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Preface

What is this book about?

This book is about ultrafilters. So what is an ultrafilter? Given a set X,
an ultrafilter on X is simply a “sensible” division of all of the subsets of X
into two categories: small and large. For this division to be sensible, one
should impose some axioms:

• X should be a large subset of X, while ∅ should be a small subset
of X.

• If Y is a large subset of X and Y ⊆ Z ⊆ X, then Z should also be
large; that is, a set containing a large set should also be large.

• If Y and Z are two large subsets of X, then so is Y ∩ Z.

The last axiom is perhaps not entirely intuitive, but becomes more in-
tuitive when stated in terms of small sets: the union of two small sets is
once again small. The axioms also imply that a set is large precisely when
its complement is small.

Why write a book about such a seemingly simple notion? It turns out
that this notion is very useful for describing limits of various objects. For
example, much to the chagrin of many calculus students, one knows that
there are many sequences (an)n∈N from [0, 1] that have no limit. However,
limit in the usual sense is very restrictive in that it requires an to be close to
the limit for a large number of n, where large here means for all but finitely
many n. Note that this restrictive notion of largeness does not lead to an
ultrafilter on N as there are certainly sets that are infinite and which have
infinite complement. However, if one works with a notion of largeness as
given by an ultrafilter, then all of a sudden every sequence in [0, 1] has a

xiii



xiv Preface

limit! This fact can be used as a powerful tool in analytic and topological
endeavors.

The notion of ultrafilter also allows one to consider limits of families of
structures like groups, rings, graphs, or Banach spaces. The limiting struc-
tures alluded to here are called ultraproducts and will become a central
part of this book. These limiting objects can be very useful in solving prob-
lems, for often various desirable properties are approximately true in the
individual structures of the family, while in the limit they become exactly
true.

Who should read this book?

The short answer is: everyone! More precisely, the thesis of this book is
that, while ultrafilters and ultraproducts are often relegated to graduate-
level courses in logic, we believe that this practice is entirely misguided.
Indeed, the notion of ultrafilter and ultraproduct are entirely accessible to
an advanced undergraduate or beginning graduate student in mathematics
(the target audience of this book). Moreover, as we will see throughout
the course of this book, ultrafilters and ultraproducts have had numerous
applications to nearly every area of mathematics. Thus, no matter what area
of mathematics the reader is interested in, it is quite likely that ultrafilters
and ultraproducts have made an impact in that area. An attempt has been
made to present as diverse a sample of such applications as possible.

That being said, this book is being written by a logician, and ultrafil-
ters present numerous fascinating foundational concerns, many of which are
discussed in this book. If the reader is purely interested in mathematical
applications, they may safely skip the portions of this book discussing these
metamathematical issues.

What is in this book?

Let us briefly summarize the contents of this book. Part 1 is entirely de-
voted to ultrafilters. Chapter 1 introduces the basic facts about ultrafilters,
including what it means for them to be isomorphic and how many of them
there are. Chapter 2 provides one with a first application of ultrafilters,
namely to a proof of Arrow’s theorem on fair voting. This application is
nice in the sense that it requires little to no mathematical background and
yet exemplifies a perfect use of ultrafilters. Chapter 3 introduces the use of
ultrafilters in topology, including the aforementioned facts about generalized
limits. This chapter also shows how ultrafilters can be used to describe the
important Stone-Čech compactification construction. Chapter 4 is a brief
introduction to how ultrafilters can be used in certain parts of combinatorics;
a much more detailed investigation of that line of research can be found in
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the book [42], written by the author with Mauro Di Nasso and Martino
Lupini. Chapter 5, the last chapter in Part 1 of the book, discusses many of
the interesting foundational issues presented by the existence of ultrafilters.

Part 2 of the book is concerned with the classical ultraproduct construc-
tion. As alluded to above, this construction allows one to take the limit
of families of objects such as groups, rings, graphs, etc., . . . The lengthy
Chapter 6 introduces this construction and proves the Fundamental The-
orem of Ultraproducts (otherwise known as �Loś’s theorem), which states
that the truth of a first-order sentence in an ultraproduct is determined by
whether or not the sentence is true in a large (as measured by the ultrafilter)
number of the individual structures. This chapter includes many other im-
portant facts about ultraproducts, including cardinalities of ultraproducts
and a discussion of what happens when one tries to iterate the ultraproduct
construction.

Chapter 7 gives one a first look at how ultraproducts can be used “in
practice.” The applications in this chapter are all algebraic in nature, and
include Ax’s theorem on polynomial functions and the Ax-Kochen theorem
relating the rings Zp of p-adic integers with the power series rings Fp[[T ]].
One important feature of ultraproducts is that they are often very “rich”
in the precise sense of being saturated. Chapter 8 gives a detailed discus-
sion of exactly how saturated ultraproducts can be. Chapter 9 gives a brief
introduction to nonstandard analysis. While nonstandard analysis is a sub-
ject of its own, it is often presented using ultraproducts and we discuss this
approach here. This chapter is far from a complete story on nonstandard
analysis and we refer the interested reader to [42] for a more thorough dis-
cussion. Chapter 10 discusses the class of subgroups of nonstandard (in
the sense of Chapter 9) free groups; the finitely generated such subgroups
are called limit groups and have become a widely studied class of groups in
geometric group theory.

