MATHEMATICS UNBOUND:
The Evolution of an International Mathematical Research Community, 1800–1945

Karen Hunger Parshall
Adrian C. Rice
Editors

American Mathematical Society
London Mathematical Society
Selected Titles in This Series

22 Bruce C. Berndt and Robert A. Rankin, Editors, Ramanujan: Essays and surveys, 2001
21 Armand Borel, Essays in the history of Lie groups and algebraic groups, 2001
20 Kolmogorov in perspective, 2000
19 Hermann Grassmann, Extension theory, 2000
18 Joe Albre, David C. Arney, and V. Frederick Rickey, A station favorable to the pursuits of science: Primary materials in the history of mathematics at the United States Military Academy, 2000
17 Jacques Hadamard (Jeremy J. Gray and Abe Shenitzer, Editors), Non-Euclidean geometry in the theory of automorphic functions, 1999
16 P. G. L. Dirichlet (with Supplements by R. Dedekind), Lectures on number theory, 1999
15 Charles W. Curtis, Pioneers of representation theory: Frobenius, Burnside, Schur, and Brauer, 1999
14 Vladimir Maz'ya and Tatyana Shaposhnikova, Jacques Hadamard, a universal mathematician, 1998
12 Walter Rudin, The way I remember it, 1997
11 June Barrow-Green, Poincaré and the three body problem, 1997
10 John Stillwell, Sources of hyperbolic geometry, 1996
9 Bruce C. Berndt and Robert A. Rankin, Ramanujan: Letters and commentary, 1995
7 Henk J. M. Bos, Lectures in the history of mathematics, 1993
6 Smilka Zdravkovska and Peter L. Duren, Editors, Golden years of Moscow mathematics, 1993
5 George W. Mackey, The scope and history of commutative and noncommutative harmonic analysis, 1992
3 Peter L. Duren et al., Editors, A century of mathematics in America, part III, 1989
2 Peter L. Duren et al., Editors, A century of mathematics in America, part II, 1989
1 Peter L. Duren et al., Editors, A century of mathematics in America, part I, 1988
MATHEMATICS UNBOUND:
The Evolution of an International Mathematical Research Community,
1800–1945
This page intentionally left blank
MATHEMATICS UNBOUND:
The Evolution of an International Mathematical Research Community,
1800–1945

Karen Hunger Parshall
Adrian C. Rice
Editors

American Mathematical Society
London Mathematical Society
Contents

Acknowledgments xi

List of Contributors xv

Photograph and Figure Credits xxvii

Chapter 1. The Evolution of an International Mathematical Research Community, 1800–1945: An Overview and an Agenda

 KAREN HUNGER PARSHALL AND ADRIAN C. RICE 1

 Introduction 1
 Internationalization, Internationalism, Transnationalism, Supranationalism, Multinationalism, Denationalization, . . . : What’s in a Word? 2
 The Timeframe: 1800–1945 5
 The Internationalization of a Mathematical Research Community, 1800–1945: A First Vintage 6
 A Second Vintage and Beyond 11
 References 14

Chapter 2. The End of Dominance: The Diffusion of French Mathematics Elsewhere, 1820–1870

 IVOR GRATTAN-GUINNESS 17

 Multinationalism vs. Internationalism 17
 French Dominance 18
 Translating the French 20
 Déclin? 24
 Case Study 1: Real-Variable Analysis 25
 Case Study 2: Complex-Variable Analysis 27
 Case Study 3: From Energy Mechanics to Energetics 28
 Case Study 4: Celestial Mechanics, Especially Perturbations 30
 Case Study 5: The Influence of Gauss 32
 Concluding Remarks 33
 References 34
 Appendix 39

Chapter 3. Spanish Initiatives to Bring Mathematics in Spain into the International Mainstream

 ELENA AUSEJO AND MARIANO HORMIGÓN 45

 The International Mainstream: A Problem of Definition 45
 The Enlightenment 46
 The Nineteenth Century 48
 The Role of Individuals in History 51
The First Third of the Twentieth Century 53
Conclusion 57
References 58

Chapter 4. International Mathematical Contributions to British Scientific Journals, 1800–1900
SLOAN EVANS DESPEAUX 61
Introduction 61
Foreign Mathematics in British General Science Journals 62
British Specialized Science Journals as a Venue for Foreign Mathematics 66
Changes in Foreign Participation through the Nineteenth Century 69
A Geographical Profile of the Publication Community 76
Society Involvement and Personal Influence: Factors in Foreign Participation 79
Conclusions 83
References 83

Chapter 5. International Participation in Liouville's *Journal de mathématiques pures et appliquées*
JESPER LÜTZEN 89
Introduction 89
The National Enterprise 89
Foreign Contributions to Liouville's *Journal* 91
Countering the Sense of French Self-sufficiency 93
International Inspirations for Liouville's Work: Mechanics 95
International Inspirations for Liouville's Work: Potential Theory 97
International Inspirations for Liouville's Work: Differential Geometry 98
Conclusion 100
References 101

Chapter 6. The Effects of War on France's International Role in Mathematics, 1870–1914
HÉLÈNE GISPER 105
Introduction 105
The Creation of a National Mathematical Society: Nationalism and Professionalization 106
Structuralization of the SMF: Establishing an Academic Center 110
A Non-academic Periphery: Actors in and Values of the AFAS 111
Foreign Contributions to the Journals of the SMF and the AFAS 115
Center and Periphery: From National Contexts to the International Scale 117
Conclusion 119
References 120

Chapter 7. Charles Hermite and German Mathematics in France
THOMAS ARCHIBALD 123
Introduction 123
Hermite and German Mathematical Values 124
Hermite's Critique of Radicalism 126
The Promotion of Franco-German Relations in Mathematics 128
Bringing German Mathematics to French Students: A Thankless Task 131
German Mathematics and the French Mathematical Research Community 133
CONTENTS

Concluding Remarks 135
References 136

Chapter 8. Gösta Mittag-Leffler and the Foundation and Administration of *Acta Mathematica*
JUNE E. BARROW-GREEN 139
Introduction 139
The Founding of *Acta Mathematica* 140
Poincaré, Cantor, Kovalevskaya, and *Acta Mathematica* 148
Acta Mathematica Volumes 1-20 155
Conclusion 158
References 161

