The Distribution of Prime Numbers

Dimitris Koukoulopoulos

The Distribution of Prime Numbers

Dimitris Koukoulopoulos

AMERICAN
MATHEMATICAL
SOCIETY
Providence, Rhode Island

EDITORIAL COMMITTEE

Daniel S. Freed (Chair)
Bjorn Poonen
Gigliola Staffilani
Jeff A. Viaclovsky

2010 Mathematics Subject Classification. Primary 11-01, 11Nxx, 11Mxx.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-203

Library of Congress Cataloging-in-Publication Data

Names: Koukoulopoulos, Dimitris, 1984- author.
Title: The distribution of prime numbers / Dimitris Koukoulopoulos.
Description: Providence, Rhode Island: American Mathematical Society, [2019] | Series: Graduate studies in mathematics, 1065-7339; volume 203 | Includes bibliographical references and index.
Identifiers: LCCN 2019028661 | ISBN 9781470447540 (hardcover) | ISBN 9781470454203 (ebook)
Subjects: LCSH: Numbers, Prime. | AMS: Number theory - Instructional exposition (textbooks, tutorial papers, etc.). | Number theory - Multiplicative number theory. | Number theory Zeta and L-functions: analytic theory.
Classification: LCC QA246 .K68 2019 | DDC 512.7/3-dc23
LC record available at https://lccn.loc.gov/2019028661

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
(c) 2019 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

$$
10987654321 \quad 242322212019
$$

> To Jennifer

Contents

Preface vii
Notation xi
And then there were infinitely many 1
Part 1. First principles
Chapter 1. Asymptotic estimates 8
Chapter 2. Combinatorial ways to count primes 27
Chapter 3. The Dirichlet convolution 35
Chapter 4. Dirichlet series 44
Part 2. Methods of complex and harmonic analysis
Chapter 5. An explicit formula for counting primes 52
Chapter 6. The Riemann zeta function 62
Chapter 7. The Perron inversion formula 70
Chapter 8. The Prime Number Theorem 84
Chapter 9. Dirichlet characters 95
Chapter 10. Fourier analysis on finite abelian groups 100
Chapter 11. Dirichlet L-functions 110
Chapter 12. The Prime Number Theorem for arithmetic progressions 118
Part 3. Multiplicative functions and the anatomy of integers
Chapter 13. Primes and multiplicative functions 130
Chapter 14. Evolution of sums of multiplicative functions 143
Chapter 15. The distribution of multiplicative functions 157
Chapter 16. Large deviations 164
Part 4. Sieve methods
Chapter 17. Twin primes 174
Chapter 18. The axioms of sieve theory 182
Chapter 19. The Fundamental Lemma of Sieve Theory 192
Chapter 20. Applications of sieve methods 206
Chapter 21. Selberg's sieve 213
Chapter 22. Sieving for zero-free regions 222
Part 5. Bilinear methods
Chapter 23. Vinogradov's method 234
Chapter 24. Ternary arithmetic progressions 250
Chapter 25. Bilinear forms and the large sieve 259
Chapter 26. The Bombieri-Vinogradov theorem 277
Chapter 27. The least prime in an arithmetic progression 287
Part 6. Local aspects of the distribution of primes
Chapter 28. Small gaps between primes 300
Chapter 29. Large gaps between primes 317
Chapter 30. Irregularities in the distribution of primes 329
Appendices
Appendix A. The Riemann-Stieltjes integral 336
Appendix B. The Fourier and the Mellin transforms 338
Appendix C. The method of moments 341
Bibliography 344
Index 354

Preface

The main goal of this book is to introduce beginning graduate students to analytic number theory. In addition, large parts of it are suitable for advanced undergraduate students with a good grasp of analytic techniques.

Throughout, the emphasis has been put on exposing the main ideas rather than providing the most general results known. Any student wishing to do serious research in analytic number theory should broaden and deepen their knowledge by consulting some of the several excellent research-level books on the subject. Examples include: the books of Davenport 31] and of Montgomery-Vaughan [146] for classical multiplicative number theory; Tenenbaum's book [172] for probabilistic number theory and the saddlepoint method; the book by Iwaniec-Kowalski [114 for the general theory of L-functions, of modular forms and of exponential sums; Montgomery's book [144] for the harmonic analytic aspects of analytic number theory; and the book of Friedlander-Iwaniec [59] for sieve methods.

Using the book

The book borrows the structure of Davenport's masterpiece Multiplicative Number Theory with several short- to medium-length chapters. Each chapter is accompanied by various exercises. Some of them aim to exemplify the concepts discussed, while others are used to guide the students to selfdiscover certain more advanced topics. A star next to an exercise indicates that its solution requires total mastery of the material.

The contents of the book are naturally divided into six parts as indicated in the table of contents. The first two parts study elementary and classical complex-analytic methods. They could thus serve as the manual for an
introductory graduate course to analytic number theory. The last three parts of the book are devoted to the theory of sieves: Part 4 presents the basic elements of the theory of the small sieve, whereas Part 5 explores the method of bilinear sums and develops the large sieve. These techniques are then combined in Part 6 to study the spacing distribution of prime numbers and prove some of the recent spectacular results about small and large gaps between primes. Finally, Part 3 studies multiplicative functions and the anatomy of integers, and serves as a bridge between the complexanalytic techniques and the more elementary theory of sieves. Topics from it could be presented either in the end of an introductory course to analytic number theory (Chapter 13 most appropriately), or in the beginning of a more advanced course on sieves (the most relevant material is contained in Chapters 14 and 15, as well as in Theorem 16.1).

Certain portions of the book can be used as a reference for an undergraduate course. More precisely, Chapters 1 can serve as the core of such a course, followed by a selection of topics from Chapters 14, 15, 17 and 21 .

A short guide to the main theorems of the book. Below is a list of the main results proven and of their prerequisites.

Chebyshev's and Mertens' estimates are presented in Chapters 2 and 3, respectively. Their proofs rest on the material contained in Part 1 .

The landmark Prime Number Theorem is proven in Chapter 8, Understanding it requires a good grasp of all preceding chapters.

The Siegel-Walfisz theorem, which is a uniform version of the Prime Number Theorem for arithmetic progressions, is presented in Chapter 12. Its proof builds on all of the material preceding it.

The Landau-Selberg-Delange method is a key tool in the study of multiplicative functions. It is presented in Chapter [13, Appreciating its proof requires a firm understanding of Chapters 18 for the main analytic tools, as well as of Chapter 12 for dealing with uniformity issues.

The foundations of probabilistic number theory are explained in Chapters 15 and 16, where the Erdös-Kac theorem and the Sathe-Selberg theorem are proven. The main prerequisites can be found in Part 1 and in Chapter 14. In addition, Chapter 13 is needed for the Sathe-Selberg theorem.

