Continuous Symmetry
From Euclid to Klein
Continuous Symmetry
From Euclid to Klein

William Barker
Roger Howe
To Sue and Lyn,
for love and support
Contents

Instructor Preface ix
Student Preface xiii
Acknowledgments xix

I. Foundations of Geometry in the Plane
I.1. The Real Numbers 1
I.2. The Incidence Axioms 6
I.3. Distance and the Ruler Axiom 17
I.4. Betweenness 22
I.5. The Plane Separation Axiom 27
I.6. The Angular Measure Axioms 34
I.7. Triangles and the SAS Axiom 46
I.8. Geometric Inequalities 56
I.9. Parallelism 62
I.10. The Parallel Postulate 70
I.11. Directed Angle Measure and Ray Translation 84
I.12. Similarity 94
I.13. Circles 110
I.14. Bolzano’s Theorem 115
I.15. Axioms for the Euclidean Plane 119

II. Isometries in the Plane: Products of Reflections
II.1. Transformations in the Plane 121
II.2. Isometries in the Plane 135
II.3. Composition and Inversion 146
II.4. Fixed Points and the First Structure Theorem 156
II.5. Triangle Congruence and Isometries 161

III. Isometries in the Plane: Classification and Structure
III.1. Two Reflections: Translations and Rotations 165
III.2. Glide Reflections 181
III.3. The Classification Theorem 188
III.4. Orientation 191
III.5. Groups of Transformations 199
III.6. The Second Structure Theorem 206
III.7. Rotation Angles 211
IV. Similarities in the Plane
 IV.1. Elementary Properties of Similarities 217
 IV.2. Dilations as Similarities 224
 IV.3. The Structure of Similarities 231
 IV.4. Orientation and Rotation Angles 235
 IV.5. Fixed Points for Similarities 240

V. Conjugacy and Geometric Equivalence
 V.1. Congruence and Geometric Equivalence 251
 V.2. Geometric Equivalence of Transformations: Conjugacy 256
 V.3. Geometric Equivalence under Similarities 266
 V.4. Euclidean Geometry Derived from Transformations 276

VI. Applications to Plane Geometry
 VI.1. Symmetry in Early Geometry 287
 VI.2. The Classical Coincidences 292
 VI.3. Dilation by Minus Two around the Centroid 298
 VI.4. Reflections, Light, and Distance 309
 VI.5. Fagnano’s Problem and the Orthic Triangle 315
 VI.6. The Fermat Problem 322
 VI.7. The Circle of Apollonius 340

VII. Symmetric Figures in the Plane
 VII.1. Symmetry Groups 347
 VII.2. Invariant Sets and Orbits 356
 VII.3. Bounded Figures in the Plane 363

VIII. Frieze and Wallpaper Groups
 VIII.1. Point Groups and Translation Subgroups 376
 VIII.2. Frieze Groups 399
 VIII.3. Two-Dimensional Translation Lattices 416
 VIII.4. Wallpaper Groups 439

IX. Area, Volume, and Scaling
 IX.1. Length of Curves 459
 IX.2. Area of Polygonal Regions: Basic Properties 467
 IX.3. Area and Equidecomposability 482
 IX.4. Area by Approximation 487
 IX.5. Area and Similarity 505
 IX.6. Scaling and Dimension 520

 References 531
 Index 533
Instructor Preface

This text is intended for a one-semester course on geometry. We have tried to write a book that honors the Greek tradition of synthetic geometry and at the same time takes Felix Klein’s Erlanger Programm seriously. The primary focus is on transformations of the plane, specifically isometries (rigid motions) and similarities, but every effort is made to integrate transformations with the traditional geometry of lines, triangles, and circles. On one hand, we discuss in detail the concrete properties of transformations as geometric objects; on the other hand, we try to show by example how transformations can be used as tools to prove interesting theorems, sometimes with greater insight than traditional methods provide.

We have been surprised and pleased at how far this idea can be taken. We hope we have made concrete the usually abstract dictum of the Erlanger Programm:

\[
\text{a geometry is determined by its symmetry group.}
\]

For example, we have tried to show the intimate relationship between Fagnano’s Problem (inscribe in a given triangle a triangle of minimal perimeter) and the problem of computing the product of three reflections. (This latter problem is natural since by the First Structure Theorem of §II.4 every isometry is the product of at most three reflections.) From this, one can prove the concurrency of the altitudes of a triangle using only reflections, not similarities as does the traditional proof. As a consequence, one can later conclude that the concurrency of altitudes holds equally well in elliptic geometry and (to the extent possible) hyperbolic geometry. In the other direction, traditional geometric reasoning is used in showing that every strict similarity transformation has a fixed point and the computation of the product of two rotations is interpreted in terms of traditional geometry.

The Erlanger Programm is often treated as a component of the larger topic of group theory. We first introduce the group concept in Chapter III and use it constantly throughout the subsequent material; in particular, it plays a central role in Chapters VII and VIII. But groups are never investigated for themselves; they are always subservient to the geometry. Nevertheless, students who have taken a course from this book will have a store of examples to make coping with group theory in a subsequent abstract algebra course easier and more meaningful.
We have expended considerable effort to give a self-contained development and to make explanations as clear as possible. Our students have found the text to be quite readable; we hope the same will be true for your students.

Our text is, in fact, the first of a projected two-volume work. The second volume will go beyond traditional Euclidean geometry by introducing coordinates, discussing different geometries — affine and non-Euclidean (hyperbolic and spherical/elliptical) — in a projective setting, and ending with an interpretation of Einstein’s *Special Theory of Relativity* as an analog in higher dimensions of hyperbolic plane geometry. Until the completion of the second volume we hope this text will stand on its own as a treatment of plane Euclidean geometry that deepens the reader’s understanding of symmetry and its natural place in geometry.

This book can support several different types of courses. Chapter I gives a fairly complete axiomatic development of plane Euclidean geometry, largely inspired by Moise, *Elementary Geometry from an Advanced Standpoint*. This can be made a substantial part of the course or be used entirely as a reference or something in between. The heart of the book is composed of Chapters II to V. Here we develop the basic facts about isometries (Chapters II and III) and similarities (Chapter IV) and attempt to integrate the Kleinian transformational viewpoint with geometry as formulated traditionally (Chapter V).

Chapters VI through IX present applications of the material from Chapters II to V. Different choices of material from these chapters will result in courses of quite different flavors. In particular Chapter VI, Chapters VII and VIII, and Chapter IX are essentially independent of each other.

