
k=μ

σkr
k
∣∣∣ ≤ (sup

k≥μ
|σk|
)
(1− r)

∞∑
k=μ

rk

=
(
sup
k≥μ

|σk|
)
rμ.

It follows that

(A.5.12) gm(r) = Arm + hm(r)

extends to be continuous on [0, 1] and

(A.5.13) |hm(r)| ≤ sup
k≥m

|σk|, hm(1) = 0.
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Now adding and subtracting gm(r) in (A.5.8) gives

(A.5.14)
m∑

k=0

akr
k = g0(r) + (sm −A)rm − hm(r),

and this converges uniformly for r ∈ [0, 1] to g0(r). We have Proposition
A.5.1, with f(r) = g0(r).

Here is one illustration of Proposition A.5.1. Let ak = (−1)k−1/k, which
produces a convergent series by the alternating series test (Section 1.1, Ex-
ercise 8). By (1.5.37),

(A.5.15)

∞∑
k=1

(−1)k−1

k
rk = log(1 + r),

for |r| < 1. It follows from Proposition A.5.1 that this infinite series con-
verges uniformly on [0, 1], and hence

(A.5.16)
∞∑
k=1

(−1)k−1

k
= log 2.

See Exercise 2 in §1.5 for a more direct approach to (A.5.16), using the
special behavior of alternating series. Here is a more subtle generalization,
which we will establish below.

Claim. For all θ ∈ (0, 2π), the series

(A.5.17)
∞∑
k=1

eikθ

k
= S(θ)

converges.

Given this claim, it follows from Proposition A.5.1 that

(A.5.18) lim
r↗1

∞∑
k=1

eikθ

k
rk = S(θ), ∀ θ ∈ (0, 2π).

Note that taking θ = π gives (A.5.16). We recall from §1.5 that the function
log : (0,∞) → R has a natural extension to

(A.5.19) log : C \ (−∞, 0] −→ C

and

(A.5.20)
∞∑
k=1

1

k
zk = − log(1− z), for |z| < 1,

from which we deduce, via Proposition A.5.1, that S(θ) in (A.5.17) satisfies

(A.5.21) S(θ) = − log(1− eiθ), 0 < θ < 2π.
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We want to establish the convergence of (A.5.17) for θ ∈ (0, 2π). In fact,
we prove the following more general result.

Proposition A.5.4. If bk ↘ 0, then

(A.5.22)
∞∑
k=1

bke
ikθ = F (θ)

converges for all θ ∈ (0, 2π).

Given Proposition A.5.4, it then follows from Proposition A.5.1 that

(A.5.23) lim
r↗1

∞∑
k=1

bkr
keikθ = F (θ), ∀ θ ∈ (0, 2π).

In turn, Proposition A.5.4 is a special case of the following more general
result, known as the Dirichlet test for convergence of an infinite series.

Proposition A.5.5. If bk ↘ 0, ak ∈ C, and there exists B < ∞ such that

(A.5.24) sk =

k∑
j=1

aj =⇒ |sk| ≤ B, ∀ k ∈ N,

then

(A.5.25)
∞∑
k=1

akbk converges.

To apply Proposition A.5.5 to Proposition A.5.4, take ak = eikθ and
observe that

(A.5.26)

k∑
j=1

eijθ =
1− eikθ

1− eiθ
eiθ,

which is uniformly bounded (in k) for each θ ∈ (0, 2π).

To prove Proposition A.5.5, we use summation by parts, Proposition
A.5.3. We have, via (A.5.6) with n = 0, s0 = 0,

(A.5.27)
m∑

k=1

akbk = smbm +
m−1∑
k=1

sk(bk − bk+1).

Now, if |sk| ≤ B for all k and bk ↘ 0, then

(A.5.28)
∞∑
k=1

|sk(bk − bk+1)| ≤ B
∞∑
k=1

(bk − bk+1) = Bb1 < ∞,

so the infinite series

(A.5.29)
∞∑
k=1

sk(bk − bk+1)
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is absolutely convergent, and the convergence of the left side of (A.5.27)
readily follows.

For a first generalization of Proposition A.5.1, let us make a change of
variable, r �→ e−s, so r ↗ 1 ⇔ s ↘ 0. Also think of {k ∈ Z+} as a
discretization of {t ∈ R+}. To proceed, assume we have

(A.5.30) u, v : [0,∞) −→ [0,∞), monotone increasing,

e.g., t1 < t2 ⇒ u(t1) ≤ u(t2), and right continuous. Also assume that
u(0) = v(0) = 0, and that

(A.5.31) u(t), v(t) ≤ Cεe
εt, ∀ ε > 0.

Now form

(A.5.32) f(t) = u(t)− v(t).

An example would be a piecewise constant f(t), with jumps ak at t = k. The
following result generalizes Proposition A.5.1. We use the Stieltjes integral,
discussed in Appendix A.4.

Proposition A.5.6. Take f as above, and assume

(A.5.33) f(t) −→ A, as t →∞.

Then

(A.5.34)

∫ ∞

0
e−st df(t) −→ A, as s ↘ 0.

Proof. The hypothesis (A.5.31) implies that the left side of (A.5.33) is an
absolutely convergent integral for each s > 0. Replacing summation by parts
by integration by parts in the Stieltjes integral, we have

(A.5.35)

∫ ∞

0
e−st df(t) = s

∫ ∞

0
e−stf(t) dt

= A+ s

∫ ∞

0
e−st[f(t)−A] dt.

Pick ε > 0, and then take K < ∞ such that

(A.5.36) t ≥ K =⇒ |f(t)−A| ≤ ε.

Then

(A.5.37)

s

∫ ∞

0
e−st|f(t)−A| dt

≤ s

∫ K

0
e−st|f(t)−A| dt+ εs

∫ ∞

K
e−st dt

≤
(
sup
t≤K

|f(t)−A|
)
Ks+ ε.
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Hence

(A.5.38) lim sup
s↘0

∣∣∣∫ ∞

0
e−stdf(t)−A

∣∣∣ ≤ ε, ∀ ε > 0,

and we have (A.5.34). �

We next replace the hypothesis (A.5.33) by

(A.5.39) f(t) ∼ Atα, as t →∞,

given α ≥ 0.

Proposition A.5.7. In the setting of Proposition A.5.6, if the hypothesis
(A.5.33) is replaced by (A.5.39), with α ≥ 0, then

(A.5.40)

∫ ∞

0
e−st df(t) ∼ AΓ(α+ 1)s−α, as s ↘ 0.

Proof. Noting that

(A.5.41)

∫ ∞

0
e−sttα dt = Γ(α+ 1)s−α−1,

we have, in place of (A.5.35),

(A.5.42)

∫ ∞

0
e−st df(t) = s

∫ ∞

0
e−stf(t) dt

= AΓ(α+ 1)s−α + s

∫ ∞

0
e−st[f(t)−Atα] dt.