The Fundamental Lemma of Sieve Theory is proven in Chapter 19, Its proof uses ideas and techniques from Part 1 and Chapters $14-17$.

Vinogradov's method, one of the foundations of modern analytic number theory, is presented in Chapter [23. It builds on the material of Chapters 112 and 19.

The Hardy-Littlewood circle method is presented in Chapter 24. It is used to detect additive patterns among the primes and, more specifically, to count ternary arithmetic progressions all of whose members are primes.

The Bombieri-Vinogradov theorem, often called the "Generalized Riemann Hypothesis on average", is established in Chapter 26. Understanding its proof requires mastery of Vinogradov's method (Chapter 23) and of the large sieve (Chapter 25).

Linnik's theorem provides a very strong bound on the least prime in an arithmetic progression. It is proven in Chapter 27 and its prerequisites are Chapters 11-12, 17, 20, 22, 23 and 25 .

The breakthrough of Zhang-Maynard-Tao about the existence of infinitely many bounded gaps between primes is presented in Chapter 28. Its proof requires a firm understanding of the Fundamental Lemma of Sieve Theory (Chapter 19), of Selberg's sieve (Chapter 21) and of the BombieriVinogradov theorem (Chapter 26).

The recent developments about large gaps between primes of Ford-Green-Konyagin-Tao and Maynard are presented in Chapter 29. Understanding them necessitates knowledge of the same concepts as the proof of the existence of bounded gaps between primes, with the addition of the results on smooth numbers presented in Chapters 14 and 16.

Maier discovered in 1985 that the distribution of prime numbers has certain unexpected irregularities. His results are presented in Chapter 30 and they assume knowledge of Linnik's theorem (and of its prerequisites), as well as of Buchstab's function (see Chapter 14 and, more precisely, Theorem 14.4).

Acknowledgments

Many people have helped me greatly in many different ways in writing this book.

I am indebted to Leo Goldmakher and James Maynard, with whom I discussed the contents of the book extensively at various stages of the writing process. In addition, an early version of the manuscript was used as a teaching reference by Wei Ho at the University of Michigan, and by Leo Goldmakher at Williams College. I am grateful to them and their students for the valuable feedback they provided.

I am obliged to Martin Čech, Tony Haddad, Youcef Mokrani, Alexis Leroux-Lapierre, Joëlle Matte, Kunjakanan Nath, Stelios Sachpazis, Simon St-Amant, Jeremie Turcotte and Peter Zenz, who patiently studied earlier versions of the book, catching various errors and providing many excellent comments.

I have had very useful mathematical conversations with Sandro Bettin, Brian Conrey, Chantal David, Ben Green, Adam Harper, Jean Lagacé and K. Soundararajan on certain topics of the book; I am grateful to them for their astute remarks. Furthermore, I would like to thank the anonymous reviewers for their suggestions that helped me improve the exposition of the ideas in the manuscript, especially those related to the bilinear methods presented in Part 5

I am indebted to Kevin Ford and Andrew Granville, who taught me analytic number theory. Their influence is evident throughout the book.

A special thanks goes to Ina Mette, Marcia Almeida and Becky Rivard for guiding me through the publishing process. I would also like to thank Brian Bartling and Barbara Beeton for their assistance with several typesetting questions, as well as Alexis Leroux-Lapierre for his help with designing the figures that appear in the book.

Last but not least, I would like to thank my wife Jennifer Crisafulli for her love, support and companionship. This book could not have been written without her and I wholeheartedly dedicate it to her.

Funding. During the writing process, I was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant 201805699) and by the Fonds de recherche du Québec-Nature et technologies (projet de recherche en équipe - 256442). Part of the book writing took place during my visit at the Mathematical Sciences Research Institute of Berkeley in the Spring of 2017 (funded by the National Science Foundation under Grant No. DMS-1440140), at the University of Oxford in the Spring of 2019 (funded by Ben Green's Simons Investigator Grant 376201) and at the University of Genova in June 2019 (funded by the Istituto Nazionale di Alta Matematica "Francesco Severi"). I would like to thank my hosts for their support and hospitality.

Notation

Throughout the book, we make use of some standard and some less standard notation. We list here the most important conventions.

The symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} denote the sets of natural numbers (we do not include zero in \mathbb{N}), integers, rational numbers, real numbers and complex numbers, respectively. Furthermore, given an integer $n \geqslant 1$, we write $\mathbb{Z} / n \mathbb{Z}$ for the set of residues $\bmod n$, as well as $(\mathbb{Z} / n \mathbb{Z})^{*}$ for the set of reduced residues $\bmod n$.

We write \mathbb{P} to indicate a probability measure, and $\mathbb{E}[X]$ and $\mathbb{V}[X]$ for the expectation and the variance, respectively, of a random variable X.

Given a set of real numbers A and a parameter y, we write $A_{\leqslant y}$ for the set of numbers $a \in A$ that are $\leqslant y$; similarly for $A_{>y}, A_{\geqslant y}, A_{<y}$. We also write $|A|$ or $\# A$ for the cardinality of A, whichever is more convenient.

The letter p always denotes a prime, and the letter n always denotes an integer (usually, a natural number). We write $d \mid n$ to mean that d divides n, and that $p^{k} \| n$ to mean that p^{k} is the exact power of p dividing n. Lastly, $d \mid n^{\infty}$ means that all prime factors of d appear in the factorization of n too.

When we write (a, b), we might mean the open interval with endpoints a and b, the pair of a and b, or the greatest common divisor of the integers a and b. The meaning will always be clear from the context. Similarly, the symbol $[a, b]$ will sometimes denote the closed interval with endpoints a and b, and some other times the least common multiple of the integers a and b.

We write $P^{+}(n)$ and $P^{-}(n)$ to denote the largest and smallest prime factors of n, respectively, with the convention that $P^{+}(1)=1$ and $P^{-}(1)=$ ∞. Given a parameter y and an integer $n \geqslant 1$, we say that n is y-smooth if all its prime factors are $\leqslant y$ (i.e., if $P^{+}(n) \leqslant y$). The set of y-smooth
numbers is denoted by $\mathcal{S}(y)$. Lastly, we say that n is y-rough if all its prime factors are $>y$ (i.e., if $\left.P^{-}(n)>y\right)$. Equivalently, $(n, P(y))=1$, where $P(y):=\prod_{p \leqslant y} p$.

The symbol log denotes the natural logarithm (base e). We also let $\operatorname{li}(x)=\int_{2}^{x} \mathrm{~d} t / \log t$ denote the logarithmic integral.

