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Introduction

Homological techniques first arose in topology, in work of Poincaré [174], at
the end of the 19th century. They appeared in algebra several decades later
in the 1940s, when Eilenberg and Mac Lane [59–61] introduced homology
and cohomology of groups and Hochschild [114] introduced homology and
cohomology of algebras. Since that time, both Hochschild cohomology and
group cohomology, as they came to be called, have become indispensable
in algebra, algebraic topology, representation theory, and other fields. They
remain active areas of research, with frequent discoveries of new applications.
There are excellent books on group cohomology such as [2, 21, 22, 35, 47,
76]. These are good references for those working in the field and are also
important resources for those learning group cohomology in order to begin
using it in their research. There are fewer such resources for Hochschild
cohomology, notwithstanding some informative chapters in the books [146,
223]. This book aims to begin filling the gap by providing an introduction
to the basic theory of Hochschild cohomology for algebras and some of its
current uses in algebra and representation theory.

Hochschild cohomology records meaningful information about rings and
algebras. It is used to understand their structure and deformations, and to
identify essential information about their representations. This book takes a
concrete approach with many early examples that reappear later in various
settings.

We begin in Chapter 1 with Hochschild’s own definitions from [114],
only slightly rephrased in modern terminology and notation, and then con-
nect to definitions based on arbitrary resolutions under suitable conditions.
We present some of the important contributions of Gerstenhaber [82] begin-
ning in the 1960s that lead us now to think of a Hochschild cohomology ring
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viii Introduction

as a Gerstenhaber algebra, that is, it has both an associative product and
a nonassociative Lie bracket. Many properties of Hochschild cohomology
rings that are essential in today’s applications can be seen in these classical
definitions of Hochschild and Gerstenhaber. In Chapter 2 we give detailed
descriptions of many equivalent definitions of the associative product (cup
product) on Hochschild cohomology. In Chapter 3 we examine several dif-
ferent types of examples: smooth commutative algebras, Koszul algebras,
algebras defined by quivers and relations, and algebras built from others such
as skew group algebras and (twisted) tensor product algebras. We present
the seminal Hochschild-Kostant-Rosenberg (HKR) Theorem on Hochschild
homology and cohomology of smooth finitely generated commutative alge-
bras.

Current algebraic applications and developments in the algebraic theory
of Hochschild cohomology include the following, explored in detail in the
rest of the book.

Some classical geometric notions such as smoothness may be viewed
as essentially homological properties of commutative function algebras, al-
lowing interpretations of them in noncommutative settings via Hochschild
cohomology. We present these and related ideas in Chapter 4, including
Hochschild dimension, smoothness, noncommutative differential forms, Van
den Bergh duality, Calabi-Yau algebras, the Connes differential, and Batalin-
Vilkovisky structures.

Understanding how some algebras may be viewed as deformations of
others calls on Hochschild cohomology, as explained in Chapter 5. There we
discuss formal deformations, rigidity of algebras, the Maurer-Cartan equa-
tion, Poisson brackets, and deformation quantization. We present the funda-
mental Poincaré-Birkhoff-Witt (PBW) Theorem as a consequence of a more
general theorem on deformations of Koszul algebras. In algebraic deforma-
tion theory, the Lie structure on Hochschild cohomology arises naturally;
we spend some additional time studying this important structure in detail
in Chapter 6. Further probing the associative and Lie algebra structures on
Hochschild cohomology and related complexes uncovers infinity algebras.
There, binary operations are layered with n-ary operations which in turn
have important implications for the original algebra structure. We give a
brief introduction to infinity structures and their applications to Hochschild
cohomology in Chapter 7.