Now, in place of (A.5.36), pick ε > 0 and take K < ∞ such that

(A.5.43) t ≥ K =⇒ |f(t)−Atα| ≤ εtα.

We have

(A.5.44)

s1+α

∫ ∞

0
e−st|f(t)−Atα| dt

≤ s1+α

∫ K

0
e−st|f(t)−Atα| dt+ εs1+α

∫ ∞

K
e−sttα dt

≤
(
sup
t≤K

|f(t)−Atα|
)
Ks1+α + εΓ(α+ 1).

Hence

(A.5.45) lim sup
s↘0

∣∣∣sα ∫ ∞

0
e−st df(t)−AΓ(α+ 1)

∣∣∣ ≤ εΓ(α+ 1), ∀ ε > 0,

and we have (A.5.40). �

In the next result, we weaken the hypothesis (A.5.39).
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Proposition A.5.8. Let f be as in Proposition A.5.7, except that we replace
hypothesis (A.5.39) by the hypothesis

(A.5.46) f1(t) ∼ Btα+1, as t →∞,

where

(A.5.47) f1(t) =

∫ t

0
f(τ) dτ.

Then the conclusion (A.5.40) holds, with

(A.5.48) A = (α+ 1)B.

Proof. In place of (A.5.42), write

(A.5.49)

∫ ∞

0
e−st df(t) = s

∫ ∞

0
e−stf(t) dt

= s

∫ ∞

0
e−st df1(t).

We apply Proposition A.5.7, with f replaced by f1 (and Atα replaced by
Btα+1), to deduce that

(A.5.50)

∫ ∞

0
e−st df1(t) ∼ BΓ(α+ 2)s−α−1.

Multiplying both sides of (A.5.50) by s and noting that Γ(α + 2) = (α +
1)Γ(α+ 1), we have (A.5.40). �

The Abelian theorems given above have been stated for real-valued f ,
but we can readily treat complex-valued f , simply by taking the real and
imaginary parts.

Tauberian theorems are to some degree converse results to Abelian the-
orems. However, Tauberian theorems require some auxiliary structure on f ,
or, in the setting of Proposition A.5.1, on {ak}. To see this, we bring in the
geometric series

(A.5.51)
∞∑
k=0

zk =
1

1− z
, for |z| < 1.

If we take ak = eikθ, then

(A.5.52)
∞∑
k=0

akr
k =

1

1− reiθ
−→ 1

1− eiθ
, as r ↗ 1,

for 0 < θ < 2π. However, since |ak| ≡ 1, the series
∑

k ak is certainly not
convergent. A classical theorem of Littlewood does obtain the convergence
(A.5.1) from convergence f(r) → A in (A.5.2), under the hypothesis that
|ak| ≤ C/k. One can see [11] for such a result.
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The Tauberian theorems we concentrate on here require

(A.5.53) f(t) = u(t) ↗,

or, in the setting of Proposition A.5.1, ak ≥ 0. In the latter case, it is clear
that

(A.5.54) lim
r↗1

∑
akr

k = A =⇒
∑

ak < ∞,

and then the “easy” result Proposition A.5.2 applies.

However, converses of results like Proposition A.5.7 when α > 0 are not
at all trivial. In particular, we have the following important result, known
as Karamata’s Tauberian theorem.

Proposition A.5.9. Let u : [0,∞)→ [0,∞) be an increasing, right-contin-
uous function, as in (A.5.30). Take α ∈ (0,∞), and assume

(A.5.55)

∫ ∞

0
e−st du(t) ∼ Bs−α, as s ↘ 0.

Then

(A.5.56) u(t) ∼ B

Γ(α+ 1)
tα, as t ↗∞.

Proof. Let us phrase the hypothesis (A.5.55) as

(A.5.57)

∫ ∞

0
e−st du(t) ∼ Bϕ(s),

where

(A.5.58) ϕ(s) = s−α =

∫ ∞

0
e−stv(t) dt, v(t) =

1

Γ(α)
tα−1.

Our goal in (A.5.56) is equivalent to showing that

(A.5.59)

∫ 1/s

0
du(t) = B

∫ 1/s

0
v(t) dt+ o(s−α), s ↘ 0.

We tackle this problem in stages, examining when we can show that

(A.5.60)

∫ ∞

0
F (st) du(t) = B

∫ ∞

0
F (st)v(t) dt+ o(s−α),

for various functions F (t), ultimately including

(A.5.61)
χI(t) = 1, for 0 ≤ t < 1,

0, for t ≥ 1.

We start with the function space

(A.5.62) E =
{ M∑
k=1

γke
−kt : γk ∈ R, M ∈ N

}
.
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As seen in Appendix 3.6, as a consequence of the Weierstrass approximation
theorem, the space E is dense in

(A.5.63) C0([0,∞)) =
{
f ∈ C([0,∞)) : lim

t→∞
f(t) = 0

}
.

Now if F ∈ E , say

(A.5.64) F (t) =
M∑
k=1

γke
−kt,

then (A.5.57) implies

(A.5.65)

∫ ∞

0
F (st) du(t) =

M∑
k=1

γk

∫ ∞

0
e−skt du(t)

= B

M∑
k=1

γkϕ(ks) + o
( M∑
k=1

(ks)−α
)

= B

∫ ∞

0
F (st)v(t) dt+ o(s−α).

Hence (A.5.60) holds for all F ∈ E . The following moves us along. �

Proposition A.5.10. In the setting of Proposition A.5.9, the result (A.5.60)
holds for all

(A.5.66) F ∈ C0([0,∞)) such that etF ∈ C0([0,∞)).

Proof. Given such F and given ε > 0, we take H ∈ E such that sup |H(t)−
etF (t)| ≤ ε, and set G(t) = e−tH(t), so

(A.5.67) G ∈ E , |F (t)−G(t)| ≤ εe−t.

This implies

(A.5.68)

∫ ∞

0
|F (st)−G(st)| du(t) ≤ ε

∫ ∞

0
e−st du(t)

and

(A.5.69)

∫ ∞

0
|F (st)−G(st)|v(t) dt ≤ ε

∫ ∞

0
e−stv(t) dt.