Given $x \in \mathbb{R}$, we write $\lfloor x\rfloor$ for its integer part (defined to equal max $\mathbb{Z}_{\leqslant x}$, and also called the "floor" of x), $\lceil x\rceil$ for the "ceiling" of x (defined to equal $\min \mathbb{Z}_{\geqslant x}$) and $\{x\}$ for the fractional part of x (defined to equal $x-\lfloor x\rfloor$).

Given $\alpha \in \mathbb{R}$, we write $\|\alpha\|$ to denote its distance from the nearest integer. On the other hand, if ψ is a bilinear form, then $\|\psi\|$ denotes its norm (see Chapter 25). Finally, if $\vec{v} \in \mathbb{C}^{n}$ or $f: \mathbb{N} \rightarrow \mathbb{C}$ is an arithmetic function, we write $\|\vec{v}\|_{2}$ and $\|f\|_{2}$ for their ℓ^{2}-norm.

The symbol $C^{k}(X)$, where $X \subseteq \mathbb{R}$ and $k \in \mathbb{Z}_{\geqslant 0} \cup\{\infty\}$, denotes the set of functions $f: X \rightarrow \mathbb{C}$ whose first k derivatives exist and are continuous.

We write 1_{E} to denote the indicator function of a set or of an event E. For example, $1_{[0,1]}$ denotes the indicator function of the interval $[0,1]$ and $1_{(n, 10)=1}$ denotes the indicator function of the event that n is coprime to 10 . In particular, 1_{P} will denote the indicator function of the set of primes.

The letter s will usually denote a complex number, in which case we denote its real part by σ and its imaginary part by t following Riemann's original notation that has now become standard. In addition, non-trivial zeroes of the Riemann zeta function and of Dirichlet L-functions will be denoted by $\rho=\beta+i \gamma$. Notice that we also use the letter γ for the EulerMascheroni constant, whereas $\rho(u)$ will also refer to the Dickman-de Bruijn function. The precise meaning of each letter will be clear from the context.

We employ frequently the usual asymptotic notation $f=O(g), f \ll g$, $f \asymp g, f \sim g$ and $f=o(g)$, whose precise definition is given in Chapter 1.

Finally, we list below some other symbols and the page of their definition:

$1_{P}(n)$	xii	$\zeta(s)$	2	$\tau(n)$	33
$B(u)$	150	$\theta(x)$	13	$\tau_{k}(n)(k \in \mathbb{N})$	33
$e(x)$	102	$\Lambda(n)$	37	$\tau_{\kappa}(n)(\kappa \in \mathbb{C})$	131
$\mathcal{G}(\chi)$	103	$\Lambda^{\sharp}(n)$	237	$\varphi(n)$	4
$\mathrm{li}(x)$	1	$\Lambda^{\text {b }}(n)$	237	$\chi_{0}(n)$	97, 100
$L(s, \chi)$	97	$\Lambda_{\text {sieve }}^{\sharp}(n)$	239	$\chi(n)$	96, 100
$P(y)$	xii	$\Lambda_{\text {sieve }}^{b}$ S n)	239	$\psi(x)$	22
$P^{ \pm}(n)$	- $\mathrm{x}^{\text {l }}$	$\mu(n)$	35	$\psi(x ; q, a)$	98
$S(\mathcal{A}, \mathcal{P})$	182	$\pi(x)$	1	$\psi(x, \chi)$	98
$\mathcal{S}(y)$	xii	$\pi(x ; q, a)$	4	$\Psi(x, y)$	152
$\Gamma(s)$	17	$\rho(u)$	152	$\omega(n), \Omega(n)$	29