Chapter 9. An Episode in the Evolution of a Mathematical Community: The Case of Cesare Arzelà at Bologna
LAURA MARTINI 165
The Bolognese Context 165
Galois Theory in the European Curriculum 166
Arzelà’s Sources for the Lectures 169
The Ruffini-Abel Theorem 170
Conclusions 175
References 175
Appendix 178

Chapter 10. The First International Mathematical Community: The *Circolo matematico di Palermo*
ALDO BRIGAGLIA 179
Introduction 179
The *Circolo matematico di Palermo* in the Sicilian Cultural Milieu 179
The *Circolo matematico di Palermo* in the Italian Mathematical Milieu 180
The Role of Giovan Battista Guccia in the *Circolo* 183
The *Circolo* and the Internationalization of Mathematical Research 186
A Decade of Great Development, 1904-1914 187
The Decline 195
Conclusions 198
References 199

Chapter 11. Languages for Mathematics and the Language of Mathematics in a World of Nations
JEREMY J. GRAY 201
Introduction 201
A World of Nations 201
National Languages 203
International Languages in General 205
International Languages in Particular 206
Language, Meaning, and Mathematics: Calculation and Pasigraphy 209
Is Mathematics a Language? 211
Universal Language and Calculating Language 212
Nineteenth-century Linguistics 214
Language, Meaning, and Mathematics: Signifies 216
<table>
<thead>
<tr>
<th>Chapter 12.</th>
<th>The Emergence of the Japanese Mathematical Community in the Modern Western Style, 1855–1945</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chikara Sasaki</td>
</tr>
<tr>
<td></td>
<td>Japanese Mathematics from Traditional to Modern</td>
</tr>
<tr>
<td></td>
<td>Chinese Mathematics and Its Reform in Seventeenth-Century Japan</td>
</tr>
<tr>
<td></td>
<td>Learning Western Mathematics as Military Science, 1855–1868</td>
</tr>
<tr>
<td></td>
<td>Educational Reform during the Early Meiji Period, 1868–1877</td>
</tr>
<tr>
<td></td>
<td>The University of Tokyo and the Tokyo Mathematical Society, 1877–1881</td>
</tr>
<tr>
<td></td>
<td>The Germanization of the Political System and of Learning, 1881–1945</td>
</tr>
<tr>
<td></td>
<td>“For the Nation!” Fujisawa and Mathematical Research at Tokyo</td>
</tr>
<tr>
<td></td>
<td>The Kyoto University School</td>
</tr>
<tr>
<td></td>
<td>The Tohoku University School</td>
</tr>
<tr>
<td></td>
<td>The Other Colleges and Universities</td>
</tr>
<tr>
<td></td>
<td>Towards Democratization and Internationalization after World War II</td>
</tr>
<tr>
<td></td>
<td>Conclusion: General Characteristics of Mathematical Studies in Modern Japan</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13.</th>
<th>Internationalizing Mathematics East and West: Individuals and Institutions in the Emergence of a Modern Mathematical Community in China</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joseph W. Dauben</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>Modern Science Emerges in China: The Self-Strengthening Movement</td>
</tr>
<tr>
<td></td>
<td>The Beijing Tongwen Guan (1861–1862)</td>
</tr>
<tr>
<td></td>
<td>The Shanghai Tongwen Guan (1863–1864) and the Jiangnan Arsenal (1865)</td>
</tr>
<tr>
<td></td>
<td>The Fuzhou Shipyard (1866)</td>
</tr>
<tr>
<td></td>
<td>Educational Reform and the “Reign of One Hundred Days”</td>
</tr>
<tr>
<td></td>
<td>Japan as an Early Role Model</td>
</tr>
<tr>
<td></td>
<td>England: Supporting the Rise of Mathematics in Modern China</td>
</tr>
<tr>
<td></td>
<td>France: Contributing to the Transmission of Modern Mathematics to China</td>
</tr>
<tr>
<td></td>
<td>Germany: A Model for Developing Modern Mathematics in China</td>
</tr>
<tr>
<td></td>
<td>The United States</td>
</tr>
<tr>
<td></td>
<td>New Institutional Models</td>
</tr>
<tr>
<td></td>
<td>Universities</td>
</tr>
<tr>
<td></td>
<td>The Chinese Mathematical Society</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yibao Xu</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>The Boxer Indemnity and the Modernization of Chinese Mathematics</td>
</tr>
<tr>
<td></td>
<td>Harvard: An Educational Center for Chinese Mathematicians</td>
</tr>
</tbody>
</table>
Contents

The Institute for Advanced Study: A Bridge Between the U.S. and China 296
Two Unsuccessful Invitations 301
Conclusion 304
References 305

Chapter 15. American Initiatives Toward Internationalization: The Case of Leonard Dickson
 Della Dumbaugh Fenster 311
 Introduction 311
 Dickson in the Emergent Period of American Mathematics 313
 Dickson’s Research: The International Exchange of Mathematical Ideas 318
 Dickson and the Publication of Manuscripts and Book-length Treatises 323
 American Mathematics: Unbound 328
 References 329

Chapter 16. The Effects of Nazi Rule on the International Participation of German Mathematicians: An Overview and Two Case Studies
 Reinhard Siegmund-Schultze 335
 Introduction 335
 Internationalization: A Complex of Factors 336
 Germany Immediately after 1933: The Dogma of Antisemitism 339
 Case Study 1: German Participation in the Oslo ICM, July 1936 342
 Case Study 2: WWII and German International Participation: Harald Geppert and Wilhelm Süss 345
 Conclusions 347
 References 349
 Appendix 352

Chapter 17. War, Refugees, and the Creation of an International Mathematical Community
 Sanford L. Segal 359
 Introduction 359
 Before World War I 360
 World War I and After 362
 Hitler’s Germany and Mathematical Refugees 368
 The United States: Country of Refuge for Mathematicians 371
 Internationalism under American Leadership 375
 References 376

Chapter 18. The Formation of the International Mathematical Union
 Olli Lehto 381
 Introduction 381
 Background 381
 The First International Congresses of Mathematicians 384
 World War I and its Aftermath 385
 The Birth of the IMU 387
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposition to the Policy of Exclusion</td>
<td>389</td>
</tr>
<tr>
<td>The Dissolution of the IMU</td>
<td>391</td>
</tr>
<tr>
<td>Conclusion</td>
<td>392</td>
</tr>
<tr>
<td>Epilogue: The New IMU</td>
<td>393</td>
</tr>
<tr>
<td>References</td>
<td>395</td>
</tr>
<tr>
<td>Index</td>
<td>399</td>
</tr>
</tbody>
</table>
Acknowledgments

The present volume evolved from a three-day, international symposium, entitled “Mathematics Unbound: The Evolution of an International Mathematical Community, 1800–1945,” and held at the University of Virginia 27-29 May, 1999 as part of the Mathematics Department’s “Emphasis Year” in the history of mathematics. The conference, which brought together scholars from eleven different countries, received generous support from the National Science Foundation in the form of grant number SBR-9817933 as well as from the University of Virginia’s Dean of the College of Arts and Sciences, Corcoran Department of History, and Department of Mathematics. This financial support notwithstanding, the conference would not have been a success without the tireless and ever-cheerful practical assistance of the Mathematics Department’s administrative staff, Connie Abell, Mary Cline, Julie Riddleberger, and Joyce Stevens.