The facts that the right sides of (A.5.68) and (A.5.69) are both ≤ Cεϕ(s)
follow from (A.5.57) and (A.5.58), respectively. But we know that (A.5.60)
holds with G in place of F . Hence

(A.5.70)
∣∣∣∫ ∞

0
F (st) du(t)−B

∫ ∞

0
F (st)v(t) dt

∣∣∣ ≤ 2Cεϕ(s) + o(ϕ(s)),

for each ε > 0. Taking ε ↘ 0 yields the lemma. �
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We now tackle (A.5.60) for F = χI , given by (A.5.61). For each δ ∈
(0, 1/2], take fδ, gδ ∈ C0([0,∞)) such that

(A.5.71) 0 ≤ fδ ≤ χI ≤ gδ ≤ 1,

with

(A.5.72)
fδ(t) = 1 for 0 ≤ t ≤ 1− δ,

0 for t ≥ 1

and

(A.5.73)
gδ(t) = 1 for 0 ≤ t ≤ 1,

0 for t ≥ 1 + δ.

Note that Proposition A.5.10 is applicable to each fδ and gδ. Hence

(A.5.74)

∫ ∞

0
χI(st) du(t) ≤

∫ ∞

0
gδ(st) du(t)

= A

∫ ∞

0
gδ(st)v(t) dt+ o(ϕ(s))

and

(A.5.75)

∫ ∞

0
χI(st) du(t) ≥

∫ ∞

0
fδ(st) du(t)

= A

∫ ∞

0
fδ(st)v(t) dt+ o(ϕ(s)).

Complementing the estimates (A.5.74)–(A.5.75), we have

(A.5.76)

∫ ∞

0

[
gδ(st)− fδ(st)

]
v(t) dt

≤
∫ (1+δ)/s

(1−δ)/s
v(t) dt

≤ 2δ

s
·max

{
v(t) :

1− δ

s
≤ t ≤ 1 + δ

s

}
≤ Cδs−α.

It then follows from (A.5.74)–(A.5.75) that

(A.5.77)
lim sup

s↘0
sα
∣∣∣∫ ∞

0
χI(st) du(t)−B

∫ ∞

0
χI(st)v(t) dt

∣∣∣
≤ inf

δ≤1/2
Cδ = 0.

This yields (A.5.59) and hence completes the proof of Proposition A.5.9.
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Arguments proving Proposition A.5.9 can also be used to establish vari-
ants of the implication (A.5.55) ⇒ (A.5.56), such as

(A.5.78)

∫ ∞

0
e−st du(t) ∼ A

(
log

1

s

)
s−α, s ↘ 0,

=⇒ u(t) ∼ A

Γ(α+ 1)
tα(log t), t →∞,

provided u : [0,∞) → [0,∞) is increasing and α > 0. The reader might
like to verify this. Hint: replace the calculation in (A.5.58) by the Laplace
transform identity

(A.5.79)

∫ ∞

0
e−sttα−1(log t) dt =

(
Γ′(α)− Γ(α) log s

)
s−α.

See Exercise 3 in §4.3.
Putting together Propositions A.5.8 and A.5.9 yields the following result,

of use in §4.4. In fact, Proposition A.5.11 below is equivalent to Proposition
4.4.14, which plays a role in the proof of the prime number theorem.

Proposition A.5.11. Let ψ : [0,∞) → [0,∞) be an increasing function,

and set ψ1(t) =
∫ t
0 ψ(τ) dτ . Take B ∈ (0,∞), α ∈ [0,∞). Then

(A.5.80)
ψ1(t) ∼ Btα+1, as t →∞
=⇒ ψ(t) ∼ (α+ 1)Btα, as t →∞.

Proof. First, by Proposition A.5.8, the hypothesis on ψ1(t) in (A.5.80)
implies

(A.5.81)

∫ ∞

0
e−st dψ(t) ∼ BΓ(α+ 2)s−α, s ↘ 0.

Then Karamata’s Tauberian theorem applied to (A.5.81) yields the conclu-
sion in (A.5.80), at least for α > 0. But such a conclusion for α = 0 is
elementary. �

Karamata’s Tauberian theorem is a widely applicable tool. In addition
to the application we have made in the proof of the prime number theorem,
it has uses in partial differential equations, which can be found in [46].

We mention another Tauberian theorem, known as Ikehara’s Tauberian
theorem.

Proposition A.5.12. Let u : [0,∞) → [0,∞) be increasing, and consider

(A.5.82) F (s) =

∫ ∞

0
e−st du(t).

Assume the integral is absolutely convergent on {s ∈ C : Re s > 1} and that

(A.5.83) F (s)− A

s− 1
is continuous on {s ∈ C : Re s ≥ 1}.



A.6. Cubics, quartics, and quintics 459

Then

(A.5.84) e−tu(t) −→ A as t → ∞.

We refer to [11] for a proof of Proposition A.5.12. This result is appli-
cable to (4.4.68),

(A.5.85) −ζ ′(s)

ζ(s)
=

∫ ∞

1
x−s dψ(x),

with ψ given by (4.4.66). In fact, setting u(t) = ψ(et) gives

(A.5.86) −ζ ′(s)

ζ(s)
=

∫ ∞

0
e−ts du(t).

Then Propositions 4.4.2 and 4.4.4 imply (A.5.83), with A = 1, so (A.5.84)
yields e−tu(t) → 1, and hence

(A.5.87)
ψ(x)

x
−→ 1, as x →∞.

In this way, we get another proof of (4.4.70), which yields the prime number
theorem. This proof requires less information on the Riemann zeta function
than was used in the proof of Theorem 4.4.10. It requires Proposition 4.4.4,
but not its refinement, Proposition 4.4.8 and Corollary 4.4.9. On the other
hand, the proof of Ikehara’s theorem is more subtle than that of Proposition
A.5.11. This illustrates the advantage of obtaining more insight into the
Riemann zeta function.

A.6. Cubics, quartics, and quintics

We take up the problem of finding formulas for the roots of polynomials,
i.e., elements z ∈ C such that

(A.6.1) P (z) = zn + an−1z
n−1 + an−2z

n−1 + · · ·+ a1z + a0 = 0,

given aj ∈ C, with emphasis on the cases n = 3, 4, and 5. We start with
generalities, involving two elementary transformations. First, if z = w −
an−1/n, then

(A.6.2) P (z) = Q(w) = wn + bn−2w
n−2 + · · ·+ b0,

with bj ∈ C. We have arranged that the coefficient of wn−1 be zero. In case
n = 2, we get

(A.6.3) Q(w) = w2 + b0,

with roots w = ±
√
−b0, leading to the familiar quadratic formula.

For n ≥ 3, the form of Q(w) is more complicated. We next take w = γu,
so

(A.6.4) Q(w) = γnR(u) = γn(un + cn−2u
n−2 + · · ·+ c0), cj = γj−nbj .
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In particular, cn−2 = γ−2bn−2. This has the following significance. If bn−2 �=
0, we can preselect c ∈ C \ 0 and choose γ ∈ C such that γ−2bn−2 = c, i.e.,

(A.6.5) γ =
(
cb−1

n−2

)1/2
,

and therefore achieve that c is the coefficient of un−2 in R(u).