Bibliography

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), no. 2, 781-793, DOI 10.4007/annals.2004.160.781. MR2123939
[2] L. V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions of one complex variable, 3rd ed., International Series in Pure and Applied Mathematics, McGrawHill Book Co., New York, 1978. MR 510197
[3] T. M. Apostol, Mathematical analysis, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1974. MR0344384
[4] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR0434929
[5] S. Axler, Linear algebra done right, 2nd ed., Undergraduate Texts in Mathematics, SpringerVerlag, New York, 1997. MR 1482226
[6] W. Banks, K. Ford and T. Tao, Large prime gaps and probabilistic models. Preprint (2019), 38 pages, arXiv:1908.08613.
[7] P. Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1324786
[8] E. Bombieri, On the large sieve, Mathematika 12 (1965), 201-225, DOI 10.1112/S0025579300005313. MR0197425
[9] E. Bombieri, The asymptotic sieve (English, with Italian summary), Rend. Accad. Naz. XL (5) 1/2 (1975/76), 243-269 (1977). MR0491570
[10] E. Bombieri, Le grand crible dans la théorie analytique des nombres (French, with English summary), Astérisque 18 (1987), 103. MR891718
[11] E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), no. 3-4, 203-251, DOI 10.1007/BF02399204. MR834613
[12] E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli. II, Math. Ann. 277 (1987), no. 3, 361-393, DOI 10.1007/BF01458321. MR891581
[13] E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli. III, J. Amer. Math. Soc. 2 (1989), no. 2, 215-224, DOI 10.2307/1990976. MR976723
[14] E. Bombieri and H. Iwaniec, On the order of $\zeta\left(\frac{1}{2}+i t\right)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 3, 449-472. MR881101
[15] E. Bombieri and H. Iwaniec, Some mean-value theorems for exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 3, 473-486. MR881102
[16] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017), no. 1, 205-224, DOI 10.1090/jams/860. MR3556291
[17] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Acad. Wetensch. Proc. Ser. A. 54 (1951), 50-60. MR0046375
[18] N. G. de Bruijn, On the number of positive integers $\leq x$ and free prime factors $>y$. II, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28 (1966), 239-247. MR0205945
[19] V. Brun, Über das Goldbachsche Gesetzund die Anzahlder Primzahlpaare, Archiv for Math. og Naturvid. 34 (1915), no. 8, 19 pp.
[20] V. Brun, La série $1 / 5+1 / 7+1 / 11+1 / 13+1 / 17+1 / 19+1 / 29+1 / 31+1 / 41+1 / 43+$ $1 / 59+1 / 61+\cdots$ où les dénominateurs sont "nombres premiers jumeaus" est convergente ou finie, Bull. Sci. Math. (2) 43 (1919), 100-104; 124-128.
[21] V. Brun, Reflections on the sieve of Eratosthenes, Norske Vid. Selsk. Skr. (Trondheim) 1967 (1967), no. 1, 9. MR0219466
[22] A. A. Buchstab, Asymptotic estimates of a general number-theoretic function (Russian), Mat. Sb. (2) 44 (1937), 1239-1246.
[23] A. A. Buchstab, New improvements in the method of the sieve of Eratosthenes, Mat. Sb . (N. S.) 446 (1938), 375-387.
[24] Jing-run Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao (Foreign Lang. Ed.) 17 (1966), 385-386. MR0207668
[25] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes. II, Sci. Sinica 21 (1978), no. 4, 421-430. MR511293
[26] A. C. Cojocaru and M. R. Murty, An introduction to sieve methods and their applications, London Mathematical Society Student Texts, vol. 66, Cambridge University Press, Cambridge, 2006. MR 2200366
[27] H. Cramér, Some theorems concerning prime numbers, Arkiv för Mat. Astr. o. Fys. 15 (1920), no. 5, 1-32.
[28] H. Cramér, On the distribution of primes, Proc. Camb. Phil. Soc. 20 (1920), 272-280.
[29] H. Cramér, Prime numbers and probability, Skand. Mat.-Kongr. 8 (1935), 107-115.
[30] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1936), 23-46.
[31] H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
[32] H. Delange, Sur des formules dues à Atle Selberg (French), Bull. Sci. Math. (2) 83 (1959), 101-111. MR0113836
[33] H. G. Diamond and H. Halberstam, A higher-dimensional sieve method, Cambridge Tracts in Mathematics, vol. 177, Cambridge University Press, Cambridge, 2008. With an appendix ("Procedures for computing sieve functions") by William F. Galway. MR2458547
[34] H. Diamond, H. Halberstam, and H.-E. Richert, Combinatorial sieves of dimension exceeding one, J. Number Theory 28 (1988), no. 3, 306-346, DOI 10.1016/0022-314X(88)90046-7. MR 932379
[35] K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. fys. 22 (1930), 1-14.
[36] Á. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), J. Comput. Appl. Math. 133 (2001), no. 1-2, 65-83, DOI 10.1016/S0377-0427(00)00635-X. MR 1858270
[37] H. M. Edwards, Riemann's zeta function, Dover Publications, Inc., Mineola, NY, 2001. Reprint of the 1974 original [Academic Press, New York; MR0466039 (57 \#5922)]. MR1854455
[38] P. D. T. A. Elliott, Probabilistic number theory. I: Mean-value theorems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 239, Springer-Verlag, New York-Berlin, 1979. MR 551361
[39] P. D. T. A. Elliott, Probabilistic number theory. II: Central limit theorems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 240, Springer-Verlag, Berlin-New York, 1980. MR 560507
[40] P. D. T. A. Elliott, Multiplicative functions on arithmetic progressions. VII. Large moduli, J. London Math. Soc. (2) 66 (2002), no. 1, 14-28, DOI 10.1112/S0024610702003228. MR 1911217
[41] P. D. T. A. Elliott and H. Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 5972. MR0276195
[42] P. Erdös, The difference of consecutive primes, Duke Math. J. 6 (1940), 438-441. MR 1759
[43] P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62 (1940), 738-742, DOI 10.2307/2371483. MR0002374
[44] L. Euler, Commentationes Arithmeticae. V. 3 (Latin), Leonhardi Euleri Opera Omnia (1) 4, Orell Füssli, Zurich; B. G. Teubner, Leipzig, 1941. Edited by Rudolf Fueter. MR 0006112
[45] G. B. Folland, Fourier analysis and its applications, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1992. MR 1145236
[46] K. Ford, B. Green, S. Konyagin, and T. Tao, Large gaps between consecutive prime numbers, Ann. of Math. (2) 183 (2016), no. 3, 935-974, DOI 10.4007/annals.2016.183.3.4. MR3488740
[47] K. Ford, B. Green, S. Konyagin, J. Maynard, and T. Tao, Long gaps between primes, J. Amer. Math. Soc. 31 (2018), no. 1, 65-105, DOI 10.1090/jams/876. MR3718451
[48] K. Ford and H. Halberstam, The Brun-Hooley sieve, J. Number Theory 81 (2000), no. 2, 335-350, DOI 10.1006/jnth.1999.2479. MR1752258
[49] É. Fouvry, Répartition des suites dans les progressions arithmétiques (French), Acta Arith. 41 (1982), no. 4, 359-382, DOI 10.4064/aa-41-4-359-382. MR677549
[50] É. Fouvry, Autour du théorème de Bombieri-Vinogradov (French), Acta Math. 152 (1984), no. 3-4, 219-244, DOI 10.1007/BF02392198. MR741055