Chapter VI uses the transformational approach to establish very traditional theorems of plane geometry. The chapter begins with the classical coincidences — the circumcenter, incenter, centroid, and orthocenter. In the treatment of the centroid, we emphasize the role of the medial triangle (the triangle formed by the midpoints of sides) and in particular the fact that it is similar to the original triangle by a similarity that stretches by 2 and rotates by 180°. This immediately leads to the Euler line and provides relationships that carry us on to the nine-point circle. We attempt to reveal the depth of this remarkable configuration. Several other topics which can be approached naturally via transformations, including *Fagnano’s Theorem* and its relationship to the orthic triangle, *Napoleon’s Theorem*, and the *Fermat Problem*, are also discussed.

Chapters VII and VIII are devoted to understanding symmetric figures. They describe the classification of discrete groups of plane isometries — rosette groups, frieze groups, and wallpaper groups. We have attempted to
give a careful treatment. Especially in the case of the wallpaper groups, we hope the ingredients that go into the classification are brought out clearly and that the argument, as well as the final result, will be memorable (in the sense that your students will actually be able to remember it!). The group theoretic notion of a split extension is the basic tool, but we treat it in a concrete fashion. In particular, this concept helps to organize both the classification and its justification.

Chapter IX studies scaling and dimension and makes a brief foray into fractals. It discusses the area of plane figures, from familiar area formulas to Jordan content for more exotic shapes. The treatment is relatively abbreviated and provides many opportunities for students to fill in the details (with generous hints).

Throughout the book the approach is concrete, and we try to give complete explanations. The need for justification and proof is taken for granted, and there are many opportunities for students to construct their own arguments. Because of this and because of the concrete and accessible nature of the material, this text might form the basis for a bridge course to introduce students to mathematical reasoning.
Student Preface

This book is about Euclidean geometry, the same subject you studied in high school. However, the viewpoint is probably very different. The goal of this text is to present geometry in a way that honors the ideas of transformation and symmetry that have so profoundly shaped the modern scientific view of the world. To set the stage for the book, we offer you a thumbnail sketch of its historical roots.

Geometry as a deductive science was invented by the Greeks. Their work on the subject, the work of many thinkers over several centuries, was collected and woven together brilliantly by Euclid of Alexandria around 300 B.C. For nearly two thousand years, Euclid’s Elements, expounding Greek geometry, was the high point of human intellectual achievement.

Though universally revered and admired, there were aspects of Euclid’s Elements that worried some readers. His system of geometry was built on several “common notions” — easily accepted principles of reasoning which applied to many areas — together with five “postulates,” accepted facts that were specifically about geometry. Four of these postulates were short, simple, and easy to accept. The fifth, however, was troublesome to those who thought seriously about the subject. Here is an English translation of what it said.

If a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which the angles are less than two right angles.

The statement is rather long, about as long as the other four postulates put together. But it was not its length that unnerved thoughtful students of Euclid. It was the “if produced indefinitely”. It asserts that two lines which cross a third line in a certain way must eventually intersect. But where? If the interior angles of intersection are much smaller than 90°, the lines will intersect nearby. However, if the angles are close to 90°, the lines may intersect far away — possibly far, far away: in the next state or in Europe or beyond the Moon or outside our solar system or even our galaxy (of whose existence Euclid and everyone else before the twentieth century was blissfully unaware).
This is the difficulty with the Fifth Postulate: it makes an assertion about the structure of space in the large; in fact, infinitely large. (Perhaps such a statement was easier to make in ancient times, when people had little inkling of how large things could be.) There is no way we can physically check the truth of Euclid’s Fifth Postulate because we can never physically confirm that two lines do not intersect; no matter how far we go without finding an intersection point, we can never rule out that such a point exists “just a little further” along the lines.

So people who were inclined to worry about such logical and aesthetic issues were unhappy with the Fifth Postulate. Many attempted to eliminate the need for it by turning it into a theorem, i.e., they tried to show it followed as a logical necessity from the first four postulates. However, no one succeeded in doing so although many purported “proofs” were constructed over the centuries. Though always flawed in some way, several of these “proofs” carried their reasoning quite far and established important results that do, in fact, follow from denying the Fifth Postulate.

After so many failed attempts over two millennia, the suspicion began to grow in the early nineteenth century that there might indeed be “other geometries” in which the Fifth Postulate was false. The first to publish a description of a non-Euclidean geometry (1829) was Nikolai Lobachevsky, professor at the University of Kazan in Russia. Lobachevsky’s work appeared in the Bulletin of Kazan University. In that pre-internet (indeed, pre-theory of electricity and magnetism!) era, communications could be rather slow, and thus mathematicians further west remained unaware of Lobachevsky’s work. In 1832, an independent account of a non-Euclidean geometry was published by Janos Bolyai, a young Hungarian. These two papers inaugurated the post-Euclidean era in geometry.

These were the first leaks in a dam that had been holding back human thought. The next decades saw a flood of research in geometry and the creation of a great profusion of geometric systems. The traditional meaning of geometry could not encompass the new wealth of phenomena. A revised understanding of the nature of geometry was urgently needed.

The basis for this new understanding came from a subject invented at nearly the same time as non-Euclidean geometry — the theory of groups. Unlike the questions surrounding the Fifth Postulate which were in the minds of many mathematicians at the time, group theory was the invention of one extraordinary individual, Evariste Galois.1

1Galois was inspired by a problem which had also attracted much attention — the problem of giving formulas for the solutions of polynomial equations. However, he applied his own unique and revolutionary approach to the problem.
Galois was too smart for his own good. A student revolutionary who once toasted the king of France by burying a knife in a table, he died in a duel over a woman at the age of twenty-two. That was in 1832, the same year as Bolyai’s publication on non-Euclidean geometry. Fortunately for mathematics, Galois spent the night before the duel furiously writing down his ideas about groups and their applications to solving polynomial equations.

Galois’ ideas were hard for his contemporary mathematicians to understand. However, they did get studied and appreciation for their power gradually percolated through the mathematical community during the same period when geometric research was roaring full throttle. Indeed, a realization of the relevance of group theory to geometry began to grow, with groups arising from symmetries — transformations of a system which preserve the essential characteristics of the system.

The seminal connection between geometry and group theory was discovered by Felix Klein. It was the custom in German universities of that era for new professors to give an inaugural lecture on their research to the full faculty.2 In 1872, at the University of Erlangen, Felix Klein, then only twenty-three years old, presented to his colleagues striking ideas about how to unify geometry by means of symmetry via group theory. This proposal has become known as Klein’s Erlanger Programm.3

Klein’s first observation was that geometry is not about individual figures but about classes of equivalent figures. For example, in Euclidean geometry there is a notion of congruence. Any two congruent figures are “the same” from the point of view of Euclidean geometry — they have the same geometric properties. Furthermore, you can tell if two figures are congruent by transforming or moving one so that it becomes (more correctly, coincides with) the other. The transformation you use should be a rigid motion, i.e., it should preserve distances and angles.