The ultraproduct construction referred to above is suitable for discrete
spaces such as those arising in algebra and combinatorics, but is not very
useful for structures appearing in analysis. Part 3 of the book is concerned
with a modification of the ultraproduct construction for structures based on
metric spaces. Chapter 11 introduces this metric ultraproduct and discusses
some of its basic properties. That chapter also includes a discussion of a
relatively new logic, aptly called continuous logic, which is the logic naturally
connected to this metric ultraproduct construction.

The remainder of Part 3 details several applications of the metric ultra-
product construction. Chapter 12 describes a fascinating theorem of Gro-
mov from geometric group theory, where the key ingredient to the proof
is a particular metric ultraproduct called an asymptotic cone. Chapter 13
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discusses the class of sofic groups, which can be defined in terms of metric
ultraproducts of symmetric groups. Chapter 14, the final chapter of Part 3,
discusses some applications of metric ultraproducts to functional analysis.
One might argue that functional analysis is an area of mathematics where
ultraproducts have played an increasingly more important role. Unfortu-
nately, the mathematical background needed by the reader is much larger
in this area of mathematics and thus this section cannot quite do justice to
the importance of ultraproducts in functional analysis.

Part 4, the last part of this book, is devoted to three advanced top-
ics. Chapter 15 discusses a question that often arises to many people seeing
ultraproducts for the first time: does the ultraproduct depend on the ultra-
filter being used? The answer to this question is surprisingly subtle and a
more or less complete answer to a specific case of this question is discussed.
Chapter 16 discusses the fantastic Keisler-Shelah theorem, which shows how
elementary equivalence, a notion from logic, can be reformulated in terms
of isomorphic ultrapowers, a purely algebraic notion. This chapter also in-
cludes a few applications of the Keisler-Shelah theorem. Chapter 17, the
final chapter of the book, shows how the study of large cardinals in set the-
ory can be recast in terms of ultrafilters satisfying certain extra properties.
This part of the book might require a bit more maturity and/or background
from the reader.

What are the prerequisites for reading this book?

We have no illusions that any one student has all of the prerequisites neces-
sary to read the entire book. However, this fact is by design! As discussed
above, we are trying to convey to the reader that ultrafilters and ultraprod-
ucts are applicable in most areas of mathematics and thus we have tried to
describe a wide variety of applications.

That being said, we have assumed that the reader is familiar with some
basic facts from real analysis, topology, and algebra. Any facts that we
believe are not part of the usual curricula from those disciplines are often
described in full detail here. Sometimes certain topics are outside of the
scope of this book and we provide references to the reader for places in
the literature where they can learn more. It is also our hope that a reader
interested in, for example, algebra sees the chapter on, say, functional anal-
ysis, and finds the general idea interesting enough that they decide to learn
more about this area. In today’s mathematical world, breadth is everything
and an aspiring mathematician should keep their eyes open to all areas of
mathematics.

In discussing ultrafilters, one cannot hide the fact that logic and set
theory play an important role. Moreover, there is a high probability that
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the average reader might not have the requisite knowledge in these areas to
follow the main parts of this book. For the reader’s convenience, appendices
on these subjects are included in this book. Also, occasionally in the text,
very basic parts of category theory are needed and the necessary facts from
category theory are collected in the final appendix.

How to read this book

Some later chapters rely somewhat heavily on earlier chapters. The follow-
ing flowchart lists some of these dependencies. The blue arrows indicate
dependencies that are not strictly necessary but possibly helpful.

Ultrafilter
basics

1Arrow’s
theorem

2 Foundational
concerns

5

Classical
ultraproducts

6Ultrafilters
in topology

3

Ramsey
theory

4

Large car-
dinals

17

Applications
to algebra

7

Ultraproducts
and saturation

8Metric
ultraproducts

11

Gromov’s
theorem

12 Nonstandard
analysis

9

Limit groups10Sofic groups13Functional
analysis

14

Ultrafilter
dependence

15

Keisler-Shelah16

Exercises

Rather than ending each section or chapter with a list of exercises, we have
instead sprinkled them throughout the text itself. Some of the exercises
are simply checks for understanding, but others are more involved. Often,
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the exercises themselves will be used in the proofs of later results. We
recommend that the reader stop reading when they encounter an exercise
and attempt a solution at that moment. Solutions to a handful of exercises
appear in Appendix D but we urge the reader not to consult these solutions
unless the situation becomes dire!
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[61] Zdeněk Froĺık, Non-homogeneity of βP − P , Comment. Math. Univ. Carolinae 8 (1967),
705–709. MR266160

[62] Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on
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[85] Paul E. Howard, �Loś’ theorem and the Boolean prime ideal theorem imply the axiom of
choice, Proc. Amer. Math. Soc. 49 (1975), 426–428, DOI 10.2307/2040659. MR384548

[86] Ehud Hrushovski, Stable group theory and approximate subgroups, J. Amer. Math. Soc. 25
(2012), no. 1, 189–243, DOI 10.1090/S0894-0347-2011-00708-X. MR2833482
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