[51] E. Fouvry and H. Iwaniec, On a theorem of Bombieri-Vinogradov type, Mathematika 27 (1980), no. 2, 135-152 (1981), DOI 10.1112/S0025579300010032. MR610700
[52] E. Fouvry and H. Iwaniec, Primes in arithmetic progressions, Acta Arith. 42 (1983), no. 2, 197-218, DOI 10.4064/aa-42-2-197-218. MR719249
[53] J. Friedlander and A. Granville, Limitations to the equi-distribution of primes. I, Ann. of Math. (2) 129 (1989), no. 2, 363-382, DOI 10.2307/1971450. MR986796
[54] J. Friedlander and A. Granville, Limitations to the equi-distribution of primes. III, Compositio Math. 81 (1992), no. 1, 19-32. MR1145606
[55] J. Friedlander, A. Granville, A. Hildebrand, and H. Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions, J. Amer. Math. Soc. 4 (1991), no. 1, 25-86, DOI 10.2307/2939254. MR1080647
[56] J. Friedlander and H. Iwaniec, On Bombieri's asymptotic sieve, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 4, 719-756. MR 519891
[57] J. Friedlander and H. Iwaniec, Asymptotic sieve for primes, Ann. of Math. (2) 148 (1998), no. 3, 1041-1065, DOI 10.2307/121035. MR1670069
[58] J. Friedlander and H. Iwaniec, The polynomial $X^{2}+Y^{4}$ captures its primes, Ann. of Math. (2) $\mathbf{1 4 8}$ (1998), no. 3, 945-1040, DOI 10.2307/121034. MR1670065
[59] J. Friedlander and H. Iwaniec, Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, American Mathematical Society, Providence, RI, 2010. MR2647984
[60] D. M. Goldfeld, A simple proof of Siegel's theorem, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1055, DOI 10.1073/pnas.71.4.1055. MR0344222
[61] L. Goldmakher, Multiplicative mimicry and improvements to the Pólya-Vinogradov inequality, Algebra Number Theory 6 (2012), no. 1, 123-163, DOI 10.2140/ant.2012.6.123. MR 2950162
[62] D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yıldırım, Small gaps between primes or almost primes, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5285-5330, DOI 10.1090/S0002-9947-09-04788-6. MR2515812
[63] D. A. Goldston, J. Pintz, and C. Y. Yıldırım, Primes in tuples. I, Ann. of Math. (2) $\mathbf{1 7 0}$ (2009), no. 2, 819-862, DOI 10.4007/annals.2009.170.819. MR 2552109
[64] A. Granville, Harald Cramér and the distribution of prime numbers, Scand. Actuar. J. 1 (1995), 12-28, DOI 10.1080/03461238.1995.10413946. Harald Cramér Symposium (Stockholm, 1993). MR1349149
[65] A. Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 2, 171-222, DOI 10.1090/S0273-0979-2015-01480-1. MR3312631
[66] A. Granville, A. J. Harper, and K. Soundararajan, Mean values of multiplicative functions over function fields, Res. Number Theory 1 (2015), Art. 25, 18, DOI 10.1007/s40993-015-0023-5. MR3501009
[67] A. Granville, D. M. Kane, D. Koukoulopoulos, and R. J. Lemke Oliver, Best possible densities of Dickson m-tuples, as a consequence of Zhang-Maynard-Tao, Analytic number theory, Springer, Cham, 2015, pp. 133-144. MR3467396
[68] A. Granville and D. Koukoulopoulos, Beyond the LSD method for the partial sums of multiplicative functions, Ramanujan J. 49 (2019), no. 2, 287-319, DOI 10.1007/s11139-018-01193. MR3949071
[69] A. Granville, D. Koukoulopoulos, and K. Matomäki, When the sieve works, Duke Math. J. 164 (2015), no. 10, 1935-1969, DOI 10.1215/00127094-3120891. MR3369306
[70] A. Granville and G. Martin, Prime number races, Amer. Math. Monthly 113 (2006), no. 1, $1-33$, DOI 10.2307/27641834. MR2202918
[71] A. Granville and K. Soundararajan, An uncertainty principle for arithmetic sequences, Ann. of Math. (2) 165 (2007), no. 2, 593-635, DOI 10.4007/annals.2007.165.593. MR2299742
[72] A. Granville and K. Soundararajan, Large character sums: pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 357-384, DOI 10.1090/S0894-0347-06-00536-4. MR2276774
[73] A. Granville and K. Soundararajan, Sieving and the Erdős-Kac theorem, Equidistribution in number theory, an introduction, NATO Sci. Ser. II Math. Phys. Chem., vol. 237, Springer, Dordrecht, 2007, pp. 15-27, DOI 10.1007/978-1-4020-5404-4_2. MR2290492
[74] A. Granville and K. Soundararajan, Pretentious multiplicative functions and an inequality for the zeta-function, Anatomy of integers, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008, pp. 191-197. MR2437976
[75] A. Granville and K. Soundararajan, Multiplicative number theory, Snowbird MRC notes (unpublished), 2011.
[76] G. Greaves, Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 43, Springer-Verlag, Berlin, 2001. MR 1836967
[77] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481-547, DOI 10.4007/annals.2008.167.481. MR2415379
[78] B. Green and T. Tao, Linear equations in primes, Ann. of Math. (2) $\mathbf{1 7 1}$ (2010), no. 3, 1753-1850, DOI 10.4007/annals.2010.171.1753. MR2680398
[79] B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2) 175 (2012), no. 2, 541-566, DOI 10.4007/annals.2012.175.2.3. MR2877066
[80] B. Green, T. Tao, and T. Ziegler, An inverse theorem for the Gowers $U^{s+1}[N]$-norm, Ann. of Math. (2) $\mathbf{1 7 6}$ (2012), no. 2, 1231-1372, DOI 10.4007/annals.2012.176.2.11. MR 2950773
[81] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considŕé par Riemann, J. Math. Pures Appl. (4) 9 (1893), 171-215.
[82] J. Hadamard, Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques (French), Bull. Soc. Math. France 24 (1896), 199-220. MR 1504264
[83] J. Hadamard, Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques (French), Bull. Soc. Math. France 24 (1896), 199-220. MR 1504264
[84] G. Halász, On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar. 6 (1971), 211-233. MR0319930
[85] D. K. Faddeyev, S. M. Lozinsky, and A. V. Malyshev, Yuri V. Linnik (1915-1972): a biographical note, Acta Arith. 27 (1975), 1-2, DOI 10.4064/aa-27-1-1-2. Collection of articles in memory of Juriĭ Vladimirovič Linnik. MR0421941
[86] H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, vol. 4, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR0424730
[87] G. H. Hardy and J. E. Littlewood, A new solution to Waring's problem, Q. J. Math. 48 (1919), 272-293.
[88] G. H. Hardy and J. E. Littlewood, Some problems of "partitio numerorum": I. A new solution to Waring's problem, Göttingen Nachrichten, 1920, 33-54.
[89] G. H. Hardy and J. E. Littlewood, Some problems of "partitio numerorum": II. Proof that every large number is the sum of at most 21 biquadrates, Math. Z. 9 (1921), no. 1-2, 14-27, DOI 10.1007/BF01378332. MR 1544448
[90] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1-70, DOI 10.1007/BF02403921. MR 1555183
[91] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum': IV. The singular series in Waring's Problem and the value of the number $G(k)$, Math. Z. 12 (1922), no. 1, 161-188, DOI 10.1007/BF01482074. MR 1544511
[92] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum': V. A further contribution to the study of Goldbach's problem, Proc. London Math. Soc. (2) 22 (1924), 46-56.
