Non-Euclidean Geometry in the Theory of Automorphic Functions

Jacques Hadamard

Jeremy J. Gray
and
Abe Shenitzer
Editors

American Mathematical Society
London Mathematical Society
Selected Titles in This Series

17 Jacques Hadamard (Jeremy J. Gray and Abe Shenitzer, Editors), Non-Euclidean geometry in the theory of automorphic functions, 1999
16 P. G. L. Dirichlet (with Supplements by R. Dedekind), Lectures on number theory, 1999
15 Charles W. Curtis, Pioneers of representation theory: Frobenius, Burnside, Schur, and Brauer, 1999
14 Vladimir Maz'ya and Tatyana Shaposhnikova, Jacques Hadamard, a universal mathematician, 1998
12 Walter Rudin, The way I remember it, 1997
11 June Barrow-Green, Poincaré and the three body problem, 1997
10 John Stillwell, Sources of hyperbolic geometry, 1996
9 Bruce C. Berndt and Robert A. Rankin, Ramanujan: Letters and commentary, 1995
7 Henk J. M. Bos, Lectures in the history of mathematics, 1993
6 Smilka Zdravkovska and Peter L. Duren, Editors, Golden years of Moscow mathematics, 1993
5 George W. Mackey, The scope and history of commutative and noncommutative harmonic analysis, 1992
3 Peter L. Duren et al., Editors, A century of mathematics in America, part III, 1989
2 Peter L. Duren et al., Editors, A century of mathematics in America, part II, 1989
1 Peter L. Duren et al., Editors, A century of mathematics in America, part I, 1988
This page intentionally left blank
Non-Euclidean
Geometry in
the Theory of
Automorphic
Functions
This page intentionally left blank
Non-Euclidean Geometry in the Theory of Automorphic Functions

Jacques Hadamard

Jeremy J. Gray and Abe Shenitzer, Editors

Translated by Abe Shenitzer

With Historical Introduction by Jeremy J. Gray

American Mathematical Society
London Mathematical Society
Neevklidova geometriya v teorii avtomorfnyh funktsii
by Jacques Hadamard

Original Russian text translated by Abe Shenitzer.

1991 Mathematics Subject Classification. Primary 01–XX, 01A55, 01A60;
Secondary 30–03, 30F35, 34A20, 51–03.

Library of Congress Cataloging-in-Publication Data
Non-Euclidean geometry in the theory of automorphic functions / Jacques Hadamard ; Jeremy J. Gray, Abe Shenitzer, editors ; translated by Abe Shenitzer ; with historical introduction by Jeremy J. Gray.
p. cm. — (History of mathematics ; v. 17)
Includes bibliographical references.
II. Shenitzer, Abe. III. Title. IV. Series.
QA353.A9H33 1999
515.9—dc21 99-31709
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Assistant to the Publisher, American Mathematical Society,
P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to
reprint-permission@ams.org.

© 1999 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.

The American Mathematical Society retains all rights
except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

The London Mathematical Society is incorporated under Royal Charter
and is registered with the Charity Commissioners.
Visit the AMS home page at URL: http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 04 03 02 01 00 99
Contents

Acknowledgments ix

Introduction by the publishers of the Russian translation xi

Historical introduction

Jeremy Gray 1

A brief history of automorphic function theory, 1880–1930

Jeremy Gray 3

Chapter I. The group of motions of the hyperbolic plane and its properly discontinuous subgroups 17

Chapter II. Discontinuous groups in three geometries. Fuchsian functions 37

Chapter III. Fuchsian functions 57

Chapter IV. Kleinian groups and functions 71

Chapter V. Algebraic functions and linear algebraic differential equations 79

Chapter VI. Fuchsian groups and geodesics 87

References 93

Additional references 95
This page intentionally left blank
Acknowledgments

The editors wish to thank Sarah Shenitzer for carefully reading the translation and eliminating a number of infelicities and outright errors. We also wish to thank Deb Smith for her care in the preparation of the final version of the manuscript and for the patience with which she handled scores of last-minute corrections.
This page intentionally left blank
Introduction by the Publishers of the Russian Translation

In the Editors’ Introduction to B.A. Fuks’ book *Non-euclidean geometry in the theory of conformal and pseudoconformal mappings*, volume V in this series, it was mentioned that the eminent French mathematician J. Hadamard wrote in the 1920s a monograph in connection with the preparation of an edition of the collected works of N.I. Lobachevski. The author’s manuscript was translated by A.V. Vasil’ev and edited by B.A. Fuks.

Hadamard’s monograph is a survey, and most of its propositions are stated without proof. This called for a number of notes. The notes were written by B.A. Fuks.