In representation theory, support varieties may sometimes be defined
in terms of Hochschild cohomology; these are geometric spaces assigned to
modules that encode representation-theoretic information. Support varieties
for finite-dimensional algebras are introduced and explored in Chapter 8.
This theory began in the parallel setting of finite group cohomology. There
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are strong connections between Hochschild cohomology and group cohomol-
ogy that we analyze more generally for Hopf algebras in Chapter 9. Hopf al-
gebras are those algebras whose categories of modules are tensor categories,
and include many examples of interest such as group algebras, universal
enveloping algebras of Lie algebras, and quantum groups. Relationships be-
tween Hochschild cohomology and Hopf algebra cohomology lead to better
understanding of both and of all their applications. Inspecting these rela-
tionships, we connect the two first appearances of homological techniques in
algebra in the form of group cohomology [59–61] and Hochschild cohomol-
ogy [114].

We include an appendix with needed background material from homo-
logical algebra. The appendix is largely self-contained, however, proofs are
omitted, and instead the reader is referred to standard homological algebra
textbooks such as [48,112,151,168,187,223] for proofs and more details.

This introductory text is not intended to be a comprehensive treatment
of the whole subject of Hochschild cohomology, which long ago expanded
well beyond the reach of a single book. Necessarily many important topics
are left out. For example, we do not treat Tate-Hochschild cohomology,
relative Hochschild cohomology, Hochschild cohomology of presheaves and
schemes, connections to cyclic homology and K-theory, Hochschild cohomol-
ogy of abelian categories, topological Hochschild cohomology, Hochschild
cohomology of differential graded and A∞-algebras and categories, nor op-
erads. Hochschild homology is an important subject in its own right, and
we spend only a little time on it in this book. Also, here we will almost
exclusively work with algebras over a field, both for simplicity of presenta-
tion in this introductory text and to take advantage of a great array of good
properties and current applications for algebras over a field.

We provide a few references for the reader looking for details on some
of the topics that are not in this book. This list is not meant to be com-
plete, but rather a beginning, and further references may be found in each
of these: more on Hochschild homology can be found in the standard ref-
erences [146, 223]. Tate-Hochschild cohomology, stable Hochschild coho-
mology, and singular Hochschild cohomology are Z-graded theories while
Hochschild cohomology itself is N-graded; see, for example, [29,74]. Rela-
tive Hochschild cohomology and secondary Hochschild cohomology are de-
signed for a ring and subring pair; see, for example, [106,115,205]. There
is a version of Hochschild cohomology for coalgebras and bicomodules [57].
Hochschild cohomology is defined for presheaves of algebras and schemes,
and used in algebraic geometry; see, for example, [85,86,132,213]. Topo-
logical Hochschild homology and cohomology are related theories in alge-
braic topology; see, for example, [173]. Hochschild cohomology is used in



x Introduction

functional analysis, with connections to properties of Banach algebras, von
Neumann algebras, and locally compact groups; see, for example, [122,198].
Many important applications of the theory of Hochschild cohomology involve
its connections to cyclic homology and cohomology and algebraic K-theory;
see, for example, [146,223]. Hochschild homology and cohomology can be
defined for some types of categories; see, for example, [150, 161]. Some
operads underlie much of the structure of Hochschild cohomology, a hint
of which appears in the infinity structures of Chapter 7 here; see, for ex-
ample, [152,153]. Formality and Deligne’s Conjecture are barely touched
in Chapter 7 here, and more details may be found in the references given
in Section 7.6 and in [153]. Hochschild cohomology may be realized as
the Lie algebra of the derived Picard group of an algebra; see, for exam-
ple, [128]. Hochschild cohomology of differential graded and A∞-algebras
and categories, for example, are in [127,130].

This book is written for graduate students and working mathematicians
interested in learning about Hochschild cohomology. It can serve as a refer-
ence for many facts that are currently only found in research papers, and as
a bridge to some more advanced topics that are not included here. The main
prerequisite for students is a graduate course in algebra. It would also be
helpful to have taken further introductory courses in homological algebra or
algebraic topology and in representation theory, or else to have done some
reading in these subjects. However, all of the required homological algebra
background is summarized in the appendix, with references, and a motivated
reader might rely solely on this as homological algebra background. Beyond
the first three chapters of this book, the remaining chapters are largely
independent of each other, and so there are many options for basing a one-
semester graduate course on this book. A one-semester course could start
with a treatment of Chapter 1 and selected sections from Chapters 2 and 3,
possibly including material from the appendix depending on the background
of the students. Then the course could focus on a subset of the remaining
chapters: a course with a focus on noncommutative geometry could continue
with Chapter 4; a course with a focus on algebraic deformation theory and
related structures could instead continue with Chapter 5 and the related
Chapters 6 and 7, as time allowed; a course with a focus on Hopf algebras,
group algebras, or support varieties could instead continue with Chapters 8
and/or 9. A full-year course might include most of the book and time for
a complete introduction to or review of homological algebra based on the
appendix.