The last twenty-seven months have found us all—authors, referees, and editors—as part of a truly international, collaborative effort that has united scholars at all levels of professional development. The authors have worked faithfully and conscientiously to produce chapters that responded meaningfully to the critical comments and suggestions of both the referees and the editors. For their part, the referees provided thoughtful, detailed, and, above all, prompt reports with an eye toward thematic tightness. The ensuing dialogue has resulted in a series of chapters that have been almost surprising in their interconnection and mutual complementarity.

As editors, we thank not only the authors and referees but also the numerous people who have helped in the production of the finished volume. First and foremost, Julie Riddleberger labored under the unforgiving yoke of LaTeX’s indexing program, keying the entire index with remarkably good cheer in the face of technical adversity! At the American Mathematical Society, Chris Thivierge of the HMATH series, Vickie Ancona in the Production Department, and Barbara Beeton in Author Support have been constant sources of information, help, and guidance. Our thanks also go to Allen Debus, Ivor Grattan-Guinness, and Brian Parshall for their constructive remarks and observations on various parts of the manuscript. They seem never to tire of requests from their friends (or their spouse as the case may be) for their expert advice.

Our work on this project has been stimulating, both professionally and intellectually. We hope that the end-product will not only prove illuminating to our readers but also provide an impetus for future investigations into the fascinating historical question of the internationalization of research-level mathematics.

Charlottesville, Virginia
10 August, 2001

Karen Hunger Parshall
Adrian C. Rice
This page intentionally left blank
List of Contributors

Thomas Archibald is Professor in the Department of Mathematics and Statistics at Acadia University in Wolfville, Canada. He studied at the University of Waterloo, York University, and the University of Toronto, obtaining a Ph.D. from the last of these in 1987. His current research concerns mathematics in France in the late nineteenth century. Other interests include the history of the relationship between mathematics and physics, particularly in the nineteenth century, and the history of mathematics in Canada.

Address: Department of Mathematics and Statistics, Acadia University, Wolfville, NS, B0P 1X0, Canada.
E-mail: tom.archibald@acadiau.ca

Elena Ausejo earned her Ph.D. in mathematics at the University of Zaragoza in 1991 and currently serves as Associate Professor of the History of Science at her alma mater. The Secretary General of the Organizing Committee of the XIX International Congress of the History of Science (Zaragoza, 1993) and former Secretary General of the Spanish Society for the History of Science and Technology (1986–1993), she is Vice President of the Spanish Society for the History of Science and Technology. Her research focuses on the history of mathematics and science (primarily in Spain) in the nineteenth and twentieth centuries and on scientific institutionalization. She is the author of Por la Ciencia y por la Patria: La institucionalizacion científica en España en el primer tercio del siglo XX (Siglo XXI de España Editores S.A., 1993) and has edited (with Mariano Hormigón) the books, Messengers of Mathematics: European Mathematical Journals 1800-1946 (Siglo XXI, 1993) and Paradigms and Mathematics (Siglo XXI, 1996), among others.

Address: Facultad de Ciencias (Matematicas), Ciudad Universitaria, E-50009 Zaragoza, Spain.
E-mail: ichs@posta.unizar.es

June E. Barrow-Green is a Research Fellow in the History of Mathematics at the Open University. Her research interests are the history of mathematics of the nineteenth and twentieth centuries, in particular, dynamical systems theory. She is the author of Poincaré and the Three Body Problem (AMS/LMS HMATH, 1997) and is currently studying the work of George Birkhoff. She is also concerned with the use of databases in the history of mathematics and with the role of the Web in history of mathematics education.

Address: Faculty of Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom.
E-mail: j.e.barrow-green@open.ac.uk
Aldo Brigaglia earned his degree in physics at the University of Palermo, where he is now Professor of “Matematiche Complementari.” Since the early 1980s, his main area of research has been the history of science, particularly the history of mathematics in Sicily and the history of geometry and its interrelations with algebra. He has published, with Guido Masotto, *Il Circolo matematico di Palermo* (Dedalo, 1982) and, with Ciro Ciliberto, *Italian Algebraic Geometry Between the Two World Wars* (Circolo matematico di Palermo, 1995), as well as articles on the history of mathematics.

Address: Dipartimento di Matematica, Università di Palermo, Via Archirafi 34, I-90123 Palermo, Italy.

E-mail: brig@dipmat.math.unipa.it

Joseph W. Dauben is Professor of History and History of Science at Lehman College, City University of New York (CUNY) and is a member of the Ph.D. Program in History at the Graduate Center of CUNY. Formerly editor of *Historia Mathematica* and a previous Chair of the International Commission on History of Mathematics, he is also the author of biographies of Georg Cantor (Harvard, 1979) and Abraham Robinson (Princeton, 1995). He made his first trip to China as a visiting lecturer for four months under the joint auspices of the U.S. National Academy of Sciences and the Chinese Academia Sinica in 1988 and is currently involved in a joint venture with colleagues in China, Taiwan, and Singapore to produce a critical English edition of the *Ten Classics of Ancient Chinese Mathematics*. He is also interested in questions of the transmission of mathematics between China and other countries, both in antiquity, and more recently, as modern mathematics began to develop in China in the late Qing Dynasty, and in the subsequent course of the twentieth century.

Address: Ph.D. Program in History, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.

E-mail: jdauben@worldnet.att.net

Sloan Evans Despeaux earned a B.A. in mathematics at Francis Marion University and an M.S. in mathematics at Florida State University. She is presently completing her Ph.D. in mathematics at the University of Virginia. Her forthcoming thesis is entitled “The Development of a Publication Community: Nineteenth-century Mathematics in British Scientific Journals.”