Thus, at the core of Euclidean geometry, as well as at the core of most other geometries constructed after 1830, there was a notion of geometric equivalence, defined by a specified collection of transformations known as the symmetries of the geometry. (In Euclid’s Elements, this idea was somewhat hidden and never explicitly acknowledged, but the attentive reader can see it used at certain critical places.) Klein further observed that

2It was a much bigger deal to be a professor in those days — in most universities there was often just one professor in a subject. They were addressed as “Herr Professor Doktor,” the title a bit long but admirably distinguished.

3The “r” on the end of “Erlanger” is not a misprint. It’s how German grammar works.
(i) the set of symmetries formed a group in the sense of Galois and
(ii) you can reconstruct the geometry from its symmetry group.\footnote{Actually the reconstruction of the geometry requires a little additional information along with the symmetry group. But the symmetry group remains the central object.}

In short, the fundamental idea in geometry is that of \textit{symmetry}, and a given geometry is governed by the nature of its symmetries.

Klein’s ideas and related work sparked a second wave of remarkable discovery that produced, among other things, a classification of the building blocks of all possible symmetry groups of geometries that are \textit{continuous} in that they allow continuous movement. While this classification listed familiar objects such as Euclidean and non-Euclidean geometries and their higher-dimensional cousins, it also included a few exotic systems of symmetries whose associated geometries are still only partially understood.

Through the end of the nineteenth century this was all \textit{pure} mathematics, inspired by nagging questions in the field and divorced from practical goals. In 1905, however, Albert Einstein introduced his \textit{Special Theory of Relativity} that explained the troubling results of some experiments (e.g., the Michelson-Morley experiment) made to probe Maxwell’s theory of electromagnetism. A year later, Hermann Minkowski, who had been Einstein’s mathematics teacher at the University of Koenigsberg and was embarrassed by the unsophisticated level of the mathematics in Einstein’s paper, reinterpreted Einstein’s results in terms of a non-Euclidean geometry of four-dimensional space-time. Transformations had played a key role in the interpretation of the Michelson-Morley experiment and in Einstein’s theory — Minkowski found the four-dimensional geometry for which they comprised the group of symmetries.

Since the appearance of Einstein’s paper, symmetries and transformations have played an ever-greater role in theoretical physics. It is not too much of an exaggeration to say that symmetry and groups have been a dominant theme in modern physics. In particular, the structure of atoms, which leads to the chemistry that shapes all of biology, has at its base a structure of exquisite symmetry. Thus group theory and symmetry, which were first introduced in response to questions about solutions of equations, proved later to be fundamental for understanding geometry, and still later, for understanding the deeper truths of our real physical world. This history is a beautiful example of how mathematical ideas, pursued for their own sake, can have a dramatic impact and practical consequences in domains far beyond their original birthplace.\footnote{The same point can be made in an even stronger way for the investigations that led to the discovery of non-Euclidean geometry. At face value, these seemed to be archetypically useless academic pursuits — they were not even going to produce new theorems, only tidy up the system.
Our book takes Klein’s *Erlanger Programm* seriously, while still retaining the flavor of a classical study of geometry in which triangles, circles, quadrilaterals, and other simple shapes are the primary objects of investigation. The study of transformations is integrated with serious attention to the beautiful results of synthetic geometry. We do this in two ways: transformations are studied as geometric objects, emphasizing their concrete geometric properties, and transformations are also used as tools to understand interesting concepts in geometry such as the circumcircle, incircle, centroid, orthocenter, Euler line, and nine-point circle. The authors have been surprised at the extent to which this unified viewpoint can succeed.

We hope this book presents the philosophy of the *Erlanger Programm* — that symmetry is the basis of geometry — not merely as an abstract, organizational viewpoint, but as a practical approach that enhances your understanding and highlights the beauty of this timeless subject.

Above all, we hope you enjoy the journey you are about to begin.

Cross-Reference Conventions. Text cross-references to theorems, figures, equations, and other labeled items are handled as follows. Within Chapter V, for example, cross-references such as Theorem 1.2, Figure 5.3, and (3.3) refer to items with those labels contained in Chapter V. However, within Chapter V, cross-references such as Theorem II.1.2, Figure II.5.3, and (II.3.3) refer to items with those labels in Chapter II, hence outside of Chapter V.

of postulates. As it turned out, they brought us to a great watershed in thought, producing massive reverberations in mathematics, science, and philosophy that have shaped and continue to shape the nature of our thinking.
Acknowledgments

When a book has been in preparation for eleven years, there are many people who have contributed helpful advice and who have supported the authors in numerous important ways. Though we can list only a small number of them — students, colleagues, friends, and family — they have all earned our deep appreciation.

This book originated from a course first piloted by the authors at Yale University in the fall of 1996 with funding from the National Science Foundation. We thank the NSF for the encouragement and support they gave to the project during that formative initial period (NSF Grant DUE-9555134).

Jim Reid and Robert Rosenbaum of Wesleyan University were highly involved the first year, attending the class and preparing extensive comments on our preliminary notes — we are grateful for their aid. Jim remained involved over the years and has contributed many valuable suggestions that have entered our exposition in significant ways; his unwavering support and advice have been deeply appreciated.

We also thank Thomas Berger of Colby College and Anita Salem of Rockhurst College, both of whom taught courses from early versions of our manuscript on multiple occasions — it was reassuring to have confirmation that the manuscript worked outside of the hands of its creators! Tom also contributed many insightful critiques on our materials that have affected the final product.

Hearty thanks to Zalman Usiskin of the University of Chicago and James King of the University of Washington for sharing their insights on geometry. Their comments have been incorporated in several exercises.

We greatly appreciated the invitation from Robert Bryant of Duke University and John Polking of Rice University to teach Continuous Symmetry at the IAS/Park City Mathematics Institute in the summer of 1998. This gave our materials wide exposure to an interested group of colleagues and students.

We have taught Continuous Symmetry over the past ten years at both Yale and Bowdoin — we gratefully thank all our many students for the insightful comments they gave, for the careful proofreading they provided, and for the
patience they displayed in dealing with a sometimes rough work-in-progress. Their enthusiasm for the material was a great support during the long hours spent preparing the manuscript. We cannot list them all, but a few deserve special mention.

Anthony Philippakis, Yale, 1998, a student when we piloted Continuous Symmetry, was an unending source of enthusiasm, commentary, suggestions, and support. He continued working on this material long after the course ended, producing a lovely article [13] for the American Mathematical Monthly. Andrew Shaw, Bowdoin, 2002, and Sam Kolins, Bowdoin, 2006, went above and beyond the normal course work, enthusiastically providing commentary and suggestions that led to improvements in the text. We are grateful for their insight, help, and support.

We also wish to thank Reed Hastings, Bowdoin, 1983, whose generous support of the Bowdoin College Mathematics Department helped allow one author an extra semester’s leave at Yale. This was of immense value in producing the current text.