In case n = 3, we get

(A.6.6) R(u) = u3 + cu+ d, d = γ−3c0.

Our task is to find a formula for the roots of R(u), along the way making
a convenient choice of c to facilitate this task. One neat approach involves
a trigonometric identity, expressing sin 3ζ as a polynomial in sin ζ. Starting
with

(A.6.7) sin(ζ + 2ζ) = sin ζ cos 2ζ + cos ζ sin 2ζ,

it is an exercise to obtain

(A.6.8) sin 3ζ = −4 sin3 ζ + 3 sin ζ, ∀ ζ ∈ C.

Consequently, we see that the equation

(A.6.9) 4u3 − 3u+ 4d = 0

is solved by

(A.6.10) u = sin ζ, if 4d = sin 3ζ.

Here we have taken c = −3/4 in (A.6.6). In this case, the other solutions to
(A.6.9) are

(A.6.11) u2 = sin
(
ζ +

2π

3

)
, u3 = sin

(
ζ − 2π

3

)
.

Remark. The polynomial (A.6.9) has a double root if and only if 4d = ±1.
In such a case, we can take ζ = π/6 (respectively, ζ = −π/6) and then
u = u2 (respectively, u = u3).

Now (A.6.10)–(A.6.11) provide formulas for the solutions to (A.6.9),
but they involve the transcendental functions sin and sin−1. We can obtain
purely algebraic formulas as follows. If 4d = sin 3ζ, as in (A.6.10),

(A.6.12)
e3iζ = η =⇒ η − η−1 = 8id

=⇒ η = 4id±
√
−(4d)2 + 1.

Then

(A.6.13) u = sin ζ =
1

2i

(
η1/3 − η−1/3

)
.
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Note that the two roots η± in (A.6.12) are related by η− = −1/η+, so they
lead to the same quantity η1/3−η−1/3. In (A.6.13), the cube root is regarded
as a multivalued function; for a ∈ C,

(A.6.14) a1/3 = {b ∈ C : b3 = a}.
Similarly, if a �= 0, then

(A.6.15) a1/3 − a−1/3 = {b− b−1 : b3 = a}.
Taking the three cube roots of η in (A.6.13) gives the three roots of R(u).

We have obtained an algebraic formula for the roots of (A.6.6), with the
help of the functions sin and sin−1. Now we will take an alternative route,
avoiding explicit use of these functions. To get it, note that, with v = eiζ ,
the identity (A.6.8) is equivalent to

(A.6.16) v3 − v−3 = (v − v−1)3 + 3(v − v−1),

which is also directly verifiable via the binomial formula. Thus, if we set

(A.6.17) u = v − v−1,

and take c = 3 in (A.6.6), we see that R(u) = 0 is equivalent to

(A.6.18) v3 − v−3 = −d.

This time, in place of (A.6.12), we have

(A.6.19)
v3 = η =⇒ η − η−1 = −d

=⇒ η = −d

2
± 1

2

√
d2 + 4.

Then, in place of (A.6.13), we get

(A.6.20) u = η1/3 − η−1/3.

Again the two roots η± in (A.6.19) are related by η− = −1/η+, so they lead

to the same quantity η1/3−η−1/3. Furthermore, taking the three cube roots
of η gives, via (A.6.20), the three roots of R(u). The two formulas (A.6.13)
and (A.6.20) have a different appearance simply because of the different
choices of c: c = −3/4 for (A.6.13) and c = 3 for (A.6.20).

We move on to quartic polynomials,

(A.6.21) P (z) = z4 + a3z
3 + a2z

2 + a1z + a0.

As before, setting z = w − a3/4 yields

(A.6.22) P (z) = Q(w) = w4 + bw2 + cw + d.

We seek a formula for the solutions to Q(w) = 0. We can rewrite this
equation as

(A.6.23)
(
w2 +

b

2

)2
= −cw − d+

b2

4
.
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The left side is a perfect square, but the right side is not, unless c = 0. We
desire to add a certain quadratic polynomial in w to both sides of (A.6.23)
so that the resulting polynomials are both perfect squares. We aim for the
new left side to have the form

(A.6.24)
(
w2 +

b

2
+ α
)2

,

with α ∈ C to be determined. This requires adding 2α(w2 + b/2) + α2 to
the left side of (A.6.23), and adding this to the right side of (A.6.23) yields

(A.6.25) 2αw2 − cw +
(
α2 + bα+

b2

4
− d
)
.

We want this to be a perfect square. If it were, it would have to be

(A.6.26)
(√

2αw − c

2
√
2α

)2
.

This is equal to (A.6.25) if and only if

(A.6.27) 8α3 + 4bα2 + (2b2 − 8d)α− c = 0.

This is a cubic equation for α, solvable by means discussed above. For
(A.6.26) to work, we need α �= 0. If α = 0 solves (A.6.27), this forces c = 0,
and hence Q(w) = w4 + bw2 + d, which is a quadratic polynomial in w2,
solvable by elementary means. Even if c = 0, (A.6.27) has a nonzero root
unless also b = d = 0, i.e., unless Q(w) = w4.

Now, assuming Q(w) �= w4, we pick α to be one nonzero solution to
(A.6.27). Then the solutions to Q(w) = 0 are given by

(A.6.28) w2 +
b

2
+ α = ±

(√
2αw − c

2
√
2α

)
.

This is a pair of quadratic equations. Each has two roots, and together they
yield the four roots of Q(w).

It is interesting to consider a particular quartic equation for which a
different approach, not going through (A.6.22), is effective, namely

(A.6.29) z4 + z3 + z2 + z + 1 = 0,

which arises from factoring z − 1 out of z5 − 1, therefore seeking the other
fifth roots of unity. Let us multiply (A.6.29) by z−2, obtaining

(A.6.30) z2 + z + 1 + z−1 + z−2 = 0.

The symmetric form of this equation suggests making the substitution

(A.6.31) w = z + z−1,

so

(A.6.32) w2 = z2 + 2 + z−2,
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and (A.6.30) becomes

(A.6.33) w2 + w − 1 = 0,

a quadratic equation with solutions

(A.6.34) w = −1

2
± 1

2

√
5.

Then (A.6.31) becomes a quadratic equation for z. We see that (A.6.29)
is solvable in a fashion that requires no extraction of cube roots. Noting
that the roots of (A.6.29) have absolute value 1, we see that w = 2�z, and
(A.6.34) says

(A.6.35) cos
2π

5
=

√
5− 1

4
, cos

4π

5
= −

√
5 + 1

4
.

Such a calculation allows one to construct a regular pentagon with compass
and straightedge.