This book came into being as an aftereffect of some lecture series that I
gave and through interactions with many people. I first thank Universidad
de Buenos Aires, and especially Andrea Solotar and her students, postdocs,
and colleagues, for hosting me for several weeks in 2010. During that time I
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gave a short course on Hopf algebra cohomology that led to an early version
of Chapter 9 on which they gave me valuable feedback. I thank the Morning-
side Center in Beijing and the organizers and students of a workshop there in
2011 for the opportunity to give lectures on support varieties that expanded
into the current Chapter 8. I thank the Mathematisches Forschungsinstitut
Oberwolfach for its hospitality during several workshops where the idea for
this book began in discussions with Karin Erdmann and Henning Krause.

Most of this book was written during the academic year 2016–17 that I
spent at the University of Toronto visiting Ragnar-Olaf Buchweitz and his
research group. It was with deep sadness that I learned of his death the
following fall. His legacy lives on and continues to grow through the mathe-
matical writings that are still being completed by his many collaborators, as
well as others he influenced. He was a great friend and mentor to so many
of us.

I am grateful to the University of Toronto for hosting me in 2016–17 and
to Buchweitz and his team for the many helpful conversations and stimu-
lating seminar talks. This interaction significantly influenced some of my
choices of topics for the book. I particularly thank Buchweitz and his stu-
dents Benjamin Briggs and Vincent Gélinas for many pointers on smooth
algebras and infinity algebras that helped me prepare Chapters 4 and 7. I
also had fruitful discussions with Cris Negron and Yury Volkov in relation to
the material in Chapter 6. Special thanks go to my long-time collaborator
Anne Shepler for many conversations and joint projects over the years that
led to my current point of view on Chapter 5.

I thank Chelsea Walton and her Spring 2017 homological algebra class
at Temple University for trying out beta versions of several chapters of this
book, and for their very valuable feedback. I thank my home institution
Texas A&M University and especially the mathematics department for an
immensely supportive work environment. I thank my husband Frank Sottile
and children Maria and Samuel for their ongoing patience and support. I
thank the National Science Foundation for its support through grants DMS-
1401016 and DMS-1665286.
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433–452. MR1241705

[107] D. K. Harrison,Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962),
191–204, DOI 10.2307/1993575. MR142607

[108] R. Hermann, Exact sequences, Hochschild cohomology, and the Lie module structure over
the M-relative center, J. Algebra 454 (2016), 29–69, DOI 10.1016/j.jalgebra.2016.01.021.
MR3473419

[109] R. Hermann, Homological epimorphisms, recollements and Hochschild cohomology—

with a conjecture by Snashall-Solberg in view, Adv. Math. 299 (2016), 687–759, DOI
10.1016/j.aim.2016.05.022. MR3519480

[110] R. Hermann, Monoidal categories and the Gerstenhaber bracket in Hochschild cohomol-
ogy, Mem. Amer. Math. Soc. 243 (2016), no. 1151, v+146, DOI 10.1090/memo/1151.
MR3518219

[111] E. Herscovich, Using torsion theory to compute the algebraic structure of Hochschild
(co)homology, Homology Homotopy Appl. 20 (2018), no. 1, 117–139, DOI
10.4310/HHA.2018.v20.n1.a8. MR3775352