We must express our deep appreciation to the editors and technical staff at the AMS. Barbara Beeton and Stephen Moye have spent many hours helping us tame \TeX{} and produce an acceptable manuscript — they were generous with their time and accurate with their advice. Arlene O’Sean, the AMS Copy Editor, was insightful and meticulous in her excellent editing of our manuscript. We are particularly thankful to AMS Editors Ed Dunne and Ina Mette for their unfailing encouragement and support for this project, their gentle reminders about deadlines, their understanding and patience as we missed those deadlines, and their unflappable good humor and sound advice at every point during the production of this book.

We also enjoyed the finest administrative support possible from the staff of our respective mathematics departments. Mel Delvecchio at Yale and Sue Theberge at Bowdoin spent many hours these past years helping the authors cope with all the administrative issues involved with this writing project, all with efficiency, skill, and good humor.

Finally, the greatest thanks of all goes to our wives, Sue and Lyn, for having to endure the long hours and late nights this project has consumed these many months and years. We have relied on their love and support and patience and understanding, especially when it seemed like the end was never going to arrive.

Acknowledgments for Graphics. The flow chart of Figure VIII.2.19 is adopted from George E. Martin’s “Transformation Geometry: An Introduction to Symmetry,” Springer, 1982: Figure 10.11, page 83. The frieze patterns of Figure VIII.2.20, one of which is repeated in Figure VIII.2.1, are based on Thomas Sibley’s “The Geometric Viewpoint,” Addison Wesley, 1998, Figure 5.18, page 193. Mathematica® was used to generate Figure IX.6.4. Freehand® was used to draw all the other figures.
This page intentionally left blank
References

This page intentionally left blank
Index

AAA (Angle-Angle-Angle)
 Thales's statement of, 289
AAA and SSS criteria for similarity, 270
altitude, 106, 296
angle
 acute, 37
 central, 80, 465
 complementary, 37
 congruence, 36
 corresponding, 78
definition of, 24
directed, definition of, 24–25
equal modulo 360, 39
exterior, of triangle, 56, 80
initial ray of, 39
inscribed in a circle, 80–81
intercepted arc of an inscribed, 80
interior, 30
linear pair, 35
measure, 35
obtuse, 37
of incidence, 312
of reflection, 312
opposite a side of a triangle, 33
remote interior, of triangle, 56
right, 37
straight, 39
sum of angles of triangle, 71
supplementary, 35
terminal ray of, 39
trivial, 39
vertical pair, 36
Angle Addition, 35
angle bisector
 as locus of points equidistant from sides, 61
definition of, 36
 existence and uniqueness of, 37
Angle Bisector Theorem, 340
Angle Construction, 35
angle measure, 35
directed, 38–45
Angle Measure Axioms, 34–45
 statement of, 35, 120
antipodal point, 12
Appolonius of Perga, 340
Archimedean Order, 2
area, 459
 computation via Jordan measure, 490–505
 Euclid’s approach, 475–476
 formulas for families of similar figures, 507, 515–516
 of a disk, 488–490
 of a parallelogram, formula for, 473
 of a rectangle, formula for, 473
 of a sector of a disk, 490
 of a square, formula for, 471–472
 of a trapezoid, 477
 of a triangle
 in terms of ASA, 478
 in terms of base and height, 474
 in terms of SAS, 478
 in terms of SSS, 477
 of polygonal regions, 467–487
 scales under dilation with the square of the dilation factor, 489, 506
area formulas, 459
area function on polygonal regions
axioms for an, 470
constructed from Jordan measure, 503
 existence and uniqueness of, 470
 uniqueness via dissection, 471
ASA (Angle-Side-Angle)
 statement of, 48
Thales’s statement of, 288
axiom system
axioms or assumptions in, 6
model for, 7
undefined object in, 6
axiomatic method, 6
Axioms for Euclidean Geometry,
 collected, 119–120

Basic Similarity Principle, 99
basis for discrete planar translation
 group, 417–422
 definition of, 418
 existence of, 418, 438
betweenness, 22
 for three points on a line, 22
billiards, 322
Bisector/Fixed Point Relation, 156
Bozlano’s Theorem, 115–119
 for Euclidean plane, 118
boundary
 of a triangular region, 468
 bounded figure, 354

Cantor set, 526
 and base b expansions, 529
 generalized, 528
 unsymmetric, 529
center of a group, 415
centers of similitude, 230, 239–240,
 344
centralizer
 of a transformation, 204, 229
centrally symmetric figure, 511–512
centroid, 292, 294–296
 a triangle and its medial triangle
 have the same, 300
 aka center of gravity, 295
dilation by –2 around the,
 298–309
divides each median in a ratio of
 1:2, 295
 lies on the Euler line, 301
change of scale
 change of length under a, 462
chirality, 309
circle, 80
 arc of a, 459
 center of, 56, 112
 central angle of, 80
definition of, 55, 112
diameter of, 56, 112
inscribed angle of, 80
intercepted arc of, 80
intersection criterion, 114
intersection with a line, 114
length of an arc of a, 464–465
line tangent to, 114
Line-Circle Theorem, 114
of Appolonius, 340–346
orthogonal, 344
point of contact of tangent line,
 114
possible intersection with another,
 112
radius of, 56, 112
radius segment of, 114
Theorem of Thales, 80
Two Circle Theorem, 112
circumcenter, 292–293
 lies on the Euler line, 301
 of a triangle is the orthocenter of
 the medial triangle, 301
circumcircle, 293
circumference
 arbitrarily large relative to
 diameter, 513
 of a circle, 459–464
 of a set in the plane, 510
classical coincidences, 292–298
Classification of Plane Isometries,
 188
classification procedure for
 symmetry groups, 393, 400
Classification Theorem for
Similarities, 242
closed region, 468
closed set in the plane, 507
coincidence in a triangle
 of altitudes (orthocenter),
 300–301, 318
 of angle bisectors (incenter),
 293–294
 of medians (centroid), 294–295
 of perpendicular bisectors
 (circumcenter), 292–293
collinear, 18, 22
Index