Address: Department of Mathematics, University of Virginia, Kerchof Hall, P.O. Box 400137, Charlottesville, Virginia 22904-4137, United States.

E-mail: sed3v@virginia.edu

Della Dumbaugh Fenster is Assistant Professor of Mathematics at the University of Richmond. Her research focuses on the history of American mathematics, particularly algebra and number theory, in the late nineteenth and early twentieth centuries. Her current work considers the role of the Carnegie Institution in the development of American mathematics.

Address: Department of Mathematics and Computer Science, University of Richmond, Richmond, Virginia 23173, United States.

E-mail: dfenster@richmond.edu

Hélène Gispert teaches the history of science at the *Institut universitaire de formation des maîtres de Versailles* and at the Université d’Orsay. A member of
the Group on the History and Diffusion of the Sciences (GHDSO), she works on
the history of mathematics in France at the end of the nineteenth century as well
as on the history of education and on the diffusion of the sciences in France during
the Third Republic.

Address: Institut universitaire de formation des maîtres de Versailles, Groupe
d’histoire et de diffusion des sciences d’Orsay, Bâtiment 407, Centre universitaire,
F-91405 Orsay Cedex, France.
E-mail: helene.gispert@ghdso.u-psud.fr

Ivor Grattan-Guinness is Professor of the History of Mathematics and Logic
at Middlesex University, England. He was editor of the history of science journal,
Annals of Science, from 1974 to 1981. In 1979, he founded the journal, History and
Philosophy of Logic, and edited it until 1992. He edited the Companion Encyclo-
pedia of the History and Philosophy of the Mathematical Sciences (2 vols., Rout-
ledge, 1994) and published The Fontana History of the Mathematical Sciences: The
Rainbow of Mathematics (Fontana, 1997) and The Search for Mathematical Roots,
1870–1940: Logics, Set Theories, and the Foundations of Mathematics from Cantor
trough Russell to Gödel (Princeton, 2000). He is the Associate Editor for math-
ematicians and statisticians for the New Dictionary of National Biography, to be
published in 2004. He is editing for Elsevier a collection of essays on Landmark
Writings in Western Mathematics, 1640-1940, also to appear in 2004.
Address: 43, St. Leonard’s Road, Bengeo, Herts SG14 3JW, United Kingdom.
E-mail: ivor2@mdx.ac.uk

Jeremy J. Gray is Senior Lecturer in Mathematics at the Open University, where
he is the Director of the Centre for the History of the Mathematical Sciences. He
is also an Affiliated Research Scholar in the Department of History and Philosophy
of Science at the University of Cambridge, England. He works on the history of
mathematics in the nineteenth and twentieth centuries, with a particular interest
in complex function theory and geometry, and also on issues in the philosophy
and social significance of mathematics. His most recent publication is The Hilbert
Address: Faculty of Mathematics, The Open University, Milton Keynes MK7
6AA, United Kingdom.
E-mail: jj.gray@open.ac.uk

Mariano Hormigón earned degrees in mathematics before taking his Ph.D. in
Philosophy at the Universidad Autónoma de Madrid in 1982. He has been Profes-
sor of the History of Science in the Science Faculty of the University of Zaragoza
since 1986. President of the Organizing Committee of the XIX International Con-
gress of the History of Science (Zaragoza, 1993) and Past President of the Spanish
Society for the History of Science and Technology (1984–1993), he is a member of
the Académie internationale d’histoire des sciences (since 1993) and of the Inter-
national Commission on History of Mathematics (since 1997). He has served as
the editor of LLULL, the journal of the Spanish Society for the History of Science
and Technology, since 1981. He has edited (with Elena Ausejo), Messengers of
Mathematics: European Mathematical Journals 1800-1946 (Siglo XXI de España
LIST OF CONTRIBUTORS

Editores S.A., (1993) and Paradigms and Mathematics (Siglo XXI, 1996). His research centers on the history of mathematics and science (primarily in Spain) in the nineteenth and twentieth centuries and on science and ideology.

Address: Facultad de Ciencias (Matematicas), Ciudad Universitaria, E-50009 Zaragoza, Spain.
E-mail: hormigon@posta.unizar.es

Olli Lehto received his Ph.D. in mathematics in 1949 at the University of Helsinki, where he served as Associate Professor (1956–1961), Professor (1961–1988), Rector (1983–1988), and Chancellor (1988–1993). He was President of the International Congress of Mathematicians in 1978, a Member of the Executive Committee of the International Mathematical Union (1975–1990), the Union’s Secretary (1983–1990), a Member of the Administrative Board of the International Association of Universities (1985–1995), and the Association’s Vice-President (1990–1995). He is both a member (1962) and an honorary member (2001) of the Finnish Academy of Science and Letters. He acted as President of the Delegation of the Finnish Academies (1979–1999), was Chair of the Board of the Finnish Cultural Foundation (1991–1994), and the latter’s Honorary President in 1998. In mathematics, his special field is complex analysis and, after retirement, also the history of mathematics. He is the author of Mathematics Without Borders: A History of the International Mathematical Union (Springer-Verlag, 1998).

Address: Department of Mathematics, University of Helsinki, P.O. Box 4 (Yliopistonkatu 5), 00014 Helsinki, Finland.
E-mail: oelehto@cc.helsinki.fi

Jesper Lützen obtained a Master’s Degree (1976) and a Ph.D. (1980) from the Department of History of Science at Aarhus University. A Habilitation followed in 1990 from Copenhagen University. He is currently Professor of History of the Exact Sciences in the Department of Mathematics, Copenhagen University. The author of Joseph Liouville: Master of Pure and Applied Mathematics (Springer-Verlag, 1990) and The Prehistory of the Theory of Distributions (Springer-Verlag, 1980), he is currently working on a book on Heinrich Hertz’s Principles of Mechanics.

Address: Mathematics Institute, Copenhagen University, Universitetsparken 5, 2100 Copenhagen, Denmark.
E-mail: lutzem@math.ku.dk

Laura Martini earned her laurea from the University of Siena in 1997 with a thesis on “Cesare Arzelà’s Lectures on Galois Theory, Bologna 1886–1887” directed by Laura Toti Rigatelli. She is presently at work on a Ph.D. in mathematics at the University of Virginia. Her main research interests lie in the history of algebra in the nineteenth century and in the social development of mathematics in nineteenth-century Italy.