[112] P. J. Hilton and U. Stammbach, A course in homological algebra, Graduate Texts in Math-
ematics, vol. 4, Springer-Verlag, New York-Berlin, 1971. MR0346025

https://www.ams.org/mathscinet-getitem?mr=1020298
https://www.ams.org/mathscinet-getitem?mr=3188338
https://www.ams.org/mathscinet-getitem?mr=200324
https://www.ams.org/mathscinet-getitem?mr=1734320
https://www.ams.org/mathscinet-getitem?mr=2237910
https://www.ams.org/mathscinet-getitem?mr=1990627
https://www.ams.org/mathscinet-getitem?mr=2223465
https://www.ams.org/mathscinet-getitem?mr=2368070
https://www.ams.org/mathscinet-getitem?mr=3743225
https://www.ams.org/mathscinet-getitem?mr=1738899
https://www.ams.org/mathscinet-getitem?mr=2136736
https://www.ams.org/mathscinet-getitem?mr=1035222
https://www.ams.org/mathscinet-getitem?mr=1241705
https://www.ams.org/mathscinet-getitem?mr=142607
https://www.ams.org/mathscinet-getitem?mr=3473419
https://www.ams.org/mathscinet-getitem?mr=3519480
https://www.ams.org/mathscinet-getitem?mr=3518219
https://www.ams.org/mathscinet-getitem?mr=3775352
https://www.ams.org/mathscinet-getitem?mr=0346025


Bibliography 241

[113] V. Hinich, Tamarkin’s proof of Kontsevich formality theorem, Forum Math. 15 (2003), no. 4,
591–614, DOI 10.1515/form.2003.032. MR1978336

[114] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46
(1945), 58–67, DOI 10.2307/1969145. MR0011076

[115] G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246–269,
DOI 10.2307/1992988. MR80654

[116] G. Hochschild, B. Kostant, and A. Rosenberg, Differential forms on regular affine algebras,
Trans. Amer. Math. Soc. 102 (1962), 383–408, DOI 10.2307/1993614. MR142598

[117] T. Holm, The Hochschild cohomology ring of a modular group algebra: the commutative case,
Comm. Algebra 24 (1996), no. 6, 1957–1969, DOI 10.1080/00927879608825682. MR1386022

[118] T. Holm, Hochschild cohomology rings of algebras k[X]/(f), Beiträge Algebra Geom. 41
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[174] H. Poincaré, Analysis situs, J. de l’École Polytechnique 1 (1895), no. 2, 1–123.

https://www.ams.org/mathscinet-getitem?mr=879273
https://www.ams.org/mathscinet-getitem?mr=1890736
https://www.ams.org/mathscinet-getitem?mr=934572
https://www.ams.org/mathscinet-getitem?mr=2774661
https://www.ams.org/mathscinet-getitem?mr=0294454
https://www.ams.org/mathscinet-getitem?mr=1243637
https://www.ams.org/mathscinet-getitem?mr=3341818
https://www.ams.org/mathscinet-getitem?mr=3498646
https://www.ams.org/mathscinet-getitem?mr=3741848
https://www.ams.org/mathscinet-getitem?mr=2776874
https://www.ams.org/mathscinet-getitem?mr=1757274
https://www.ams.org/mathscinet-getitem?mr=2653667
https://www.ams.org/mathscinet-getitem?mr=2875343
https://www.ams.org/mathscinet-getitem?mr=1364455
https://www.ams.org/mathscinet-getitem?mr=2563183
https://www.ams.org/mathscinet-getitem?mr=1181095


244 Bibliography

[175] A. Polishchuk and L. Positselski, Quadratic algebras, University Lecture Series, vol. 37,
American Mathematical Society, Providence, RI, 2005. MR2177131

[176] L. E. Positselski, Nonhomogeneous quadratic duality and curvature (Russian, with Rus-
sian summary), Funktsional. Anal. i Prilozhen. 27 (1993), no. 3, 57–66, 96, DOI
10.1007/BF01087537; English transl., Funct. Anal. Appl. 27 (1993), no. 3, 197–204.
MR1250981

[177] S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60, DOI
10.2307/1995637. MR265437