commutativity
 and fixed points, 154
 examples, 155
compatibility
 of point group and translation
 orbit, 386–387
 of point groups and translation
 subgroup, 381
completeness
 of Euclidean plane, 117
 of real numbers, 2–3
composition
 definition of, 146
 inversion of, 153
 is an algebraic operation, 148
 is associative, 149
 is not commutative, 148
 juxtaposition notation for, 150
 of a rotation and a reflection, 178
 of a rotation and a translation, 201, 266
 of an even number of reflections is
 orientation-preserving, 194
 of an odd number of reflections is
 orientation-reversing, 194
 of four reflections is a composition
 of two reflections, 192
 of orientation-preserving
 isometries is
 orientation-preserving, 195
 of three reflections, singular case, 188
 of two mappings, 146
 of two reflections, 165–180
 of two rotations, 178
 of two translations is a translation, 176, 178
 of uniform dilations, 226, 239
 preserves isometries, 147
 preserves one-to-oneness, 147
 preserves ontoeness, 147
 preserves transformations, 147
congruence
 and geometric equivalence, 251–256
 as equivalence relation, 254
 criteria for, 254–255
 equivalence of transformational
 and formal definitions, for
 triangles, 252
 for line segments, 25
 for triangles is provided by
 isometries, 161
 of angles, 36
 of triangles, 46
 oriented, 267
 transformational definition, 251
conjugacy
 as geometric equivalence for
 transformations, 256–266
 classes of isometries, 263, 275
 classes of similarities, 273, 275
 criteria for, 259–265
 is an equivalence relation, 258
 of rotations and orientation, 265
 of subgroups, 352
 of two-fold products taken in both
 orders, 265
conjugation
 and commutativity, 179
 by similarities, 273, 275
 definition of, 258
 examples of, 179–180
 of a glide reflection by a similarity, 187, 273
 of a reflection by a similarity, 179, 260, 273
 of a rotation by a similarity, 179–180, 265, 273
 of a strict similarity by a
 translation, 275
 of a translation by a similarity, 179, 273
 of a uniform dilation by a
 similarity, 235, 273
 of an isometry by a similarity
 gives an isometry, 239
 of one transformation by another,
 definition of, 179, 258
 takes inverses to inverses, 261
 takes products to products, 261
Contraction Mapping Theorem, 250
convex quadrilateral, 30
convex set, 32
 definition of, 27
coordinate systems
definition of, 17
equivalence of, 19
coordinates
of a point in the Euclidean plane, 109
of a point on a line, 17
Crossbar Theorem, 30, 34
crystallographic notation, standard, 455
crystallographic restriction, 441
cyclic group, 354
definition, 350
of infinite order, 354
of orientation-preserving isometries, 365

Desargues’ Little Theorem, 77, 83
diameter
of a set in the plane, 508
of a square, 509
of a triangle, 517
of an equilateral triangle, 509
properties of, 517–518
relationship with radius, 511–512
dihedral group, 350
a finite non-orientation-preserving symmetry group is a, 368
is a reflection group, 373–374
dilatation
classification, 248
definition of, 144
isometric dilatations, classification, 205
must be a similarity, 248
translation is a, 144
uniform dilation is a, 226
dilation factor
negative value, 228
of a composition, 218
of a similarity, 135, 217
dilation, uniform, see uniform dilation
dimension-exponent relationship, 522
directed angle measure, 84–94
is translation invariant, 91, 145
transformation by similarities, 238
directed line
definition of, 24
discrete group of isometries, 375, 414, 456
dissection, 467, 482
transitive on polygonal regions, 484
distance
between points on a line, 18
from point to line, 61
properties of, 18
triangle inequality for, 18–19

elipse, 314
equality modulo a number, 39
equidecomposable
a rectangle and a square of the same area are, 482–484
a triangle and a parallelogram with the same base and half the height are, 475
definition of, 482
equivalence relation on polygonal regions, 484
two parallelograms with the same base and height are, 474
two polygonal regions of the same area are, 482–487
equivalence classes, 256
equivalence relation
congruence is an, 254
definition of, 25, 253
examples of, 256
relation of key properties to group properties, 258–259
Erlanger Programm, 251
for Euclidean geometry, 276–285
Euclidean geometry
is implicit in the structure of the Euclidean group, 276–285
Euclidean group
matrix realization of, 280–283
Euler line, 301–302
contains the circumcenter, orthocenter, centroid and nine-point center, 301
Euler points, 303, 306
Euler, Leonhard
discovered the Euler line, 302
Exterior Angle Theorem, 56
Fagnano’s Problem, 313, 315–322
Fermat point, 322, 329
Fermat Problem, 322–339
 solution of, 328
 statement of, 322
Fermat’s Principle
 implies the Law of Reflection, 311
 statement of, 310
Fermat, Pierre, 310, 322
Feuerbach points, 304
Feuerbach’s Theorem, 305
Feuerbach, Karl Wilhelm, 305
finite group
 of isometries fixes a point, 364
 of rotations is cyclic, 365
First Structure Theorem, 156–160, 165
 statement of, 159
fixed lines
 behavior under conjugation, 259
 for isometries, 189
 for similarities, 246
fixed points
 behavior under conjugation, 259
 definition of, 154, 156
 existence for contraction
 mappings, 250
 for isometries, 189
 for similarities, 240–241
 for symmetry groups of bounded
 figures, 363
 strict similarities have unique,
 240–250
Fixed Points and Fixed Lines, 189
fractal, 459, 523–529
 dimension of a, 526
 generator for a, 523
 initiator for a, 523
 is a self-similar figure, 525
frieze group, 375, 399–415
 central reflection of a, 400
 classification: seven conjugacy
 classes, 410
 conjugacy classes of non-split
 groups: only two, 408, 413
 conjugacy classes of split groups:
 only five, 404
 contained in a split frieze group,
 407
 definition of, 400
 flow chart for classification, 412
 generators for a, 410–411
 isomorphism classes: only four,
 415
 midpoint restricted subgroup of,
 408–410
 point groups: only four, 403
 sample frieze patterns for, 411
 split if point group does not
 contain central reflection, 406
frieze patterns
 complete set: seven conjugacy
 classes, 411
 definition of, 350
 example, 350
 from Anasazi pottery, 413
 non-split groups: two conjugacy
 classes, 408
 split groups: five conjugacy
 classes, 405
 fundamental domain, 331, 373
 for a translation group, 423
G-related, 361
geometric equivalence, 251
 and similarities, 266–275
 with respect to a group, definition
 of, 267
geometric optics, 310
geometric properties
 for Euclidean geometry, 255
 of isometries, 263–264
 of similarities, 274
geometry
 early history of, 287
 etymology of, 287
 glide axis
 and the orthic triangle, 316
 glide length
 and the orthic triangle, 316–317
 glide reflection, 181–188
 a generic threefold product of
 reflections is a, 184
 and the orthic triangle, 187
 as product of a reflection and a
 point inversion, 186
axis of, 183
definition of, 183
equality of, 184
glide axis is the only fixed line of a non-trivial, 186
has square equal to a translation, 187
non-trivial, 183
(oriented) glide length, 183
specification by data, 184, 186
standard form, 182
glide reflection property for an inscribed triangle, 319
global rotational direction, 84–86
great circle, 13
group
abelian, 200
center of, 415
cyclic, 350, 354, 365
cyclic of order 𝑚, definition, 350
dihedral, 350
isomorphism, 279
normal subgroup, 204, 238
of symmetries, 204
of transformations, 199
subgroup of, 200
group homomorphism
definition of, 205, 377
group isomorphism, 279, 353, 439
is an equivalence relation, 355
group of transformations, 165, 199–206
as symmetry group, 204
centralizer of an element of 𝑎, 204
commutative, 199
definition, 199
dilatation group, 205
examples, 203
intersection of two, 203
normal subgroup of, 204
of the line, 205
subgroup of, 199
translations form a commutative, 199
half plane
definition of, 28
dege of, 28
Heron of Alexandria, 477
Heron’s Formula, 477
Hinge Theorem, 61
homogeneous isotropic medium, 310
hyperbolic geometry, 63, 78
identity mapping, 122
is an isometry, 135
image of a set by a mapping
definition of, 130
of a union, 134
of an intersection, 134
incenter, 292–293
Incidence Axioms
eamples, 8–17
minimal example, 15
statement of, 7, 120
incircle, 293
Inscribed Angle Theorem
and reflections in perpendicular bisectors, 298
statement of, 80
intercepted arc, 465
measure of, 80
of an angle inscribed in a circle, 80
interior
of a triangular region, 468
of an angle, 30
of the domain 𝐷 of standard lattices, 430
invariant properties
for subsets of plane, 255
for transformations of plane, 263
invariant set for a group, 356–357, 361
inverse
compute examples, 154
definition of, 150
of a composite mapping, 152–153
of a similarity is a similarity, 218
of an isometry is an isometry, 152
invertible
equivalence with one-to-one and onto, 151
involution, 247
isometric mapping is a transformation, 145
isometries
form a group under composition, 199
form a normal subgroup of the similarities, 238
represented as a matrix group, 280
isometry
as distance-preserving mapping, 145
as products of reflection, 159
classification of, 188
definition of, 135
examples, 135–139
First Structure Theorem, 159
fixed point classification, 157
fixed points of, 157
groups of the line, 205
inverse is again an isometry, 152
of the line, 190
orthogonal extension of, 190
preserved by composition, 147
preserves geometric objects, 139, 144
preserves half planes, 144
preserves parallelism, 144
preserves perpendicularity, 144
properties of, 139, 144
type is specified by fixed points
and fixed lines, 189
isomorphism of groups, 279
isoperimetric theorem, 520
isosceles triangle
 equivalent conditions for, 292, 297
 symmetry of, 291
Jordan measurable sets
 all disks and sectors of disks are, 496
 all polygonal regions are, 496
 closed under union, intersection, difference, 493
 from inner and outer Jordan measure, 493
 independent of choice of square lattice, 501
 with respect to a fixed square lattice, 492
Jordan measure, 490–505
 behavior under similarities, 506–507
 independent of choice of square lattice, 501
is defined for polygonal regions, 496
is invariant under isometry, 502
of a line segment is zero, 496–498
properties of, 493–495
satisfies the axioms for an area function, 503
with respect to a lattice of squares, 492