Address: Department of Mathematics, University of Virginia, Kerchof Hall, P.O. Box 400137, Charlottesville, Virginia 22904-4137, United States.
E-mail: lm4x@virginia.edu

Karen Hunger Parshall is Professor of History and Mathematics at the University of Virginia, a former editor of Historia Mathematica, and the current Chair of the International Commission on History of Mathematics. Her research focuses on the history of nineteenth- and twentieth-century mathematics with a special focus

Address: Departments of History and Mathematics, University of Virginia, Kerchof Hall, P.O. Box 400137, Charlottesville, Virginia 22904-4137, United States.

E-mail: khp3k@virginia.edu

Adrian C. Rice received a B.Sc. in mathematics from University College London in 1992 and a Ph.D. in the history of mathematics from Middlesex University in 1997 for a thesis on Augustus De Morgan and the development of university-level mathematics in nineteenth-century London. He is Assistant Professor of Mathematics at Randolph-Macon College in Ashland, Virginia, where his research focuses on the nineteenth- and early twentieth-century British mathematical research community with special reference to the role of the London Mathematical Society.

Address: Department of Mathematics, Randolph-Macon College, Ashland, Virginia 23005-5505, United States.

E-mail: arice4@rmc.edu

Chikara Sasaki studied mathematics at Tohoku University and the history of science at Princeton University. He received his Ph.D. from Princeton for a thesis on “Descartes’s Mathematical Thought.” He is now Professor of History and Philosophy of Science at the University of Tokyo and a member of the Executive Committee of the International Commission on the History of Mathematics. He was awarded the Suntory Prize for Social Sciences and Humanities for the year 1993.

Address: Department of History and Philosophy of Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-0041, Japan.

E-mail: ch-sasaki@msi.biglobe.ne.jp

Sanford L. Segal is Professor of Mathematics at the University of Rochester and was Chair of the department there from 1979 to 1987. He obtained his Ph.D. in Mathematics in 1963 from the University of Colorado (supervised by Sarvadaman Chowla) and since then has pursued research in mathematics, the history of mathematics, and mathematics education. He has been a visiting lecturer at the University of Nottingham (1972–1973) and a research fellow at the Federal University of Rio de Janeiro (summer 1982). He received Fulbright grants in 1958–1959 to study in Mainz, Germany and in 1965–1966 for research at the University of Vienna. More recently, he received an Alexander von Humboldt fellowship to Germany in 1988. Work during this last and succeeding trips to Germany were in preparation for a book, *Mathematicians under the Nazis*, to be published shortly. He is also the author of the book, *Nine Introductions in Complex Analysis* (Elsevier, 1981).

Address: Department of Mathematics, University of Rochester, Rochester, New York 14627, United States.

E-mail: ssgl@math.rochester.edu
Reinhard Siegmund-Schultze studied mathematics at the University of Halle. Since 1975, his research has focused on the history of mathematics, primarily on the history of functional analysis and the social history of mathematics in the Third Reich. He is author of *Mathematische Berichterstattung in Hitlerdeutschland: Der Niedergang des Jahrbuchs über die Fortschritte der Mathematik (1869–1945)* (Vandenhoeck & Ruprecht, 1993), *Mathematiker auf der Flucht vor Hitler: Quellen und Studien zur Emigration einer Wissenschaft* (Vieweg, 1998), and *Rockefeller and the Internationalization of Mathematics Between the World Wars* (Birkhäuser Verlag, 2001). He is currently Professor for History of Mathematics at Agder University College in Kristiansand, Norway.

Address: Department of Mathematics, Agder University College, Serviceboks 422, N-4604 Kristiansand, Norway.

E-mail: Reinhard.Siegmund-Schultze@hia.no

Yibao Xu studied the history of Chinese mathematics at the Institute for the History of Science, Inner Mongolia Normal University, Huhhot, China, where he received his M.Sc. in July, 1991. Subsequently, he worked as an editor at the Office of Jiangxi Local History Editing Committee, Nanchang, China. In August, 1995, he entered the Graduate School and University Center of the City University of New York (CUNY) to study the history of science and is now a doctoral candidate in the Ph.D. Program in History, CUNY.

Address: Ph.D. Program in History, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.

E-mail: xuyibao@hotmail.com
Photograph and Figure Credits

We gratefully acknowledge the kindness of the following for granting these permissions:

Cambridge University Library

Institut Mittag-Leffler

Photograph of Gösta Mittag-Leffler (1846–1927); p. 138; By permission of the Institut Mittag-Leffler.

Professor Ren Nanheng

Photograph of the Annual Meeting of the Chinese Mathematical Society on the Occasion of Its Fiftieth Anniversary, Fudan University, Shanghai, December 1985; p. 278; Reproduced by permission of Professor Ren Nanheng of the Chinese Mathematical Society.

Springer-Verlag

The following images are in the public domain:

List of Editorial Board members of Acta Mathematica in 1882; p. 141; from Acta Mathematica 1 (1882).

Paragraph from Section 150 of Cesare Arzelà’s lectures on Galois theory; p. 172; from the Bortolotti Collection, Mathematics Library, University of Bologna.

Table of Contents of the first volume of Acta Mathematica; p. 145; from Acta Mathematica 1 (1882).
Title page of Yonagawa Shunsan’s *Yōsan Yōhō* from 1857; back cover and p. 233.

Yonagawa’s explanation of four fundamental arithmetical operations and of proportion in *Yōsan Yōhō*; p. 234; appears on folio 7r.
This page intentionally left blank
Index