[178] C. Psaroudakis, Ø. Skartsæterhagen, and Ø. Solberg, Gorenstein categories, singular equiv-
alences and finite generation of cohomology rings in recollements, Trans. Amer. Math. Soc.
Ser. B 1 (2014), 45–95, DOI 10.1090/S2330-0000-2014-00004-6. MR3274657

[179] D. Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra
(Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence,
R.I., 1970, pp. 65–87. MR0257068

[180] D. Quillen, Algebra cochains and cyclic cohomology, Inst. Hautes Études Sci. Publ. Math.
68 (1988), 139–174 (1989). MR1001452

[181] D. Quillen, Cyclic cohomology and algebra extensions, K-Theory 3 (1989), no. 3, 205–246,
DOI 10.1007/BF00533370. MR1040400

[182] D. E. Radford, Hopf algebras, Series on Knots and Everything, vol. 49, World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR2894855

[183] M. J. Redondo and L. Román, Comparison morphisms between two projective resolutions
of monomial algebras, Rev. Un. Mat. Argentina 59 (2018), no. 1, 1–31. MR3825761

[184] V. S. Retakh, Homotopy properties of categories of extensions (Russian), Uspekhi Mat.
Nauk 41 (1986), no. 6(252), 179–180. MR890505

[185] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991),
no. 1, 37–48, DOI 10.1112/jlms/s2-43.1.37. MR1099084

[186] M. Ronco, On the Hochschild homology decompositions, Comm. Algebra 21 (1993), no. 12,
4699–4712, DOI 10.1080/00927879308824824. MR1242856

[187] J. J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer, New
York, 2009. MR2455920

[188] K. Sanada, On the Hochschild cohomology of crossed products, Comm. Algebra 21 (1993),
no. 8, 2727–2748, DOI 10.1080/00927879308824703. MR1222741

[189] T. Schedler, Deformations of algebras in noncommutative geometry, Noncommutative al-
gebraic geometry, Math. Sci. Res. Inst. Publ., vol. 64, Cambridge Univ. Press, New York,
2016, pp. 71–165. MR3618473

[190] W. F. Schelter, Smooth algebras, J. Algebra 103 (1986), no. 2, 677–685, DOI 10.1016/0021-
8693(86)90160-2. MR864437

[191] M. Schlessinger and J. Stasheff, The Lie algebra structure of tangent cohomology and de-
formation theory, J. Pure Appl. Algebra 38 (1985), no. 2-3, 313–322, DOI 10.1016/0022-
4049(85)90019-2. MR814187

[192] H.-J. Schneider, Lectures on Hopf algebras, Universidad Nacional de Córdoba, 2006.
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Hilbert’s Syzygy Theorem, 218
Hochschild n-boundaries, 4
Hochschild n-coboundaries, 5
Hochschild n-cocycles, 5
Hochschild n-cycles, 4
Hochschild chains, 3
Hochschild cochains, 4
Hochschild cohomology, 5
Hochschild dimension, 79
Hochschild homology, 4
Hochschild-Kostant-Rosenberg

Theorem, 61
Hodge decomposition, 23, 62
Hom complex, 225
homological degree, 111
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homological grading, 111
homologically smooth, 81
homologous, 211
homology, 211
homology spectral sequence, 230
homotopy, 212
homotopy derivation, 151
homotopy lifting, 127
Hopf algebra, 182
Hopf algebra cohomology ring, 193
horizontal differentials, 224
Horseshoe Lemma, 222

identity morphism, 226
identity morphism of A∞-algebra, 145
induced module, 227
infinitesimal n-deformation, 143
infinitesimal deformation, 104
initial object, 228
injective dimension, 218
injective module, 214
injective resolution, 216
inner derivation, 11
integrable, 104
internal degree, 111
internal grading, 111
invariant submodule, 186
invariants, 71
invertible bimodule, 88
isomorphism, 226