[93] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum' (VI): Further researches in Waring's Problem, Math. Z. 23 (1925), no. 1, 1-37, DOI 10.1007/BF01506218. MR 1544728
[94] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum' (VIII): The number Gamma(k) in Waring's Problem, Proc. London Math. Soc. (2) 28 (1928), no. 7, 518-542, DOI 10.1112/plms/s2-28.1.518. MR 1575871
[95] G. H. Hardy and S. Ramanujan, Proof that almost all numbers n are composed of about $\log \log n$ prime factors [Proc. London Math. Soc. (2) 16 (1917), Records for 14 Dec. 1916], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 242-243. MR2280875
[96] G. Harman, Prime-detecting sieves, London Mathematical Society Monographs Series, vol. 33, Princeton University Press, Princeton, NJ, 2007. MR2331072
[97] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), no. 6, 1365-1377, DOI 10.4153/CJM-1982-095-9. MR678676
[98] D. R. Heath-Brown, Primes represented by $x^{3}+2 y^{3}$, Acta Math. 186 (2001), no. 1, 1-84, DOI 10.1007/BF02392715. MR 1828372
[99] D. R. Heath-Brown and X. Li, Prime values of $a^{2}+p^{4}$, Invent. Math. 208 (2017), no. 2, 441-499, DOI 10.1007/s00222-016-0694-0. MR3639597
[100] D. R. Heath-Brown and B. Z. Moroz, Primes represented by binary cubic forms, Proc. London Math. Soc. (3) 84 (2002), no. 2, 257-288, DOI 10.1112/plms/84.2.257. MR 1881392
[101] D. R. Heath-Brown and B. Z. Moroz, On the representation of primes by cubic polynomials in two variables, Proc. London Math. Soc. (3) 88 (2004), no. 2, 289-312, DOI 10.1112/S0024611503014497. MR2032509
[102] A. Hildebrand, Integers free of large prime factors and the Riemann hypothesis, Mathematika 31 (1984), no. 2, 258-271 (1985), DOI 10.1112/S0025579300012481. MR804201
[103] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296 (1986), no. 1, 265-290, DOI 10.2307/2000573. MR837811
[104] A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993), no. 2, 411-484. MR 1265913
[105] C. Hooley, On the Brun-Titchmarsh theorem, J. Reine Angew. Math. 255 (1972), 60-79, DOI 10.1515/crll.1972.255.60. MR0304328
[106] C. Hooley, On the Brun-Titchmarsh theorem. II, Proc. London Math. Soc. (3) 30 (1975), 114-128, DOI 10.1112/plms/s3-30.1.114. MR 0369296
[107] C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge Tracts in Mathematics, vol. 70, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0404173
[108] C. Hooley, On an almost pure sieve, Acta Arith. 66 (1994), no. 4, 359-368, DOI 10.4064/aa-66-4-359-368. MR1288352
[109] M. N. Huxley, Area, lattice points, and exponential sums, London Mathematical Society Monographs. New Series, vol. 13, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1420620
[110] E. K. Ifantis and P. D. Siafarikas, A differential equation for the zeros of Bessel functions, Applicable Anal. 20 (1985), no. 3-4, 269-281, DOI 10.1080/00036818508839574. MR814954
[111] A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR1074573
[112] H. Iwaniec, Rosser's sieve, Acta Arith. 36 (1980), no. 2, 171-202, DOI 10.4064/aa-36-2-171202. MR581917
[113] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320, DOI 10.4064/aa-37-1-307-320. MR598883
[114] H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR2061214
[115] W. B. Jurkat and H.-E. Richert, An improvement of Selberg's sieve method. I, Acta Arith. 11 (1965), 217-240, DOI 10.4064/aa-11-2-217-240. MR0202680
[116] M. Kac, Statistical independence in probability, analysis and number theory, The Carus Mathematical Monographs, No. 12, Published by the Mathematical Association of America. Distributed by John Wiley and Sons, Inc., New York, 1959. MR0110114
[117] A. Khintchine, Über das Gesetz der großen Zahlen (German), Math. Ann. 96 (1927), no. 1, 152-168, DOI 10.1007/BF01209158. MR 1512310
[118] N. M. Korobov, Weyl's estimates of sums and the distribution of primes (Russian), Dokl. Akad. Nauk SSSR 123 (1958), 28-31. MR 0103862
[119] D. Koukoulopoulos, Pretentious multiplicative functions and the prime number theorem for arithmetic progressions, Compos. Math. 149 (2013), no. 7, 1129-1149, DOI 10.1112/S0010437X12000802. MR3078641
[120] D. Koukoulopoulos, On multiplicative functions which are small on average, Geom. Funct. Anal. 23 (2013), no. 5, 1569-1630, DOI 10.1007/s00039-013-0235-6. MR3102913
[121] E. Kowalski, Gaps between prime numbers and prime numbers in arithmetic progressions, after Y. Zhang and J. Maynard, Survey (Bourbaki seminar, March 2014).
[122] J. Kubilius, Probabilistic methods in the theory of numbers, Translations of Mathematical Monographs, Vol. 11, American Mathematical Society, Providence, R.I., 1964. MR0160745
[123] Y. Lamzouri and A. P. Mangerel, Large odd order character sums and improvements of the Pólya-Vinogradov inequality. Preprint (2017), 34 pages, arXiv:1701.01042.
[124] E. Landau, Über den Zusammenhang einiger neuer Sätze der analytischën Zahlentheorie, Wiener Sitzungberichte, Math. Klasse 115 (1906), 589-632.
[125] E. Landau, Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes (German), Math. Ann. 56 (1903), no. 4, 645-670, DOI 10.1007/BF01444310. MR 1511191
[126] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (German), Teubner, Leipzig-Berlin, 1909.
[127] E. Landau, Losung des Lehmer'schen Problems (German), Amer. J. Math. 31 (1909), no. 1, 86-102, DOI 10.2307/2370180. MR 1506062
[128] E. Landau, Über die Wurzeln der Zetafunktion (German), Math. Z. 20 (1924), no. 1, 98-104, DOI 10.1007/BF01188073. MR 1544664
[129] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys. (3) 13 (1908), 305-312; Collected Works, Vol. 4, Essen:Thales Verlag, 1986, pp. 59-66.
[130] A. F. Lavrik, The approximate functional equation for Dirichlet L-functions (Russian), Trudy Moskov. Mat. Obšč. 18 (1968), 91-104. MR0236126
[131] U. V. Linnik, "The large sieve", C. R. (Doklady) Acad. Sci. URSS (N.S.) 30 (1941), 292-294. MR0004266
[132] U. V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem (English, with Russian summary), Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), 139-178. MR0012111
[133] U. V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon (English, with Russian summary), Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), 347-368. MR0012112
[134] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), no. 2, 221-225, DOI $10.1307 / \mathrm{mmj} / 1029003189$. MR783576
[135] H. Maier and C. Pomerance, Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 322 (1990), no. 1, 201-237, DOI 10.2307/2001529. MR972703
[136] H. von Mangoldt, Zu Riemanns Abhandlung "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse" (German), J. Reine Angew. Math. 114 (1895), 255-305, DOI 10.1515/crll.1895.114.255. MR 1580379
[137] D. A. Marcus, Number fields, Universitext, Springer, Cham, 2018. Second edition of [MR0457396]; With a foreword by Barry Mazur. MR3822326