Abel, Niels Henrik, 93, 143, 170–171
Academia Sinica, 296, 300, 302–303
Académie des sciences (Paris), 6, 90, 94, 125, 129, 189, 385–386
Accademia dei Lincei, 187, 190–191, 197
and Gösta Mittag-Leffler, 139–161
and Georg Cantor, 150–153
and Henri Poincaré, 148–150
and Sonya Kovalevskaya, 153–155
first 20 volumes, 155–158
founding of, 140–148
Adams, John Couch, 72–74
Akizuki Yasuo, 243
Albert, A. Adrian, 323, 372
American Journal of Mathematics, 141, 158, 313
American Mathematical Monthly, 312–313
Bulletin of the, 204, 290
Transactions of the, 312–313
American mathematics developments in, 311–329
influence on Chinese mathematics, 272–275, 287–305
Analysis, 56
complex, 27–28, 132
functional, 195
numerical, 56
real, 25–27
Annales de mathématiques pures et appliquées, 90–91, 158
Annali di matematica pura ed applicata, 71, 158, 181–182, 280
Antisemitism, 339–341, 368–372
Appell, Paul, 134, 389
Arago, François, 90
Archiv für mathematik og naturvidenskab, 159
Arithmetics of algebras, 320–322
Arnold, Matthew, 361
Artin, Emil, 241–242, 279, 355, 369
Arzelà, Cesare, 10, 165–166, 168–172
Association for the Improvement of Geometrical Teaching, 67
Association of Collegiate Alumnae (ACA), 317
Aumann, Georg, 338–339
Aydelotte, Frank, 298–300
Babbage, Charles, 61
Bachmann, Paul, 168
Bacon, Francis, 7, 11
and a first vintage of heat, 7–8
Bacon, Roger, 2, 5
Bails, Benito, 47–48
Bälz, Erwin, 235
Banach, Stefan, 344
Bansho Shirabe-sho, see also Institute for the Investigation of Barbarian Books
Basile, Ernesto, 179
Battaglini, Giuseppe, 165
Behnke, Heinrich, 340, 353, 354
Beijing University, 276–277
Beltrami, Eugenio, 165, 181
Bertrand, Joseph, 97, 125, 135
Bianchi, Luigi, 166, 169
Birkhoff, Garrett, 348–349
Birkhoff, George David, 193, 349
Böcher, Maxime, 295
Bohr, Harald, 336
Bolza, Oskar, 314, 361
Borchardt, Carl Wilhelm, 129–130
Borel, Émile, 269, 345–346
Bortolotti, Ettore, 166, 194
Bossut, Charles, 211
Bourbaki, Nicholas, 376
Bourlet, Carlo, 105
Bouty, Émile, 108
Boxer Indemnity, 266–267, 288–291
Boxer Rebellion (or Uprising), 253, 263, 288
Brahe, Tycho, 5
Cloudy, Augustin-Louis, 23
Coch, Yi-why, 301
Chen Shu-sheng, 272, 280, 292, 298–301, 303–305
Chevalley, Claude, 376
Chinese Foundation for the Promotion of Education and Culture, 291–294
Chinese Mathematical Society, 277–280, 294, 296, 301, 303
Circolo matematico di Palermo, 9, 179
and internationalization of mathematical research, 186–187
decline of, 195–198
Giovan Guccia and, 183–185
Italian mathematical context of, 180–182
Rendiconti del, 140, 186, 191–194, 198
Sicilian context of, 179–180
Class field theory, 241–242
Condillac, Étienne Bonnot, Abbé de, 211
Copley Medal, 65, 82
Courant, Richard, 197, 270, 340, 368, 374–376
Couturat, Louis, 206–207
Crelle, August Leopold, 22, 90, 158
Cremona, Luigi, 67, 165, 181–182
Cruson, Johann Philip, 23–24
Curie, Marie, 155, 364
Czech Society of Mathematicians, 119
d’Aiguebelle, Paul, 261
Darboux, Gaston, 105, 134, 182, 385–386
Darwin, Sir George, 385
De Franchis, Michele, 196–197
de la Vallée Poussin, Charles, 196, 386
De Morgan, Augustus, 27
Dedekind, Richard, 167
Dehn, Max, 309
Delaunay, Charles-Eugène, 31, 72–73
Denationalization, 2–4
Deng Encong, 290
Deutsche Kongreßzentrale, 352
Deutsche Mathematik, 340
Deutsche Mathematiker-Vereinigung (DMV), 108, 118, 183–184, 188, 202, 337
Dickson, Leonard Eugene, 10, 78–79, 311–329, 364, 372–373
Dirichlet, Peter Lejeune, 360
Donati, Luigi, 165
Du Bois-Reymond, Paul, 123–124, 126
Du Pasquier, Louis Gustave, 321–323
Dutch mathematics, influence on Japanese mathematics, 230–232
Echebaray y Eizaguirre, José, 51–53
École normale supérieure (ENS), 109–110, 112
École polytechnique, 18, 26, 28, 49, 108–110, 112, 114, 131
Edinburgh Mathematical Society (EMS), 66–67
Proceedings of the, 158
Educational Times, 68
Einstein, Albert, 363
Encke, Johann Franz, 31
Energetics, 29–30
Enneper, Alfred, 72
Enriques, Federigo, 218
INDEX

Enseignement mathématique, 105, 119, 186, 188–189, 198
Enzyklopädie der mathematischen Wissenschaften, 340, 362, 382
Esperanto, 207–209
Euler, Leonhard, 2, 6, 30
Faà de Bruno, Francesco, 72
Fan Ky, 301
Fehr, Henri, 367
Feng Zuxun, 294
Fermat’s Last Theorem, 94
Ferrel, William, 73–74
Ferrusac, André-Étienne-Just-Pascal-Joseph-François d’Audebart, Baron de, 24
Fibonacci, Leonardo, 1–2, 5
Fields Medal, 195, 242–243
Filopanti, Quirico, 165
Finite field theory, 314–315, 318–319
Forsyth, Andrew Russell, 28
Foundations of mathematics, 218–223
Franklin, Benjamin, 65
Fratini, Giovanni, 169
Fregé, Gottlob, 206–207, 210, 219, 221
French mathematics
decline of, 24–25
dominance of, 17–20, 89–90, 93, 360–361
influence on Chinese mathematics, 268–270
influence on Japanese mathematics, 232
influence on Spanish mathematics, 46–51
translation of, 20–24, 39–44, 131
Friedrichs, Kurt, 340
Fryer, John, 256, 259–260, 265, 273–274
Fu Zhongsun, 267
Fujisawa Rikitaro, 238–240, 243, 247
Fujisawa Matsusaburo, 243–245
Fukuzawa Yukichi, 235–236, 238
Fuzhou Shipyard, 260–262, 268
Galileo, Galilei