Jacobi identity, 17, 103
Jacobson radical, 82, 162

Kähler differentials, 84
Künneth Theorem, 225
kernel of a morphism, 229
Koszul bimodule resolution, 65
Koszul complex, 58
Koszul dual, 63
Koszul resolution, 65
Krull dimension, 161

left adjoint, 227
left derived functor, 230
left dual, 189
left exact functor, 229
left global dimension, 218
left integral, 184
Leibniz rule, 213, 234
length of a path, 75
Lie algebra, 17, 103
lifting of a map, 216

lifts, 110
locally finite dimensional, 64
long exact sequence for Ext, 223
long exact sequence for Tor, 223

Maurer-Cartan equation, 108
maximal ideal spectrum, 160
minimal A∞-algebra, 142
minimal L∞-algebra, 153
minimal model, 146
minimal projective resolution, 216
Miyashita-Ulbrich action, 206
module algebra, 184
monomial algebra, 75
monomorphism, 229
Morita equivalence, 7, 227
morphism, 226
morphism of A∞-algebras, 144
morphism of L∞-algebras, 154
multiplication map of a deformation,

100
multiplicative spectral sequence, 233

Nakayama relations, 227
natural isomorphism, 227
natural transformation, 227
noncommutative differential forms, 84
normalized bar resolution, 6

object, 226
obstruction to a deformation, 102
outer derivations, 11

page of a spectral sequence, 231
path, 75
path algebra, 75
PBW deformation, 112
PBW Theorem, 115
periodic module, 178
Poincaré-Birkhoff-Witt Theorem, 115
Poisson algebra, 108
Poisson bracket, 108
primary obstruction vanishes, 104
product, 228
projective cover, 214
projective dimension, 217
projective module, 214
projective resolution, 214
pullback, 213
pushout, 213

quadratic algebra, 63
quadratic dual, 63
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quantum affine space, 53
quantum complete intersection, 54, 57
quantum elementary abelian group, 183
quantum enveloping algebra, 182
quantum exterior algebra, 63
quantum plane, 53
quantum symmetric algebra, 53
quasi-free algebra, 81
quasi-isomorphism, 212
quasi-isomorphism of A∞-algebras, 145
quasi-isomorphism of L∞-algebras, 154
quasi-triangular, 200
quiver, 74

radical, 82
radical of an ideal, 166
rate of growth, 161
reduced bar resolution, 6
regular sequence, 59
restriction map, 203
right adjoint, 227
right derived functor, 230
right dual, 189
right exact functor, 229
right global dimension, 218
rigid, 107

Schanuel’s Lemma, 215
second long exact sequence for Ext, 223
second long exact sequence for Tor, 224
self-injective algebra, 170, 217
semisimple algebra, 82
separable algebra, 81
shifted complex, 212
short exact sequence, 212
shuffle, 21, 154
shuffle product, 21
skew group algebra, 70, 91
skew polynomial ring, 53
small quantum group, 183
smash product, 184
smooth, 81
smooth algebra, 60
Snake Lemma, 221
source, 75
spectral sequence, 230
square, divided, 17
square-zero extension, 85
standard resolution, 3
Stasheff identities, 142
strong homotopy derivation, 151

strongly homotopy associative algebras,
141

subpath, 75
support variety, 167, 201
Sweedler notation, 183
symmetric algebra, 49, 96
syzygy module, 215

target, 75
tensor algebra, 49
tensor induced module, 227
tensor product algebra, 45
tensor product complex, 224
terminal object, 228
total complex, 224
trivial deformation, 105
trivial module, 186
truncated complex, 215, 216
truncated polynomial ring, 8
truncated skew polynomial ring, 54
twisted Calabi-Yau algebra, 91
twisted tensor product algebra, 53, 57,

80
twisting map, 57

Universal Coefficients Theorem, 225
universal enveloping algebra, 103, 182
unshuffles, 153

Van den Bergh duality, 88
vertical differentials, 224
vertices, 74

Weyl algebra, 102, 104

Yoneda composition, 35, 191
Yoneda product, 27
Yoneda splice, 35

Zariski topology, 160
zero divisor, 59
zero object, 228
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