Groups and Symmetry
A Guide to Discovering Mathematics

David W. Farmer
Other Titles in This Series

5 David W. Farmer, Groups and symmetry: A guide to discovering mathematics, 1996
4 V. V. Prasolov, Intuitive topology, 1995
3 L. E. Sadovskiĭ and A. L. Sadovskiĭ, Mathematics and sports, 1993
2 Yu. A. Shashkin, Fixed points, 1991
1 V. M. Tikhomirov, Stories about maxima and minima, 1990
This page intentionally left blank
Groups and Symmetry
A Guide to Discovering Mathematics

David W. Farmer

p. cm. — (Mathematical world, ISSN 1055-9426; v. 5)
Includes bibliographical references (p.).
ISBN 0-8218-0450-2 (acid-free)
QA174.2.F37 1995
511.3'3—dc20
95-21976
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© Copyright 1996 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.
The American Mathematical Society retains all rights
extcept those granted to the United States Government.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

10 9 8 7 6 5 4 02 01 00 99
Table of Contents

Chapter 1. Squares, Hexagons, and Triangles 1
 1.1 The square grid
 1.2 The hexagon grid
 1.3 The triangle grid
 1.4 Putting it all together
 1.5 Notes

Chapter 2. The Rigid Motions of the Plane 15
 2.1 Translation and rotation
 2.2 Combining translations and rotations
 2.3 Mirror reflection
 2.4 Glide reflection
 2.5 Combining rigid motions
 2.6 Notes

Chapter 3. Finite Figures .. 27
 3.1 Symmetry
 3.2 Combining symmetries
 3.3 Multiplication tables
 3.4 Inverses
 3.5 The finite symmetry types
 3.6 Notes

Chapter 4. Strip Patterns .. 39
 4.1 Symmetries of strips
 4.2 Classifying strip patterns
 4.3 Notes

Chapter 5. Wallpatterns .. 43
 5.1 Rotation symmetry
 5.2 Mirrors and glides
 5.3 Classifying wallpatterns
 5.4 Basic units
 5.5 Groups
 5.6 Notes
 5.7 Sample patterns
 5.8 Wallpattern flowchart
TABLE OF CONTENTS

Chapter 6. Finite Groups ... 59
 6.1 Finite figures
 6.2 C_N and D_N, again
 6.3 Addition
 6.4 Multiplication
 6.5 Rearrangements
 6.6 Permutations
 6.7 Notes

Chapter 7. Cayley Diagrams .. 73
 7.1 Generators
 7.2 Rearranging basic units
 7.3 Strip patterns
 7.4 Wallpatterns

Chapter 8. Symmetry in the Real World 87
 8.1 Analyzing patterns
 8.2 Patterns in art and architecture
 Bricks
 Decorative floors and walls
 The art of M.C. Escher
 The art of William Morris
 Islamic art
 African weavings
 Indian pottery
 Rugs and carpets
 Amish quilts
 8.3 Mathematical projects
 The 15–puzzle
 More arithmetic mod N
 Generators, relations, and Cayley diagrams
 3–dimensional symmetry
 Magic square wallpatterns
 8.4 Random projects
 Kinship structures
 Chemistry
 Tiling a wall
 Make your own patterns

Bibliography .. 99

Index ... 101
Preface

This book is a guide to discovering mathematics.

Every mathematics textbook is filled with results and techniques which once were unknown. The results were discovered by mathematicians who experimented, conjectured, discussed their work with others, and then experimented some more. Many promising ideas turned out to be dead-ends, and lots of hard work resulted in little output. Often the first progress was the understanding of some special cases. Continued work led to greater understanding, and sometimes a complex picture began to be seen as simple and familiar. By the time the work reaches a textbook, it bears no resemblance to its early form, and the details of its birth and adolescence have been lost. The precise and methodical exposition of a typical textbook often leads people to mistakenly think that mathematics is a dry, rigid, and unchanging subject.

The most exciting part of mathematics is the process of invention and discovery. The aim of this book is to introduce that process to you. By means of a wide variety of tasks, this book will lead you to discover some real mathematics. There are no formulas to memorize. There are no procedures to follow. By looking at examples, searching for patterns in those examples, and then searching for the reasons behind those patterns, you will develop your own mathematical ideas. The book is only a guide; its job is to start you in the right direction, and to bring you back if you stray too far. The discovery is left to you.

This book is suitable for a one semester course at the beginning undergraduate level. There are no prerequisites. Any college student interested in discovering the beauty of mathematics can enjoy a course taught from this book. An interested high school student will find this book to be a pleasant introduction to some modern areas of mathematics.

I thank Dave Bayer for showing me his method of drawing the Cayley diagrams of wallpattern groups. While preparing this book I was fortunate to have access to excellent notes taken by Hui-Chun Lee and by Elie Levine. It is a pleasure to thank Benji Fisher, Klaus Peters, Sandy Rhoades, Ted Stanford, John Sullivan, and Gretchen Wright for helpful comments on earlier versions of this book.