Fuks’ book can serve as an introduction to the Hadamard monograph.

The possibility of establishing a Lobachevskian metric in a simply connected region of the complex plane provided in the past the stimulus for the discovery of automorphic functions. The metric in question played an essential, and at times crucial, role in all stages of the construction of the grand edifice of these functions which have such important applications to many problems of mathematical analysis.

The basic aim of Hadamard’s small book is to demonstrate the fundamental importance of the Lobachevskian metric for the theory of automorphic functions.

While the author usually omits proofs, in most cases he provides their underlying ideas or outlines. When he does this, he tends to emphasize the significance of the relevant propositions or facts of Lobachevskian geometry for each argument.

By now it is clear that Hadamard’s book cannot serve as a textbook on the theory of automorphic functions and that it can only be recommended to readers who have a certain amount of knowledge of this theory. A good source for the required background knowledge is chapters II and III of the recently published second edition of V.V. Golubev’s *Lectures on the analytic theory of differential equations*, Gostekhizdat, M.-L., 1950. Chapters II and III of B.A. Fuks’ *Non-euclidean geometry in the theory of conformal and pseudoconformal mappings* (Gostekhizdat 1951), volume V in this series, are a good source of indispensable information about the Lobachevskian metric in a simply connected domain of the complex plane, about the group of motions generated by this metric, and about its properly discontinuous subgroups.

Chapter I of Hadamard’s book, “The group of motions of the Lobachevskian plane and its properly discontinuous subgroups”, is of an introductory nature. It describes the subsequently used realizations of the Lobachevskian plane, brings together the most important properties of the properly discontinuous subgroups of its group of motions, and partly explains the characteristic singular features of their fundamental domains.
Chapter II, “Properly discontinuous groups of 3 geometries. Fuchsian groups”, is devoted to the study of the properly discontinuous subgroups of the groups of motions of the geometries of Riemann, Euclid, and Lobachevski. (In particular, it deals with the conditions under which a polygon in the Lobachevskian plane can serve as a fundamental region of a properly discontinuous subgroup of its group of motions.)

Chapter III deals with Fuchsian functions and Chapter IV with Kleinian functions; in particular, these chapters include the theory of Poincaré’s theta series.

Chapter V is devoted to applications of the automorphic functions constructed in the earlier chapters to the problem of uniformization of algebraic curves and to the solution of ordinary linear differential equations with algebraic coefficients.

The last chapter, Chapter VI, is titled “Fuchsian groups and geodesic lines”. It is relatively short and is in the nature of an appendix. The book includes references to works that contain comprehensive accounts of touched-on issues. Additional references are found in the editor’s notes.

REMARK. In the English translation, the Russian footnotes appear as Notes at the end of each of the six chapters. (Eds.)
References

Additional References

Non-Euclidean Geometry in the Theory of Automorphic Functions
Jacques Hadamard

Jeremy J. Gray and Abe Shenitzer, Editors

This is the English translation of a volume originally published only in Russian and now out of print. The book was written by Jacques Hadamard on the work of Poincaré.

Poincaré’s creation of a theory of automorphic functions in the early 1880s was one of the most significant mathematical achievements of the nineteenth century. It directly inspired the uniformization theorem, led to a class of functions adequate to solve all linear ordinary differential equations, and focused attention on a large new class of discrete groups. It was the first significant application of non-Euclidean geometry. The implications of these discoveries continue to be important to this day in numerous different areas of mathematics.

Hadamard begins with hyperbolic geometry, which he compares with plane and spherical geometry. He discusses the corresponding isometry groups, introduces the idea of discrete subgroups, and shows that the corresponding quotient spaces are manifolds. In Chapter 2 he presents the appropriate automorphic functions, in particular, Fuchsian functions. He shows how to represent Fuchsian functions as quotients and how Fuchsian functions invariant under the same group are related, and indicates how these functions can be used to solve differential equations. Chapter 4 is devoted to the outlines of the more complicated Kleinian case. Chapter 5 discusses algebraic functions and linear algebraic differential equations, and the last chapter sketches the theory of Fuchsian groups and geodesics.

This unique exposition by Hadamard offers a fascinating and intuitive introduction to the subject of automorphic functions and illuminates its connection to differential equations, a connection not often found in other texts.

This book is the second in an informal sequence of works called “History of Mathematics, Sources”, to be included within the History of Mathematics series, co-published by the AMS and the London Mathematical Society. Volumes to be published within this subset are classical mathematical works that served as cornerstones for modern mathematical thought. (For another historical translation on this topic, see Sources of Hyperbolic Geometry, volume 10 in the History of Mathematics series.)