[138] J. Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), no. 1, 383-413, DOI 10.4007/annals.2015.181.1.7. MR3272929
[139] J. Maynard, Large gaps between primes, Ann. of Math. (2) 183 (2016), no. 3, 915-933, DOI 10.4007/annals.2016.183.3.3. MR3488739
[140] J. Maynard, Dense clusters of primes in subsets, Compos. Math. 152 (2016), no. 7, 15171554, DOI 10.1112/S0010437X16007296. MR 3530450
[141] J. Maynard, Primes represented by incomplete norm forms, Preprint (2015), 56 pages, arXiv: 1507.05080.
[142] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie (German), J. Reine Angew. Math. 78 (1874), 46-62, DOI 10.1515/crll.1874.78.46. MR1579612
[143] H. L. Montgomery, Problems concerning prime numbers, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), Amer. Math. Soc., Providence, R. I., 1976, pp. 307-310. MR0427249
[144] H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, vol. 84, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. MR 1297543
[145] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134, DOI 10.1112/S0025579300004708. MR0374060
[146] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR2378655
[147] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), no. 2, 126-129, DOI 10.2307/2320934. MR 643279
[148] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859
[149] R. E. A. C. Paley, A theorem on characters, J. London Math. Soc. 7 (1932), no. 1, 28-32, DOI 10.1112/jlms/s1-7.1.28. MR1574456
[150] J. Pintz, Very large gaps between consecutive primes, J. Number Theory 63 (1997), no. 2, 286-301, DOI 10.1006/jnth.1997.2081. MR 1443763
[151] D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci. 1 (2014), Art. 12, 83, DOI 10.1186/s40687-014-0012-7. MR3373710
[152] R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 11 (1936), no. 4, 242-245, DOI 10.1112/jlms/s1-13.4.242. MR 1574971
[153] R. A. Rankin, The difference between consecutive prime numbers. V, Proc. Edinburgh Math. Soc. (2) 13 (1962/1963), 331-332, DOI 10.1017/S0013091500025633. MR0160767
[154] B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie. In Gesammelte Werke, Teubner, Leipzig (1892), Reprinted by Dover, New York (1953). Original manuscript (with English translation). Reprinted in (Borwein et al. 2008) and (Edwards 1974).
[155] B. Riemann, Unpublished papers, Handschriftenabteilung Niedersächische Staatsund Universitätsbibliotek, Göttingen.
[156] G. Rodriquez, Sul problema dei divisori di Titchmarsh (Italian, with English summary), Boll. Un. Mat. Ital. (3) 20 (1965), 358-366. MR0197409
[157] M. Rubinstein and P. Sarnak, Chebyshev's bias, Experiment. Math. 3 (1994), no. 3, 173-197. MR 1329368
[158] W. Rudin, Principles of mathematical analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. MR 0385023
[159] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
[160] L. G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors. II, J. Indian Math. Soc. (N.S.) $\mathbf{1 7}$ (1953), 83-141. MR0058632
[161] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), no. 6, 87-105. MR 12624
[162] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18 (1954), 83-87. MR0067143
[163] A. Selberg, Collected papers. Vol. II, Springer-Verlag, Berlin, 1991. With a foreword by K. Chandrasekharan. MR 1295844
[164] C. L. Siegel, Über Riemanns Nachlass zur analytischen Zahlentheorie, Quellen Studien zur Geschichte der Math. Astron. und Phys. Abt. B: Studien 2 (1932), 45-80.
[165] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170, DOI 10.1515/crll.1980.313.161. MR 552470
[166] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırim, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1-18, DOI 10.1090/S0273-0979-06-01142-6. MR2265008
[167] E. M. Stein and R. Shakarchi, Real analysis: Measure theory, integration, and Hilbert spaces, Princeton Lectures in Analysis, vol. 3, Princeton University Press, Princeton, NJ, 2005. MR 2129625
[168] D. W. Stroock, Probability theory: An analytic view, 2nd ed., Cambridge University Press, Cambridge, 2011. MR 2760872
[169] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245, DOI 10.4064/aa-27-1-199-245. Collection of articles in memory of Juriĭ Vladimirovič Linnik. MR0369312
[170] T. Tao, The parity problem is sieve methods, blog post (2007). URL: https://terrytao. wordpress.com/2007/06/05/open-question-the-parity-problem-in-sieve-theory/
[171] T. Tao, Polymath8b: Bounded intervals with many primes, after Maynard, blog post (2013). URL: https://terrytao.wordpress.com/2013/11/19/polymath8b-bounded-intervals-with-many-primes-after-maynard/
[172] G. Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., Graduate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015. Translated from the 2008 French edition by Patrick D. F. Ion. MR 3363366
[173] E. C. Titchmarsh, The theory of functions, Oxford University Press, Oxford, 1958. Reprint of the second (1939) edition. MR 3155290
[174] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
[175] C. de la Vallée Poussin, Recherches analytiques sur la théorie des nombres premiers, I-III, Ann. Soc. Sci. Bruxelles 20 (1896), 183-256, 281-362, 363-397.
[176] A. I. Vinogradov, The density hypothesis for Dirichet L-series (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 903-934. MR0197414
[177] I. M. Vinogradov, Representation of an odd number as a sum of three primes, C. R. Acad. Sci. URSS 15 (1937), 6-7.
[178] I. M. Vinogradov, Simplest trigonometrical sums with primes, C. R. (Doklady) Acad. Sci. URSS (N.S.) 23 (1939), 615-617. MR0001763
[179] I. M. Vinogradov, On the estimations of some simplest trigonometrical sums involving prime numbers (Russian), Bull. Acad. Sci. URSS. Sér Math. [Izvestia Akad. Nauk SSSR] (1939), 371-398.
[180] I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers (Russian), Trav. Inst. Math. Stekloff 23 (1947), 109 pp.
[181] I. M. Vinogradov, A new estimate of the function $\zeta(1+i t)$ (Russian), Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 161-164. MR0103861
[182] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie (German), Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963. MR 0220685
[183] E. W. Weisstein, Bessel function of the first kind, from MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
[184] E. W. Weisstein, Brun's constant, from MathWorld-A Wolfram Web Resource. http:// mathworld.wolfram.com/BrunsConstant.html
[185] E. Westzynthius, Uber die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Soc. Sci. Fenn. 25 (1931).
[186] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen (German), Math. Ann. 143 (1961), 75-102, DOI 10.1007/BF01351892. MR0131389
[187] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II (German), Acta Math. Acad. Sci. Hungar. 18 (1967), 411-467, DOI 10.1007/BF02280301. MR 0223318
[188] Y. Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), no. 3, 1121-1174, DOI 10.4007/annals.2014.179.3.7. MR 3171761