Let us extend the scope of this, and look at solutions to z7 − 1 = 0,
arising in the construction of a regular 7-gon. Factoring out z − 1 yields

(A.6.36) z6 + z5 + z4 + z3 + z2 + z + 1 = 0,

or equivalently

(A.6.37) z3 + z2 + z + 1 + z−1 + z−2 + z−3 = 0.

Again we make the substitution (A.6.31). Complementing (A.6.32) with

(A.6.38) w3 = z3 + 3z + 3z−1 + z−3,

we see that (A.6.37) leads to the cubic equation

(A.6.39) q(w) = w3 + w2 − 2w − 1 = 0.

Since q(−1) > 0 and q(0) < 0, we see that (A.6.39) has three real roots,
satisfying

(A.6.40) w3 < w2 < 0 < w1,

and, parallel to (A.6.35), we have

(A.6.41) cos
2π

7
=

w1

2
, cos

4π

7
=

w2

2
, cos

6π

7
=

w3

2
.

One major difference between (A.6.35) and (A.6.41) is that the compu-
tation of wj involves the extraction of cube roots. In the time of Euclid, the
problems of whether one could construct cube roots or a regular 7-gon by
compass and straightedge were regarded as major mysteries. Much later, a
young Gauss proved that one could make such a construction of a regular
n-gon if and only if n is of the form 2k, perhaps times a product of distinct

Fermat primes, i.e., primes of the form p = 22
j
+ 1. The smallest examples
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are p = 21+1 = 3, p = 22+1 = 5, and p = 24+1 = 17. Modern treatments
of these problems cast them in the framework of Galois theory; see [25].

We now consider quintics, i.e., fifth degree polynomials,

(A.6.42) P (z) = z5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0.

The treatment of this differs markedly from that of equations of degree ≤ 4,
in that one cannot find a formula for the roots in terms of radicals, i.e.,
involving a finite number of arithmetical operations and extraction of nth
roots. That no such general formula exists was proved by Abel. Then Galois
showed that specific equations, such as

(A.6.43) z5 − 16z + 2 = 0,

had roots that could not be obtained from the set Q of rational numbers via
radicals. We will not delve into Galois theory here; see [25]. Rather, we will
discuss how there are formulas for the roots of (A.6.42) that bring in other
special functions.

In our analysis, we will find it convenient to assume the roots of P (z) are
distinct. Otherwise, any double root of P (z) is also a root of P ′(z), which
has degree 4. We also assume z = 0 is not a root, i.e., a0 �= 0.

A key tool in the analysis of (A.6.42) is the reduction to Bring-Jerrard
normal form:

(A.6.44) Q(w) = w5 − w + a.

That is to say, given aj ∈ C, one can find a ∈ C such that the roots of P (z)
in (A.6.42) are related to the roots of Q(w) in (A.6.44) by means of solving
polynomial equations of degree ≤ 4. Going from (A.6.42) to (A.6.44) is done
via a Tschirnhaus transformation. Generally, such a transformation takes
P (z) in (A.6.42) to a polynomial of the form

(A.6.45) Q(w) = w5 + b4w
4 + b3w

3 + b2w
2 + b1w + b0,

in a way that the roots of P (z) and of Q(w) are related as described above.
The ultimate goal is to produce a Tschirnhaus transformation that yields
(A.6.45) with

(A.6.46) b4 = b3 = b2 = 0.

As we have seen, the linear change of variable z = w−a4/5 achieves b4 = 0,
but here we want to achieve much more. This will involve a nonlinear change
of variable.

Following [3], we give a matrix formulation of Tschirnhaus transforma-
tions. Relevant linear algebra background can be found in §§6–7 of [49].
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To start, given (A.6.42), pick a matrix A ∈ M(5,C) whose characteristic
polynomial is P (z),

(A.6.47) P (z) = det(zI −A).

For example, A could be the companion matrix of P . Note that the set of
eigenvalues of A,

(A.6.48) SpecA = {zj : 1 ≤ j ≤ 5},

is the set of roots of (A.6.42). The Cayley-Hamilton theorem implies

(A.6.49) P (A) = A5 + a4A
4 + a3A

3 + a2A
2 + a1A+ a0I = 0.

It follows that

(A.6.50) A = Span{I, A,A2, A3, A4}

is a commutative matrix algebra. The hypothesis that the roots of A are
disinct implies that P is the minimal polynomial of A, so the 5 matrices
listed in (A.6.50) form a basis of A.

In this setting, a Tschirnhaus transformation is produced by taking

(A.6.51) B = β(A) =
m∑
j=0

βjA
j ,

where β(z) is a nonconstant polynomial of degree m ≤ 4. Then B ∈ A, with
characteristic polynomial

(A.6.52) Q(w) = det(wI −B),

of the form (A.6.45). The set of roots of Q(w) forms

(A.6.53) SpecB = {β(zj) : zj ∈ SpecA}.

We can entertain two possibilities, depending on the behavior of

(A.6.54) {I, B,B2, B3, B4}.

Case I. The set (A.6.54) is linearly dependent.

Then q(B) = 0 for some polynomial q(w) of degree ≤ 4, so

(A.6.55) SpecB = {wj : 1 ≤ j ≤ 5}

and each wj is a root of q. Methods described earlier in this appendix apply
to solving for the roots of q, and to find the roots of P (z), i.e., the elements
of SpecA, we solve

(A.6.56) β(zj) = wj

for zj . Since, for each j, (A.6.56) hasm solutions, this may produce solutions
not in SpecA, but one can test each solution zj to see if it is a root of P (z).
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Case II. The set (A.6.54) is linearly independent.

Then this set spans A, so we can find γj ∈ C such that

(A.6.57) A =
4∑

j=0

γjB
j = Γ(B).

It follows that

(A.6.58) SpecA = {Γ(wj) : wj ∈ SpecB}.

It remains to find SpecB, i.e., the set of roots of Q(w) in (A.6.45). It
is here that we want to implement (A.6.46). The following result is relevant
to this endeavor.

Lemma A.6.1. Let Q(w), given by (A.6.52), have the form (A.6.45), and
pick � ∈ {1, . . . , 5}. Then

(A.6.59) b5−j = 0 for 1 ≤ j ≤ � ⇐⇒ TrBj = 0 for 1 ≤ j ≤ �.

Proof. To start, we note that b4 = −TrB. More generally, b5−j is given
(up to a sign) as an elementary symmetric polynomial in the eigenvalues
{w1, . . . , w5} of B. The equivalence (A.6.54) follows from the classical New-
ton formula for these symmetric polynomials in terms of the polynomials

wj
1 + · · ·+ wj

5 = TrBj . �

We illustrate the use of (A.6.51) to achieve (A.6.59) in case � = 2. In
this case, we take m = 2 in (A.6.43), and set

(A.6.60) B = β0I + β1A+ β2A
2, β2 = 1.