kaleidoscope, 369–372
Klein, Felix, 251
Koch curve, quadratic, 527
Koch snowflake, 523–526
 similarity dimension of, 526
lattice, 382
 a general lattice is similar to a unique standard, 435
 classification of planar types, 439, 440
 (fat) rhombic, 433, 439
 for discrete planar translation group, definition of, 417
 for discrete planar translation groups, 416–438
 hexagonal, 431, 433, 439
 invariant under a given point group, 442
 invariant under a reflection, 425–429
 invariant under a reflection is rectangular or rhombic, 426
 (long) rhombic, 433, 439
 oblique, 433, 439
 rectangular, 425, 431
 rhombic, 425, 431
 rhombic extension of a rectangular, 428–429, 437
 square, 431, 433, 439
 standard, 422–428
 strict rectangular, 433, 439
 symmetries of, 429–438
 symmetry classes of, 433, 439
 with symmetry on the boundary of \(D \), 432
lattice of squares, 491
lattice point group, 429
length, 459
Leonardo’s Theorem, 369
line
 intersection with a circle, 114
 isometries of, 190
line segment
 definition of, 23
 directed, definition of, 24
 has equal direction with another, 124
 perpendicular bisector of,
 definition and characterization, 55
line segments
 congruence for, 25
Line-Circle Theorem, 114
linear pair, 35

Mandelbrot, Benoit, 523
mapping
 composition, 146
 definition of, 122
 equality of, 122
 fixed points of, 154
 identity, 122
 inverse mapping, 150
 one-to-one, definition of, 130
 onto, definition of, 131
measures of shape, 511–513, 519
medial triangle, 295, 298–299, 306
 a triangle is similar to its, 299
median, 293
midpoint, 23
minimal translation displacement, 399
Mirror Principle, 313
Möbius band, 84–86
Moulton plane, 17
 and Ruler Axiom, 21
 incidence in, 13
multisquare region
 definition of, 490
 inner and outer approximation by,
 490–492

Napoleon symmetry group, 335, 362
Napoleon tesselation, 330–337, 362, 456
 fundamental domain of, 332
 special, 338

Napoleon translation group, 334, 362
Napoleon triangle
 inner, 337
Napoleon’s Theorem, 216, 330
natural numbers, 1
nine point center
 is the midpoint of the Euler line, 301
nine point circle, 295
 is aka the Feuerbach circle, 305
 is tangent to the incircle and the
 excircles, 304
 is the circumcircle of the medial
 triangle, 302
 is the circumcircle of the orthic
 triangle, 303
 three-dimensional interpretation, 308–309
non-Euclidean geometry, 78
 one-to-one correspondence, 17
 one-to-one mapping
 definition of, 130
 preserved by composition, 147
 onto mapping
 definition of, 131
 preserved by composition, 147
orbit
 for a group, 361
 for a subgroup, 362
 of \(p \) is the smallest \(G \)-invariant set
 containing \(p \), 358
 of a point, for a group, 357–359
 properties of, 358
orientation, see also parity, 191–199
 and composition, 195, 236
 of a similarity, 232
 of an isometry, 194
orientation-preserving
 subgroup of a symmetry group, 359–360
origin, choice of, 1
ornamental group, 375
orthic triangle
 and Fagnano’s Problem, 315–322
 angles of the, 321
 characterizations of the, 319
 definition of, 187, 297, 315
 solves Fagnano’s Problem, 318
orthocenter, 292, 296
 is the incenter of the orthic
triangle, 318
 lies on the Euler line, 301
orthogonal extension
 of isometries of the line, 190
orthogonal projection
 to a line, definition of, 129–130
overlap, 468