David W. Farmer
September, 1995
This page intentionally left blank
Bibliography

 Interesting account of the mathematics of the native African peoples.
 Section 5, "Pattern and Shape," is relevant to this book.

 Description of his life and work. 40 color plates of his wallpatterns.

 An interesting book which touches on many of the topics discussed in
 the present book.

[E] *Ethnomathematics: A Multicultural View of Mathematical Ideas*, by Mar-
 Presents an interesting account of the mathematical sophistication of
 'primitive' people. The chapter, "The Logic of Kin Relations" is fasci-
 nating. "Symmetric Strip Decorations" is a nice introduction.

 A collection of 35 papers on mathematical symmetry. Most relate to
 Escher's work, and most have nice pictures. A good place to see how
 others have analyzed real–world symmetry. Some of the papers are
 very mathematical.

 Various papers on pentagonal symmetry. The paper, "800–Year–Old
 Pentagonal Tiling..." suggests that Penrose tilings were invented in
 12th–century Iran.

[FSE] *Fantasy and Symmetry: The Periodic Drawings of M.C. Escher*, by Caroline

 Islam Festival, 1976.
 Mathematics and Islamic Art.

 A comprehensive book on regular patterns. Millions of examples, and
 some reasonable guides on how to construct interesting patterns.
 A book in the same style as *Groups and Symmetry*.

 Nice chapters on a variety of mathematics, written for a general audience. All of it is interesting, and two or three of the chapters are relevant to this book.

 Interesting essays on real–world symmetry.

 Two huge books of papers on all aspects of symmetry.

 Very mathematical and not that easy to just pick up and read. It is comprehensive. Interesting exercises in Chapter 5. Lots of good references.

 A collection 36 papers dealing with mathematical aspects of art. Several papers are relevant to this book. The paper, “Interlace patterns in Islamic and Moorish art” includes Cayley diagrams of wallpaper groups.

 The comprehensive source of Escher plane tilings. Pages and pages of fascinating pictures. Description of Escher’s own classification of patterns.
Index

1 stands for do-nothing, 32
15–puzzle, 90
2–cycle, 71
addition mod n, 63
alternating group, 90
A_N, alternating group, 90
associative operation, 53
basic unit, 8, 49
bilateral symmetry, 38
Cayley diagram, 73
Cayley, Arthur, 67
closed path, 93
C_N
cyclic group, 61
symmetry type, 36
Conway, John H, 42
crystallographic restriction, 52
cycle, 68
cyclic group, C_N, 61
dihedral group, D_N, 61
D_N
dihedral group, 61
symmetry type, 37
do–nothing
denoted by 1, 32
is a rotation and a translation, 25
is always a symmetry, 27
dual, 95
equivalent
mirror lines, 47
rotocenter, 44
Escher, M.C., 48
even permutation, 90
exponents
rules of, 32
Fedorov, E.S., 48
finite figure, 28
fixed point, 23
footprints, 42
fundamental domain, 11
generator, 73, 92
glide line, 22
glide reflection, 22
phantom figure, 22
group, 51, 53
A_N, alternating group, 90
C_N, cyclic group, 61
D_N, dihedral group, 61
generators, 73
presentation, 92
relation, 92
S_N, symmetric group, 68
identity matrix, 92
inverse, 35, 38
isomorphism, 71
Kali, 53, 98
Lloyd, Sam, 91
magic square, 96
matrix, 91
mirror, 19
mirror line, 19
mod, 63
modular arithmetic, 91
addition, 63
multiplication, 65

101
modulo, see mod
multiplication mod n, 65
multiplication table
 of a triangle, 35
n-gon, 30
odd permutation, 90
order
 of a rotation, 46
Penrose tiles, 53
pentagon
 easy way to make one, 31
 regular, 29
permutation, 67
 even or odd, 90
phantom figure, 22
Pólya, George, 48
polygon
 symmetries of, 33
presentation, 92
QuasiTiler, 53
r, 19
r, smallest rotation symmetry, 32
reflection, 19
regular polygon, 29
 symmetries of, 30
regular solid, 95
relation, 92
rigid motion
 glide reflection, 22
 reflection, 19
 rotation, 16
 measured counterclockwise, 28
translation, 15
rigid motion of the plane, 15
rotation, 16
 measured counterclockwise, 28
 rotocenter, 16
rotocenter, 16
 equivalent, 44
rules of exponents, 32
silly walks, 42
S_N, symmetric group, 68
spokes of a wheel, 17
square
 symmetries of, 29, 33
strip pattern, 39
subgroup, 61
symmetric group, 68
symmetries
 of a polygon, 33
 of a square, 29, 33
symmetry, 27
symmetry type, 36, 71
C_N, cyclic, 36
D_N, dihedral, 37
Timbanidis, Nicolas, 34
translation, 15
transposition, 71, 90
triangle
 multiplication table, 35
 trivial symmetry, 27
wallpaper pattern, see wallpattern
wallpattern, 43
\mathfrak{A}, 19
Groups and Symmetry
A Guide to Discovering Mathematics

David W. Farmer

Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost.

This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves.

The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math.

The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.