Discourses on Two New Sciences, 2
Galois theory, 166–169
García de Galdeano, Zoel, 52–53
García San Pedro, Fernando, 49
Gauss, Carl Friedrich, 31–33, 93, 97, 99–100
Disquisitiones arithmeticae, 32
Disquisitiones generales circa superficies curvas, 100
Geometry
algebraic, 195
differential, 33, 98–100
projective, 56
Gepper, Harald, 345–347, 353, 354
Gerbert d’Aurillac (Pope Sylvester II), 1, 5
Gergonne, Joseph Diaz, 90
German mathematics
developments in, 335–349
diffusion of, 93, 97, 100, 133–135
dominance of, 361–362
influence on American mathematics, 313–318
influence on Chinese mathematics, 270–272
influence on French mathematics, 32–33, 93, 95–100, 123–136
influence on Japanese mathematics, 236–246
translation of, 93, 134, 150
Giquel, Prosper-Marie, 261
Glaisher, James Whitbread Lee, 67–68
Godeaux, Lucien, 279
Gödel, Kurt, 223
Göttingen University, 132, 167, 197, 241
Göttingen Seven, 123
Graustein, William, 323–324
Green, George, 97
Gregory, Duncan, 67
Group theory, 78–79, 314–315, 324
Guang Xi, Emperor, 263
Gugino, Edoardo, 198
Hadamard, Jacques, 269–270, 279, 302
Hale, George Ellory, 389
Halmos, Paul, 324
Hamilton, William Rowan, 95
Hansen, Peter Andreas, 72–73, 75
Hardy, Godfrey Harold, 139, 161, 278–279, 363, 389–390
Harvard University, 294–296
Hasse, Helmut, 339–341, 346, 353, 354
Hayashi Tsuruichi, 243–245
He Yunhong, 290
Hecke, Erich, 355
Hermite, Charles, 10, 68–71, 82, 105, 123, 142–144, 150, 186
career of, 125–126
law of reciprocity, 68
political views of, 126–127
Herschel, John, 61
23 problems of, 204, 219, 385
Hironaka Heisuke, 243
Hirst, Thomas Archer, 67, 80–82, 147
Hopf, Eberhard, 354, 370
Hopf, Heinz, 297, 338
Hoppe, Reinhold, 71–72
Houel, Guillaume-Jules, 134, 182, 204
Hu Kunsheng, 277–278, 291
of mathematics, supranational aspects of, 10–12
Invariant theory, 68
Italian mathematics, developments in, 165–175, 179–198
Ito Hirobumi, 237–238
Ivy, James, 80
Iwakura diplomatic mission, 237
Jacobi, Carl Gustav Jacob, 94–97, 125, 361
Jahrbuch über die Fortschritte der Mathematik, 345, 382
Japanese mathematics developments in, 229–249
influence on Chinese mathematics, 263–264
Jiang Lifu, 295–296, 301
Jiang Zehan, 291, 295–298, 302–303
Jiangnan Arsenal, 258–260, 265
Jordan, Camille, 93, 168
Traité des substitutions et des équations algébriques, 168
Journal de mathématiques pures et appliquées, 81, 141, 143, 189
Journal für die reine und angewandte Mathematik, 22, 89–92, 96, 100, 129, 141, 143–144, 150, 152, 168
Julia, Gaston, 345–346
Kakeya Soichi, 244
Kakutani Shizuo, 244
Kamke, Erich, 355, 369–370
Kant, Immanuel, 211
Kawai Jittaro, 243
Ke Zhao, 280
Kempner, Aubrey, 323
Kepler, Johannes, 2, 5
Kikuchi Dairoku, 235–236, 239–240, 247
Kline, John Robert, 394
Kneser, Hellmuth, 365
Knopp, Konrad, 270–271
Kodaira Kunihiko, 242
Koenigs, Gabriel, 364, 365, 388–392
Kondo Yoitsu, 245
Kovalevskaya, Sonya, 11, 364
and Acta Mathematica, 153–155
Kronecker, Leopold, 71, 130–131, 144, 151–152, 168, 238
Kubota Tadahiko, 244
Kummer, Ernst Eduard, 33, 94
Kyoto Imperial University, 243
Lacroix, Sylvestre François, 21, 132
Ladd-Franklin, Christine, 317
Lagrange, Joseph Louis, 2, 6, 28–31
Mécanique analytique, 28–29
Laisant, Charles-Ange, 105, 187, 383
INDEX