Then

(A.6.61)
B2 = β2

0I + 2β0β1A+ (2β2 + β2
1)A

2

+2β1β2A
3 + β2

2A
4.

Then, if

(A.6.62) ξj = TrAj ,

we obtain

(A.6.63)
TrB = 5β0 + ξ1β1 + ξ2,

TrB2 = 5β2
0 + 2ξ1β0β1 + ξ2(β

2
1 + 2) + 2ξ3β1 + ξ4.

Set TrB = TrB2 = 0. Then the first identity in (A.6.58) yields

(A.6.64) β0 = −1

5
(ξ1β1 + ξ2),

and substituting this into the second identity of (A.6.63) gives

(A.6.65)
1

5
(ξ1β1 + ξ2)

2 − 2

5
ξ1β1(ξ1β1 + ξ2) + ξ2β

2
1 + 2ξ3β1 = −2ξ2 − ξ4,



A.6. Cubics, quartics, and quintics 467

a quadratic equation for β1, with leading term (ξ2 − ξ21/5)β
2
1 . We solve for

β0 and β1, and hence obtain B ∈ A with characteristic polynomial Q(w)
satisfying

(A.6.66) Q(w) = w5 + b2w
2 + b1w + b0.

This goes halfway from (A.6.2) (with n = 5) to (A.6.46).

Before discussing closing this gap, we make another comment on achiev-
ing (A.6.66). Namely, suppose A has been prepped so that

(A.6.67) TrA = 0,

i.e., A is replaced by A− (1/5)(TrA)I. Apply (A.6.60) to this new A. Then
ξ1 = 0, so (A.6.64)–(A.6.65) simplify to

(A.6.68) β0 = −1

5
ξ2,

and

(A.6.69) ξ2β
2
1 + 2ξ3β1 = −1

5
ξ22 − 2ξ2 − ξ4.

This latter equation is a quadratic equation for β1 if ξ2 = TrA2 �= 0. Of
course, if TrA2 = 0, we have already achieved our goal (A.6.66), with B = A.

Moving forward, let us now assume we have

(A.6.70) A ∈ M(5,C), TrA = TrA2 = 0,

having minimal polynomial of the form (A.6.42) with a4 = a3 = 0, and we
desire to construct B as in (A.6.51), satisfying

(A.6.71) TrB = TrB2 = TrB3 = 0.

At this point, a first try would take

(A.6.72) B = β0I + β1A+ β2A
2 + β3A

3, β3 = 1.

Calculations parallel to (A.6.60)–(A.6.69) first yield

(A.6.73) β0 = −1

5
ξ3

and then a pair of polynomial equations for (β1, β2), one of degree 2 and one
of degree 3. However, this system is more complicated than the 5th degree
equation we are trying to solve. Another attack is needed.

E. Bring, and, independently, G. Jerrard, succeeded in achieving (A.6.46)
by using a quartic transformation. In the current setting, this involves re-
placing (A.6.72) by

(A.6.74) B = β0I + β1A+ β2A
2 + β3A

3 + β4A
4, β4 = 1.
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The extra parameter permits one to achieve (A.6.71) with coefficients β0, . . . ,
β3 determined by fourth order equations. The computations are lengthy, and
we refer to [21] for more details.

Once one has Q(w) satisfying (A.6.45)–(A.6.46), i.e.,

(A.6.75) Q(w) = w5 + b1w + b0,

then, if b1 �= 0, one can take w = γu as in (A.6.4), and, by a parallel
computation, write

(A.6.76) Q(w) = γ5R(u), R(u) = u5 − u+ a,

with

(A.6.77) γ4 = −b1, a = γ−5b0.

R(u) thus has the Bring-Jerrard normal form (A.6.44). Solving R(u) = 0 is
equivalent to solving

(A.6.78) Φ(z) = a, Φ(z) = z − z5.

Consequently our current task is to study mapping properties of Φ : C → C
and its inverse Φ−1, a multi-valued function known as the Bring radical.

To start, note that

(A.6.79) Φ′(z) = 1− 5z4,

and hence

(A.6.80) Φ′(ζ) = 0 ⇐⇒ ζ ∈ C = {±5−1/4,±i5−1/4}.

If z0 ∈ C \ C, the Inverse Function Theorem, Theorem 1.5.2, implies that
there exist neighborhoods O of z0 and U of Φ(z0) such that Φ : O → U is
one-to-one and onto, with holomorphic inverse. This observation applies in
particular to z0 = 0, since

(A.6.81) Φ(0) = 0, Φ′(0) = 1.

Note that, by (A.6.79),

(A.6.82)
|z| < 5−1/4 =⇒ |Φ′(z)− 1| < 1

=⇒ ReΦ′(z) > 0,

so, by Proposition 1.5.3,

(A.6.83) Φ : D5−1/4(0) −→ C is one-to-one,

where, for ρ ∈ (0,∞), z0 ∈ C,

(A.6.84) Dρ(z0) = {z ∈ C : |z − z0| < ρ}.
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Also note that

(A.6.85)
|z| = 5−1/4 =⇒ |Φ(z)| = |z − z5|

≥ 5−1/4 − 5−5/4 = (4/5)5−1/4.

Hence, via results of §4.2 on the argument principle,

(A.6.86) Φ(D5−1/4(0)) ⊃ D(4/5)5−1/4(0).

We deduce that the map (A.6.83) has holomorphic inverse

(A.6.87) Φ−1 : D(4/5)5−1/4(0) −→ D5−1/4(0) ⊂ C,

satisfying Φ−1(0) = 0.

Note that

(A.6.88) Φ(ia) = iΦ(a).

Hence we can write, for |a| < (4/5)5−1/4,

(A.6.89) Φ−1(a) = aΨ(a4),

with

(A.6.90) Ψ(b) holomorphic in |b| < 44

55
,

satisfying

(A.6.91) aΨ(a4)− a5Ψ(a4) = a, Ψ(0) = 1,

and hence

(A.6.92) Ψ(b) = 1 + bΨ(b)5, Ψ(0) = 1.

Using (A.6.92), we can work out the power series

(A.6.93) Ψ(b) =
∞∑
k=0

ψkb
k, ψ0 = 1,

as follows. First, (A.6.93) yields

(A.6.94)

Ψ(b)5 =
5∏

ν=1

∞∑
�ν=0

ψ�νb
�ν

=
∞∑
k=0

∑
�≥0,|�|=k

ψ�1 · · ·ψ�5b
k,

where � = (�1, . . . , �5), |�| = �1 + · · ·+ �5. Then (A.6.92) yields

(A.6.95)

b
∑
k≥0

ψk+1b
k = bΨ(b)5

= b
∑
k≥0

∑
�≥0,|�|=k

ψ�1 · · ·ψ�5b
k,
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and hence

(A.6.96) ψk+1 =
∑

�≥0,|�|=k

ψ�1 · · ·ψ�5 , for k ≥ 0.