p-component
 of a plane isometry, 376
 of an isometry, definition of, 210
p-factorization
 defines a group homomorphism, 377
 of a plane isometry, 376
pairwise adjustment of reflections, 174
parallel
 line segments, definition of, 62
 line through a point, existence of, 63
 lines must be perpendicular to the
 same lines, 73, 78
 lines perpendicular to same line
 are, 62
 lines, definition, 62
 lines, distance between, 79
 lines, transitivity, 72
Parallel Postulate, 64, 66, 69–84
 and Rectangle Hypothesis, 79
 and Theorem of Thales, 80
 and Triangle Sum Hypothesis, 68
 implies constancy of interior angle
 sum for triangles, 71
 implies equal alternative angles, 71
 implies transitivity of parallelism, 67
 independence of, 77
 statement of, 70, 120
parallelism, 62–70
parallelogram
 analog of Pythagorean Theorem
 for diagonals, 98
 as convex quadrilateral, 81
 definition, 73
 Desargues’ Little Theorem, 77
diagonals bisect, 74
diagonals, definition of, 73
equality of opposite sides, 82
 have diagonals that bisect each
 other, 81
 is convex, 81
 opposite sides of are congruent, 74
Parallellogram Construction
 Theorem, 76
Parallellogram Existence Theorem, 75
Parallellogram Uniqueness Theorem, 74
parity, see also orientation
 and conjugation of a rotation, 180
 and directed angle measure, 180
 behavior under composition of
 isometries, 195
 of a similarity, 232
 of an isometry, 180, 194, 197
 of products of similarities, 236
perpendicular bisector, 55
perpendicular line
 as shortest distance from point to
 line, 60
 definition, 37
 existence and uniqueness, 49
planar lattice, 375
plane geometry axiom system
 undefined objects for, 7
Plane Separation Axiom, 27–34
 statement of, 28, 120
Poincaré disk, 15, 63
 falsity of Parallel Postulate in, 77
 incidence in, 10
point group, 375–379
 at different points are conjugate, 379
 compatibility with translation
 orbit, 386
 compatibility with translation
 subgroup, 381
 definition of, 377
 examples of, 378
 of a frieze group is C_1, C_2, D_1, or
 D_2, 403
 of a wallpaper group, 440–443
 representative of an element of, 377
point inversion
 definition of, 125
 equality of, 125
 equals a half-turn, 127
 group theoretic characterization of, 279, 283
 is an isometry, 137
polygonal region
 area of, 470
 convex, 480
 definition of, 256, 467
 is trangulable, 481
 non-overlapping, 468
 preserved by unions and intersections, 470
Pons Asinorum, 48, 53, 288
 and isosceles triangles, 290
products of two reflections, redundancy of, 174
Pythagoras, 287
Pythagorean Theorem
 analog for diagonals of a parallelogram, 98, 107
 converse of, 107
 Euclid’s proof of the, 479
 proof by similarity, 97
 proof using area of squares, 480
 proof using similarity scaling of area, 513–515

quadrilateral
 convex, 30
 cyclic, 323–325
 definition of, 30
 diagonals of, 30
 Saccheri, 66–68, 73
 Varignon’s Theorem, 107
 with opposite angle supplementary
 is cyclic, 323