Lamb, Horace, 76
Lambert, Johann, 211
Lamé functions, 98
Lamé, Gabriel, 94, 155
Landau, Edmund, 185, 190, 197
Languages
 mathematical, 212–214
 symbolic, 209–211
 universal, 206–209
Laplace, Pierre Simon, 31, 95
 Traité de mécanique céleste, 21, 95
Latino sine Flexione, 208
Least squares, method of, 31
Lefschetz, Solomon, 296
Leibniz, Gottfried Wilhelm, 211, 213–214
Levi-Civita, Tullio, 194, 341
Li Shanlan, 256–257, 265, 270, 272
Lie, Sophus, 140–142, 147–148, 167
Lietzmann, Walter, 342–344, 354
Linguistics, 214–216
Liouville, Joseph, 10, 33, 89–94, 100–101, 158, 204
 differential geometry of, 98–100
 mechanics of, 95–97
 potential theory of, 97–98
Littlewood, John Edensor, 278–279, 363
Liu Jin-nian, 291, 295
Locarno Pact, 365, 390
Logic, 195
 algebraic, 209–211
London Mathematical Society (LMS), 66–67, 82, 106–107, 117, 183, 188, 198, 359
 Journal of the, 280
 Proceedings of the, 82, 106–107, 158, 184, 204
Loomis, Elias, 288
Louis XIV, 6
Lunar theory, 72–75
Ma Zuju, 264
Mac Lane, Saunders, 324
Maclaurin, Colin, 95
Malmsten, Carl Johan, 142–143
Manchester Literary and Philosophical Society, 64
Mannoury, Gerrit, 216–217
Maschke, Heinrich, 314, 361
Mateer, Calvin Wilson, 272–274, 287–288
Mathematische Sbornik, 158
Mathematical Association of America (MAA), 118
Mathematical Laboratory and Seminar (LSM), 46, 53–54, 56, 58
Mathematical Reviews, 341
Mathematical Society of Japan, 247–248
Mathematische Annalen, 150–151, 168, 241
Mathematisches Forschungsinstitut, Oberwolfach, 346–347, 353
Matsunaga Yoshisuke, 230
Mechanics, 95–97
 Carnotian, 29
 celestial, 30–32
 energy, 28–30
 fluid, 71–72
 Lagrangian, 28–29
 relativist, 56
Meiji period, 229, 233–238
Méray, Charles, 207
Miller, George A., 78, 373
Min Sihe, 301
Minkowski, Hermann, 82
 and *Acta Mathematica*, 139–161
 Mittag-Leffler Theorem, 139
Mohr, Ernst, 374
Monge, Gaspard, 48–49
Moore, Robert Lee, 325–326, 373–374
Mori Shigefumi, 243
Morse, Marston, 296–297, 393–394
Moscow Mathematical Society, 183, 359
Müller, Max, 215
Multinationalism, 17, 33–34, 201
 and -ization, 2
Murray, David, 235
Nagasaki Naval Training Institute (*Nagasaki Kaigun Denshu-sho*), 231
Nagel, Ernest, 218
Nakagawa Senkichi, 242–243
Nationalization, 5, 202–204
Nature, 146–147
Netto, Eugen, 168–170
 Lehrbuch der Algebra, 240
Neugebauer, Otto, 340, 369
Neumann, Bernhard, 369
Neumann, Franz, 361
Newson, May Winston, 317
Neyman, Jerzy, 374
Noether, Emmy, 246, 270, 279, 373
Noether, Max, 190
Novi, Giovanni, 167
Number theory, 319–320
Odriozola, José de, 49
Ogura Kinnosuke, 245
Oka Kiyoshi, 243
Okada Yoshitomo, 244
Opium Wars, 231, 253–255, 287, 289
Oppenheimer, J. Robert, 300–301
Oscar II, King of Sweden and Norway, 143–144, 149
Osgood, William Fogg, 203, 293, 302, 360–361
Painlevé, Paul, 269, 365, 389–390
Parseval’s formula, 23–24
Pasch, Moritz, 218, 220
Pasteur, Louis, 107, 130
Peano, Giuseppe, 208, 210–211
Peirce, Charles Sanders, 210, 216, 221–222
Perturbation theory, 30–31
Petersen, Julius, 168
Philosophical Magazine, 65, 78, 80
Pieri, Mario, 218–219
Pincherle, Salvatore, 165, 391–392
Pirandello, Luigi, 179
Plana, Giovanni, 72
Poincaré, Henri, 134, 142–143, 149–150, 157, 186, 192–195, 360
and *Acta Mathematica*, 148–150
and Fuchsian functions, 148
and the three-body problem, 149
Poinset, Louis, 80–81
Poisson, Siméon-Denis, 80
Polish mathematics, internationalization of, 344
Politics, effects on mathematics, 9, 195–198, 335–349, 359–376, 385–393
Pólya, George, 374
Pontecoulant, Phillipe Gustave Doulcet, Comte de, 73–75
Potential theory, 30, 97–98, 155
Prager, Wilhelm, 374
Prandtl, Ludwig, 341, 354
Professionalization of mathematics, 8–9, 48–51, 53–57, 106–115
Progreso matemático, 50
Puissant, Louis, 23
Qin Fen, 277, 294
Qinghua University, 277, 291–292
Quarterly Journal of Pure and Applied Mathematics, 68–72, 79, 158, 186
Rademacher, Hans, 369, 375
Ramón y Cajal, Santiago, 54
Ramzauer, Carl, 347
Rasch, Johannes, 353
Rees, Mina, 374
Reidemeister, Kurt, 355
Ren Hongjun, 275
Réal, Henri, 93
Research community
characterization of international mathematical, 1
definition of for mathematics, 8
Revista matemática hispano-americana, 46, 53
Reye, Theodor, 238
Richardson, Roland G. D., 336, 343, 367
Riemann, Bernhard, 28, 33
Riesz, Marcel, 363
Rong Hong, 268
Royal Astronomical Society, 66, 72–75
Royal Irish Academy, 64
Royal Society of Edinburgh, 64
Royal Society of London, 62–65, 82, 385–386, 389
Philosophical Transactions of the, 62–64, 158
Ruffini, Paolo, 170–171, 194
Ruffini-Abel Theorem, 170–174
Russell, Bertrand, 221–223, 266–267, 281, 295, 302, 363
Russian Academy of Sciences, 154
Scandinavian mathematics, developments in, 140–148
Schmidt, Erhard, 342, 355, 365–366
Schmuse, Christian Heinrich, 22
Scholz, Heinrich, 354
School for the Yokosuka Navy Shipyard (*Yokusuka Kaigun-Zosenjo Koshia*), 232
Schröder, Ernst, 204, 209–210, 221–222
Schuster, Sir Arthur, 386
Schwarz, Hermann Amandus, 135
Schwerdtfeger, Hans, 369
Science Society of China, 275–276
Scriba, Julius, 235
Scuola normale superiore, 169, 181
Seki Takakazu, 230
Serret, Joseph Alfred, 167, 171–172
Cours d’algèbre supérieure, 167–168, 240
Set theory, 150–153
Severi, Francesco, 195, 370
Shanghai Polytechnic Institute, 265
Shen Youcheng, 279, 295
Shi Xianglin, 292
Shoda Kenjiro, 246
Shu Shien-siu, 293, 301
Siegel, Carl Ludwig, 355, 370
Smith, Henry John Stephen, 82
Société française de physique, 108
Société française de statistiques de Paris, 118
Bulletin de la, 158
Sono Masazo, 243
Spanish Civil Engineering Corps, 47
Spanish Civil War, 46
Zhuang Qitai, 292–293
Zorn, Max, 369
Zorraquín, Mariano, 48–49
MATHEMATICS UNBOUND:
The Evolution of an International Mathematical Research Community, 1800–1945
Karen Hunger Parshall and Adrian C. Rice, Editors

Although today's mathematical research community takes its international character very much for granted, this "global nature" is relatively recent, having evolved over a period of roughly 150 years—from the beginning of the nineteenth century to the middle of the twentieth century. During this time, the practice of mathematics changed from being centered on a collection of disparate national communities to being characterized by an international group of scholars for whom the goal of mathematical research and cooperation transcended national boundaries. Yet, the development of an international community was far from smooth and involved obstacles such as war, political upheaval, and national rivalries. Until now, this evolution has been largely overlooked by historians and mathematicians alike.

This book addresses the issue by bringing together essays by twenty experts in the history of mathematics who have investigated the genesis of today's international mathematical community. This includes not only developments within component national mathematical communities, such as the growth of societies and journals, but also more wide-ranging political, philosophical, linguistic, and pedagogical issues.

The resulting volume is essential reading for anyone interested in the history of modern mathematics. It will be of interest to mathematicians, historians of mathematics, and historians of science in general.