While this recursive formula is pretty, it is desirable to have an explicit
power series formula. Indeed, one has the following.

Proposition A.6.2. In the setting of (A.6.87),

(A.6.97) Φ−1(a) =
∞∑
j=0

(
5j

j

)
a4j+1

4j + 1
, for |a| < 4

5
5−1/4.

Proof. By Proposition 2.1.6, we have from (A.6.83)–(A.6.87) that

(A.6.98) Φ−1(a) =
1

2πi

∫
∂O

zΦ′(z)

Φ(z)− a
dz,

with O = D5−1/4(0), |a| < (4/5)5−1/4. We then have the convergent power
series

(A.6.99)

1

Φ(z)− a
=

1

Φ(z)

1

1− a/Φ(z)

=
∑
k≥0

ak

Φ(z)k+1
,

given z ∈ ∂O, |a| < (4/5)5−1/4. Hence

(A.6.100) Φ−1(a) =
1

2πi

∑
k≥0

(∫
∂O

zΦ′(z)

Φ(z)k+1
dz
)
ak.

Since Φ′(z) = 1− 5z4 and Φ(z) = z(1− z4), the coefficient of ak is

(A.6.101)
1

2πi

∫
∂O

1− 5z4

(1− z4)k+1

dz

zk
,

or equivalently, the coefficient of ak is equal to the coefficient of zk−1 in the
power series expansion of (1 − 5z4)/(1 − z4)k+1. This requires k = 4j + 1
for some j ∈ Z+, and we then seek

(A.6.102) the coefficient of ζj in
1− 5ζ

(1− ζ)k+1
, k = 4j + 1.

We have

(A.6.103) (1− ζ)−(k+1) =
∞∑
j=0

(
k + j

j

)
ζj ,
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and hence

(A.6.104)

−5ζ(1− ζ)−(k+1) = −5
∞∑
�=0

(
k + �

�

)
ζ�+1

= −5

∞∑
j=1

(
k + j − 1

j − 1

)
ζj .

Thus the coefficient specified in (A.6.102) is 1 for j = 0, and, for j ≥ 1, it is

(A.6.105)

(
k + j

j

)
− 5

(
k + j − 1

j − 1

)
, with k = 4j + 1,

=

(
5j + 1

j

)
− 5

(
5j

j − 1

)

=
1

4j + 1

(
5j

j

)
,

giving (A.6.97). �

We next discuss some global aspects of the map Φ : C → C, making
use of results on covering maps from §5.6. To state the result, let us take
C = {±5−1/4,±i5−1/4}, as in (A.6.80), and set

(A.6.106) V = Φ(C) = 4

5
C, C̃ = Φ−1(V).

Lemma A.6.3. The map

(A.6.107) Φ : C \ C̃ −→ C \ V
is a 5-fold covering map.

Note that (A.6.85) implies

(A.6.108) D(4/5)5−1/4(0) ⊂ C \ V.
The following is a consequence of Proposition 5.6.5.

Proposition A.6.4. Assume Ω is an open, connected, simply connected set
satisfying

(A.6.109) Ω ⊂ C \ V, Ω ⊃ D(4/5)5−1/4(0).

Then Φ−1 in (A.6.87) has a unique extension to a holomorphic map

(A.6.110) Φ−1 : Ω −→ C \ C̃.

An alternative path from Proposition A.6.2 to Proposition A.6.4 is pro-
vided by recognizing the power series (A.6.97) as representing Q−1(a) in
terms of a generalized hypergeometric function, namely

(A.6.111) Φ−1(a) = a 4F3

(1
5
,
2

5
,
3

5
,
4

5
;
1

2
,
3

4
,
5

4
; 5
(5a
4

)4)
.
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See §7.2 for a discussion of hypergeometric functions, their differential equa-
tions and analytic continuations, and a proof of (A.6.111).

The analysis of the Bring radical was carried further by C. Hermite,
who produced a formula for Φ−1 in terms of elliptic functions and their
associated theta functions. This was also pursued by L. Kronecker and
F. Klein. For more on this, we refer to [22] and to Chapter 5 of [29]. Work
on the application of theta functions to higher degree polynomials is given
in [51].
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argument principle, 199

arithmetic-geometric mean, 348

Arzela-Ascoli theorem, 255, 427

Bernoulli numbers, 123, 196, 328, 440

Bessel functions, 366, 398, 412

Bessel’s equation, 366, 382, 387, 391,
413

biholomorphic map, 246

binomial formula, 33

boundary, 63

branched cover, 353, 357

Bring radical, 398, 468

Casorati-Weierstrass theorem, 116, 316

Cauchy integral formula, 64, 118

Cauchy integral theorem, 63, 89, 186,
196

Cauchy sequence, 5, 418

Cauchy’s inequalities, 72

Cauchy-Riemann equation, 18, 23, 28,
78, 81, 408

chain rule, 17, 21, 44, 431

circle, 38

closed, 419

closure, 63, 420

compact, 420

complete metric space, 419

complex analytic, 15

complex conjugate, 4

complex dynamics, 289

complex projective space, 354

complex-differentiable, 14, 409

confluent hypergeometric function, 396

conformal diffeomorphism, 257

conformal map, 246

connected, 83, 277, 429

continuous, 7, 423

Contraction Mapping Theorem, 429

convolution, 151, 166

coordinate chart, 260, 303

cos, 39

cosh, 42

cot, 42, 193, 326

covering map, 277, 280

critical strip, 215, 227

cubic, 459

curve, 20, 38
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derivative, 14, 431
diffeomorphism, 246, 259, 304, 433
differentiable, 9, 431
differential equation, 10, 262, 333, 366,

382, 398
diffusion equation, 414
Dirichlet problem, 149, 271, 275, 290,

297, 299
Dirichlet test for convergence, 451
disk, 7, 268, 280, 311
dog-walking theorem, 199, 202
domain, 63
dominated convergence theorem, 131
doubly periodic function, 326
Duhamel’s formula, 168

eigenvalue, 389
eigenvector, 389
elliptic function, 326, 331
elliptic integral, 333, 342, 398
entire function, 74, 204
entire functions of finite order, 102
essential singularity, 116
Euler equation, 366
Euler product formula, 211
Euler’s constant, 99, 205, 225, 227, 230
Euler’s formula, 39, 49
exp, 36, 43, 45
exponential function, 10, 16, 34

Fatou set, 286
Fourier coefficients, 139
Fourier inversion formula, 137, 153, 157,