radius
 of a set in the plane, 508
 of a square, 509
 of an equilateral triangle, 509
 relationship with diameter, 511–512
rational numbers, 1
 incompleteness of, 5
ray
 definition of, 23
 opposite to given ray, 23
 translates, 86
 translates from translations, 142
Ray Separation Theorem, 83
real Cartesian 3-space
 incidence in, 14
real Cartesian plane, 8
 and Ruler Axiom, 20
 distance on, 19
 truth of Parallel Postulate in, 77
real Cartesian space, 17
real numbers
 and related number systems, 1
 Archimedean ordering principle, 2
 axioms for, 6
 Bolzano’s Theorem, 3–4, 115
 bounded sequences of, 3, 115
 completeness of, 2–3
 convergent sequences of, 3, 115
 coordinatizing a line with, 1, 17
 decimal expansions of, 6
 open and closed intervals in, 2
 separation by rational numbers, 4, 103
 standard algebraic properties of, 2
real projective plane, 17
 incidence in, 12
rectangle
 and Saccheri quadrilaterals, 73
 as parallelogram, 82
 definition of, 66
Rectangle Hypothesis, equivalence to Parallel Postulate, 79
reflection
 of light, 309–315
reflection group, 369, 415, 458
 definition of, 374
reflection in a line
 definition of, 123
 equality of, 123
 group theoretic characterization of, 279, 283
 is an isometry, 135–137, 143
reflection property for an inscribed triangle, 316
refraction, 311
rhombic extension of a rectangular lattice, 428–429
rhombus, 82
fat, 432
long, 432
rosette group, 375
rotation
around a point, through a directed angle, 126
characterization as product of reflections, 172
equality of, 127
is an isometry, 138
non-trivial, 126
pairwise adjustment of reflections, 172, 174
rotation angle, 165, 208
additivity under composition, 212, 238
characterization in terms of a line and its image, 214–215, 239
characterization of translations in terms of, 212
effect of conjugation, 264
for an even isometry, 211, 214–215
for an even similarity, 234, 237, 239
not possible for odd isometry, 215
tells when a product of reflections is a translation, 213
rotational direction, 84
Ruler Axiom, statement of, 17, 120
Ruler Placement Theorem, 19
SAA (Side-Angle-Angle), 60
Saccheri quadrilateral, 66–68, 79
definition of, 66
Saccheri quadrilaterals are rectangles under Parallel Postulate, 73
SAS (Side-Angle-Side) Axiom
independence of previous axioms, 54
statement of, 47, 120
SAS Similarity Theorem, 107
Second Structure Theorem, 206–211
statement of, 207
Segment Construction Theorem, 25, 27
semidirect product, 377, 398
sets
equality of, 24
shear parallel to a line, definition of, 128–129
shortest translation in a translation group, 424
Sierpiński’s carpet, 528
similarities
classification of, 242
fixing a point and a line, 222
fixing a point form a group, 234
form a group, 218
groups of, 247
mapping a given point to a given point, 246
mapping a segment to a segment, 238
of a line, 234, 248
the composite of two is another, 218
similarity, 217–253
as a distance ratio preserving mapping, 230
as a transformation preserving lines and preserving circles, 223
as an equal distance preserving transformation, 222
as geometric equivalence under similarities, 271
as product of a uniform dilation and an isometry, 231
criteria for, 272
definition of, 217
dilation factor, 135, 217
equivalence of transformational and formal definitions, for triangles, 269
fixed points of a, 240–250
inverse of one is another, 218
is a transformation, 217
is an equivalence relation, 271
is determined by its action on three points, 233
of triangles, 94
parity of, 232
preserves geometric shapes, 219, 222
preserves parallelism, 222
preserves perpendicularity, 222
properties of, 219, 222
rotation angle of, 233–237
strict, definition of, 241
strict, structure of a, 242
structure of a, 231–235
Structure Theorem for Similarities, 232
Structure Theorem for Strict Similarities, 241
transformational definition of, 268
with dilation factor, definition of, 135
Similarity and Area Principle, 506
similarity dimension, 459, 526
similarity extension
from line to plane, 235
Similarity Fixed Point Theorem
analytic proof of, 250
proof of, 242–246, 249
statement of, 241
Similarity Principle, Basic, 99
Similarity Theorem
proof, 98–106
statement of, 95, 224
Similarity/Dilation Theorem, 231
sine
addition formula for, 478
split at p, 388
split group, 387–393
a wallpaper group with a rhombic
lattice is a, 448
classification, 390–393
conjugacy, 392, 396
construction, 390
decomposition into point group
and translation subgroup, 387
example, 388
recognition, 389
split in G, 388
splitting point, 393
splitting set, 394
square root
of a translation, 436
SSA (Side-Side-Angle) conjecture, 60
SSS (Side-Side-Side), 49, 53
SSS Similarity Theorem, 107
strain orthogonal to a line, definition of, 128
stretch reflection, definition of, 241
stretch rotation, definition of, 241
Structure Theorem for Similarities, 232–233
Structure Theorem for Strict Similarities, 241
superposition
and symmetry, 289
symmetry, 347–458
of a figure, definition, 348
symmetry group
equivalence, 352
finite; Leonardo’s Theorem, 369
of a bounded figure, 363–374
of a bounded figure fixes a point, 363
of a figure, definition, 204, 349
symmetry type, 354–355
classification of, 351–353
of convex quadrilaterals, 372
Taylor circle, 339
tessellation
Napoleon, 330–337, 362, 456
of plane by parallelograms, 423
regular plane, 337
Thales
of Miletus, 287
Theorem of, 80, 288
theorems attributed to, 287
Theorem of Thales, 80, 288
equivalence to Parallel Postulate, 80
Three Circle Theorem, 307
and the nine point circle, 308
Three Reflections Theorem, see First Structure Theorem
transformation
criteria for invertibility, 151
definition of, 131
Euclidean geometric properties of, 263
examples, 121–135
means an invertible mapping, 151
transformational description of geometric conditions, 293
transitivity
 of parallelism, 72
 of ray translation, 88, 93
translation
 characterization as product of
 point inversions, 175
 characterization as product of
 reflections, 167
 collection forms abelian group, 200
 composition of two yields a
 translation, 176, 178
criteria for equality, 124, 144
definition of, 124
displacement of, 166, 183
equivalence of directed line
 segments under, 142
equivalence of rays under, 142
 is a product of uniform dilations
 with reciprocal dilation factors, 230
 is an isometry, 137, 144
 is the square of a glide reflection, 187
 non-trivial, 124
 of directed angle measure, 91–93
 of directed angles, 89–90
 of rays, 86–88
 pairwise adjustment of reflections, 167, 174
 parallel or perpendicular to a line, 436
 parallel to a segment, definition of, 123
 square root of a, 436
 transitivity of ray, 88
translation displacement
 minimal, for a pattern, 399
translation group
 basis for, 417–422
 definition of discrete planar, 417
translation orbit, 382–387
 compatibility with point group, 386
definition of, 383
 properties of, 383
translation subgroup, 375, 380–382
 compatibility with point group, 381
definition of, 380
is in bijection with any translation
 orbit, 383
of a frieze group is infinite cyclic, 401
 there is only one conjugacy class
 of frieze group, 402
transversal line
 alternate interior angles for, 64
definition of, 64
equal alternate interior angles for
 guarantees parallelism, 65
 interior angles for, 64
triangle
 AA Similarity Condition, 96
 AAA Similarity Condition, 96
 “all are isosceles” (?!!), 108
 altitude of, 106
 ASA Congruence Condition, 48
 congruence via isometries, 161, 252
 congruence with another, 46
 constancy of interior angle sum, 71
definition of, 24
equilateral, 48, 53
equilateral, transformational
 characterization, 215–216
exterior angle of, 56
filled, 467
 inscribed in a triangle, 319
 interior of, 32
 is convex, 33
 isosceles, 48, 291
 mirror property for an inscribed, 313, 316
 Pythagorean Theorem, 97
remote interior angles of, 56
 SAA Congruence Criterion, 60
 SAS Congruence Condition, 47
 SAS Similarity Condition, 107
similarity, definition of, 94
 similarity, via similarity
 transformations, 269
 SSA Congruence Criterion for
 obtuse, 60
 SSS Congruence Condition, 49, 53
 SSS Similarity Condition, 107
 with given sides, 110
Triangle Inequality, 59
triangle inequality
 independence of Incidence and Ruler Axioms, 21
 strict, 58
Triangle Isometry Theorem, 161
triangle similarity, 217
Triangle Sum Hypothesis, 68
 implies the Parallel Postulate, 69
Triangle Theorem, 110
 a union of two can be
 triangulated, 480
 an intersection of two can be
 triangulated, 469
 boundary, 468
 degenerate, 467
 interior, 468
triangulation, 468
 refinement of, 468
trigonometric functions, 98, 108
 trigonometry with directed angles, 108–110
Two Circle Theorem, 112
uniform dilation, 217
 commutes with reflection in line
 containing fixed point, 230
 composition of two uniform dilations, 226, 239
 conjugation by an isometry gives a uniform dilation, 235
 definition of, 127
 equality of, 128
 is a dilatation, 226
 is a similarity, 224
 properties of, 226, 229
 signed, 228
 terminology, 229
unit circle, 109
 unit of length, 1
Varignon’s Theorem, 107
 vertex sum, 325
Vertical Angle Theorem, 36, 288
 vertical pair of angles, 36
 virtual parallelopiped of the nine point circle, 309
 volume, 521–522
wallpaper group
 automatic splitting classes, 448
 classification of planar lattice types, 439–440
 classification: seventeen classes, 454–455
 contained in a split wallpaper group, 449
 non-split groups: four classes, 450–451
 ornamental groups, 375
 point groups and lattice pairs, 442
 point groups: only ten, 441
 seventeen isomorphism classes, 458
 split groups: thirteen classes, 444
wallpaper patterns
 definition of, 416
 example, 350
 non-split groups: four classes, 450–451
 split groups: thirteen classes, 444–445
The fundamental idea of geometry is that of symmetry. With that principle as the starting point, Barker and Howe begin an insightful and rewarding study of Euclidean geometry.

The primary focus of the book is on transformations of the plane. The transformational point of view provides both a path for deeper understanding of traditional synthetic geometry and tools for providing proofs that spring from a consistent point of view. As a result, proofs become more comprehensible, as techniques can be used and reused in similar settings.

The approach to the material is very concrete, with complete explanations of all the important ideas, including foundational background. The discussions of the nine-point circle and wallpaper groups are particular examples of how the strength of the transformational point of view and the care of the authors' exposition combine to give a remarkable presentation of topics in geometry.

This text is for a one-semester undergraduate course on geometry. It is richly illustrated and contains hundreds of exercises.