Index

δ-spaced mod 1,242
3-4-1 inequality, 88

Abel's summation formula, 13
abscissa of
absolute convergence, 48
convergence, 48
absolute constant, 8
additive character, 102
additive Fourier transform, 102
additive function, 32
admissible tuple, 181
anatomy of integers, 165
arithmetic function, 35
Axiom 1 of sieve theory, 185
Axiom 2 of sieve theory, 187
Axiom 2^{\prime} of sieve theory, 188
Axiom 3 of sieve theory, 188

Bernoulli number, 23
Bernoulli polynomial, 23
Bernoulli random variable, 3
beta sieve, 200, 204
bilinear form, 260
bilinear sum, 235236
Bombieri-Vinogradov theorem, 189,277
Bonferonni inequalities, 176, 180, 194
Borel-Carathéodory theorem, 89
Brun's constant, 179
Brun's pure sieve, 176, 194
Brun's sieve, 194
Brun-Hooley sieve, 203
Brun-Titchmarsch inequality, 206, 219

Buchstab's function, 150
Buchstab's identity, 153, 192, 197, 234
character lift, 103
character of an abelian group, 100
Chebotarev Density Theorem, 187
Chebyshev's bias, 116
Chebyshev's estimate, 32
Chebyshev's psi function, 22, 56
Chebyshev's theta function, 1356
Chen's theorem, 4 191 221
Chernoff's inequality, 164
circle method, 241, 251
combinatorial sieve, 194
completed L-function, 111
completely multiplicative function, 28
conductor of a character, 99103
covering system of congruences, 319
Cramér's model, 3, 301, 317, 330
Cramér's theory of large deviations, 164
Cramér-Granville model, 179,181330
critical line, $64 \boxed{112}$
critical strip, 64, 98
delay differential equation, 150, 152, 202
Dickman-de Bruijn function, 152169
Dirichlet L-function, 97,110
analytic continuation, 111
approximate functional equation, 117
Euler product, 110
exceptional character, 229
exceptional zero, $119,123,218,220$
explicit formula, 98114
functional equation, 111
Hadamard product, 117
non-trivial zero, 98,112
root number, 111
trivial zero, 112
zero-free region, 119, 229
Dirichlet character, 96
Dirichlet convolution, 35
Dirichlet inverse, 36
Dirichlet series, 44
Dirichlet's hyperbola method, 39
distance of multiplicative functions, 87
120, 227, 230
divisor function, 33,36
divisor-bounded function, 131
duality principle, 266
Elliott-Halberstam conjecture, 189
Erdős-Kac theorem, 159
Euler product, 45, 49
Euler-Maclaurin summation formula, 12, 15
Euler-Mascheroni constant, 15
even character, 111
exceptional character, 123
exponential sum, 241
faithful character, 99
Farey fraction, 260
Fejér kernel, 269
Fourier inversion, 89, 339
in finite abelian groups, 101
Fourier transform
$\bmod q, 102$
of sequences, 241
on the real line, 63338
fractional part, 9
Fundamental Lemma of Sieve Theory, 190, 195

Gamma function, 17
duplication formula, 25
functional equation, 17
reflection formula, 25
Gauss sum, 103
Generalized Riemann Hypothesis, 108 , 112
Goldbach's conjecture
binary, 183,250
ternary, 250
GPY sieve, 301
Green-Tao theorem, 4, 250, 319

Hankel contour, 140
Hankel's formula, 132
Hardy's function, 69
Hardy-Littlewood conjecture, 181, 218
Hardy-Ramanujan theorem, 163
hyperbola method, 39
imprimitive character, 103
induced character, 103
ineffective constant, 127
integer part, 8
Iwaniec condition, 187
Jensen's formula, 90
Kubilius model, 158,185
Landau-Siegel zero, $119,123,218,220$. 231
Laplace transform, 164
large sieve, 267
additive version, 268, 270
arithmetic version, 271
multiplicative version, 270
least quadratic non-residue, 276
least quadratic nonresidue, 274
level of distribution, 188
Lindelöf hypothesis, 67
Linnik's theorem, 287
logarithmic integral, xii, 1
lower bound sieve, 200, 203
LSD method, 132
Möbius function, 35
Möbius inversion formula, 35
Maier matrix, 330
major arc, 252
Markov's inequality, 164
Maynard-Tao weights, 302
Mellin inversion, 54340
Mellin transform, 54, 340
Mertens' estimates, 39
method of moments, 159, 341
minor arcs, 252
monotonicity principle of sieve weights, 202,219
Montgomery's conjecture, 181, 206
multiplicative character, 102
multiplicative function, 28
non-principal character, 100
norm of a bilinear form, 261
odd character, 111

Pólya-Vinogradov inequality, 106
Page's theorem, 124
parity problem of sieve methods, 221
Parseval's identity, 271, 272
for finite abelian groups, 101
partial summation, 13,14
Perron inversion formula, 56
Phragmén-Lindelöf principle, 66
Poisson summation formula, 63, 339
for Dirichlet characters, 105
Polignac's conjecture, 174300
pretentious large sieve, 288, 292
pretentious multiplicative functions, 88
226, 288
Prime Number Theorem, 2,84
for arithmetic progressions, 4, 118
primitive character, 103
principal character, 97,100
principal value, 54
quasi-linear sum, 236
quasi-smooth function, 236
quasi-smooth sum, 236
Rankin's trick, 166, 169
Riemann Hypothesis, 2, 64, 68,93
Riemann zeta function, 245
approximate functional equation, 82
Euler product, 54
explicit formula, 57
functional equation, 62
Hadamard product, 93
meromorphic continuation, 55
non-trivial zero, 57, 64
trivial zero, 57, 64
zero-free region, 86
Riemann-Siegel formula, 83
Riemann-Stieltjes integral, 13, 336
root number, 111
rough number, xii 149
saddle-point method, 16167
Selberg's sieve, 213
Shiu's theorem, 209
Siegel's theorem, 127
Siegel-Walfisz theorem, 118
sieve of Eratosthenes, 27
sieve of Eratosthenes-Legendre, 29149 175
sifting dimension, 187
sifting limit, 200
smooth number, xi, 152, 169
square-full integer, 22, 43, 76
stationary point, 17165
Stirling's formula, 1519
subconvexity estimate, 67
summation by parts, 13,14
summatory function, 11
Szemerédi's theorem, 251
Titchmarsch-Linnik divisor problem, 207
totient function, 4, 28
transference principle, 251
twin prime, 4, 174, 178, 190
conjecture, 174, 258
constant, 180
type I function, 236
type I sum, 236
type II function, 236
type II sum, 236
upper bound sieve, 200, 203
Vaughan's identity, 237
Vinogradov's conjecture, 274
von Mangoldt's function, 37
Wirsing's theorem, 147

Prime numbers have fascinated mathematicians since the time of Euclid. This book presents some of our best tools to capture the properties of these fundamental objects, beginning with the most basic notions of asymptotic estimates and arriving at the forefront of mathematical research. Detailed proofs of the recent spectacular advances on small and large gaps between primes are made accessible for the first time in textbook form. Some other highlights include an introduction to probabilistic methods, a detailed study of sieves, and
 elements of the theory of pretentious multiplicative functions leading to a proof of Linnik's theorem.

Throughout, the emphasis has been placed on explaining the main ideas rather than the most general results available. As a result, several methods are presented in terms of concrete examples that simplify technical details, and theorems are stated in a form that facilitates the understanding of their proof at the cost of sacrificing some generality. Each chapter concludes with numerous exercises of various levels of difficulty aimed to exemplify the material, as well as to expose the readers to more advanced topics and point them to further reading sources.