224
Fourier series, 137
Fourier transform, 152, 187, 222, 298,

364, 373, 438
Fourier uniqueness, 162
Fresnel integral, 114
fundamental group, 402
fundamental theorem of algebra, 75,

128, 199
fundamental theorem of arithmetic, 211
fundamental theorem of calculus, 9, 20,

80, 125

Gamma function, 165, 203, 308, 367,
437

Gaussian integral, 108, 206
generalized hypergeometric functions,

398, 471
geometric series, 7, 50

Goursat’s theorem, 91, 115, 411
Green’s theorem, 63, 81, 123, 330
group, 248, 318
group homomorphism, 319, 402

Hadamard factorization theorem, 105,
233

Hankel functions, 375, 439
harmonic conjugate, 79
harmonic function, 79, 148, 290
Harnack estimate, 291
heat equation, 337, 414
Hilbert space, 171
holomorphic, 15, 89, 409
holomorphic diffeomorphism, 246, 272,

312, 352
holomorphic function, 79
homotopic curves, 198
Hurwitz’ theorem, 201
hypergeometric function, 396

Ikehara’s Tauberian theorem, 458
infinite product, 93
infinite series, 6
inner product, 143, 155, 170
inner product space, 170
integrable function, 154
integration by parts, 203, 216, 445, 452
interior, 420
inverse, 66
inverse Fourier transform, 152
Inverse Function Theorem, 36, 44, 303,

433
inverse Laplace transform, 164, 194
isolated singularity, 114
isomorphism, 320

Jacobi identity, 159, 213
Jensen’s formula, 234
Jordan curve, 274
Jordan curve theorem, 202
Julia set, 286

Karamata’s Tauberian theorem, 455
Koebe transformation, 269

Laplace asymptotic method, 378, 437
Laplace operator, 412
Laplace transform, 163, 203, 439
lattice, 326, 331, 352, 359
Laurent series, 120, 186, 225, 333
Lebesgue integral, 147, 155, 447
Legendre duplication formula, 209, 225
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Legendre equation, 395, 415
linear fractional transformation, 247,

311, 356
Liouville’s theorem, 74, 76, 82, 117, 292,

299
Lipschitz function, 141
log, 36, 43, 45, 450
logarithm, 36

manifold, 260, 308
matrix exponential, 167, 172, 389
matrix Laplace transform, 167
maximum principle, 73, 82
mean value property, 65, 73, 81, 291,

295
Mellin transform, 165, 222
Mergelyan’s theorem, 181
meromorphic function, 116, 200, 325
metric space, 155, 170, 418
metric tensor, 305, 309
monodromy, 400
monodromy map, 401
monodromy theorem, 111, 387
Montel’s theorem, 256, 284, 289
Morera’s theorem, 89, 91

neighborhood, 419
norm, 143, 170
normal family, 255, 259, 268, 284
normal subgroup, 320
normed vector space, 170

open, 419
open mapping theorem, 200, 202
orientation, 63
orientation preserving, 247
orientation reversing, 247
Osgood’s lemma, 409

path, 20
path connected, 277, 429
path integral, 20
pendulum, 346
period parallelogram, 329
periodic function, 325
pi, 40, 41, 50, 58
Picard’s theorem, 289, 316
piecewise smooth path, 20
Plancherel identity, 157
Poincaré disk, 314
Poincaré metric, 271, 312
Poincaré upper half-plane, 314
Poisson integral, 148, 190

Poisson summation formula, 159
pole, 115
polynomial, 8, 16, 75, 116
polynomials, 459
power series, 7, 26, 66, 366, 383
prime counting function, 219
prime number theorem, 221, 227, 458
Pythagorean theorem, 4

quadratic formula, 459
quartic, 461
quintic, 464

radius of convergence, 7, 26
ratio test, 9, 12
real-analytic curve, 272
real-analytic function, 112
region, 63
regular 7-gon, 463
regular pentagon, 463
regular singular point, 388
removable singularity theorem, 114,

122, 295
residue, 186
residue calculus, 186
Riemann functional equation, 213
Riemann hypothesis, 215
Riemann integral, 146, 155, 442
Riemann mapping theorem, 252, 268,

280, 300, 317
Riemann mapping theorem for annular

regions, 302
Riemann sphere, 259, 284, 297, 350
Riemann surface, 259, 262, 350, 356,

400
Riemann zeta function, 211, 239
Riemann-Lebesgue lemma, 160, 224
Riemannian manifold, 309
root, 76
roots, 459
Rouché’s theorem, 199
Runge approximation theorem, 178

Schwarz lemma, 74, 315
Schwarz reflection principle, 90, 110,

149, 276, 281
sec, 43, 50
several complex variables, 366, 410
simple pole, 116
simply connected, 72, 83, 252, 277
sin, 39, 99, 325
singularity, 114
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sinh, 42
Spec, 393
sphere, 307
spherical derivative, 266
spherical harmonics, 414
square-integrable function, 144, 154
star shaped, 69
stereographic projection, 257
Stieltjes integral, 216, 441, 452
Stirling’s formula, 439
Stone-Weierstrass theorem, 176
subgroup, 319
summation by parts, 448
surface, 303
surface integral, 306
surface of revolution, 262

tan, 42
tangent space, 305
Tauberian theorem, 224, 448, 454
theta function, 337, 358
torus, 262
transitivity, 249
triangle inequality, 4, 143, 155, 170, 418
Tschirnhaus transformation, 464

uniform convergence, 8
uniformization theorem, 315
uniformly continuous, 425
uniformly convergent, 66
uniqueness of holomorphic functions,

107
univalent map, 268
upper half-plane, 311

vector space, 169
volume of a surface, 307

Weierstrass ℘-function, 326, 331, 358
Weierstrass approximation theorem,

174, 456
Weierstrass factorization theorem, 103
Weierstrass invariants, 334
Weierstrass product, 103
Weierstrass product formula, 102
winding number, 197, 198
Wronskian, 369, 410
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In this text, the reader will learn that all the basic functions that arise in calculus—such 
as powers and fractional powers, exponentials and logs, trigonometric functions and their 

for complex arguments. Furthermore, this expanded setting leads to a much richer  
understanding of such functions than one could glean by merely considering them in the real 
domain. For example, understanding the exponential function in the complex domain via its 
differential equation provides a clean path to Euler’s formula and hence to a self-contained 
treatment of the trigonometric functions. Complex analysis, developed in partnership with 
Fourier analysis, differential equations, and geometrical techniques, leads to the development 
of a cornucopia of functions of use in number theory, wave motion, conformal mapping, 
and other mathematical phenomena, which the reader can learn about from material  
presented here.

This book could serve for either a one-semester course or a two-semester course in 
complex analysis for beginning graduate students or for well-prepared undergraduates 
whose background includes multivariable calculus, linear algebra, and advanced calculus.
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