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Introduction

When structuring an undergraduate mathematics program, ordinarily the
faculty designs the initial set of courses to provide techniques that permit
a student to solve problems of a more or less computational nature. So,
for example, students might begin with a one variable calculus course and
proceed through multi-variable calculus, ordinary differential equations, and
linear algebra without ever encountering the fundamental ideas that underlie
this mathematics. If the students are to learn to do mathematics well, they
must at some stage come to grips with the idea of proof in a serious way.

In this book, we attempt to provide enough background so that students
can gain familiarity and facility with the mathematics required to pursue de-
manding upper-level courses. The material is designed to provide the depth
and rigor necessary for a serious study of advanced topics in mathematics,
especially analysis.

There are several unusual features in this book. First, the exercises, of
which there are many, are spread throughout the body of the text. They do
not occur at the ends of the chapters. Instead Chapters 1–4 close with special
projects that allow the teachers and students to extend the material covered
in the text to a much wider range of topics. These projects are an integral
part of the book, and the results in them are often cited in later chapters.
They can be used as a regular part of the class, a source of independent
study for the students, or as an Inquiry Based Learning (IBL) experience in
which the students study the material and present it to the class. At the end
of Chapter 5, there is a collection of Challenge Problems that are intended
to test the students’ understanding of the material in all five chapters as well
as their mathematical creativity. Some of these problems are rather simple
while others should challenge even the most able students.

ix



x Introduction

We now give an outline of the content of the individual chapters. Chap-
ter 1 begins with set theory, counting principles, and equivalence relations.
This is followed by an axiomatic approach to the integers and the presenta-
tion of several basic facts about divisibility and number theory. The notions
of a commutative ring with 1 and a field are introduced. Modular systems
are given as examples of these structures. The ordered field of rational
numbers is constructed as the field of quotients of the integers. Finally,
cardinality, especially countability, is discussed. Several equivalent forms of
the axiom of choice are stated and the equivalences proved.

Chapter 2 is about linear algebra. The first part of the chapter is devoted
to abstract linear algebra up through linear transformations and determi-
nants. In particular, the properties of determinants are attacked with bare
knuckles. The final section of the chapter is devoted to geometric linear
algebra. This is a study of the algebra and geometry of Euclidean n-space
with respect to the usual distance. It is a preparation for the study of metric
spaces in Chapter 4 as well as for the geometric ideas that occur in advanced
calculus.

Chapter 3 begins with an axiomatic approach to the real numbers as an
ordered field in which the least upper bound property holds. Several fun-
damental topics are addressed including some specific ideas about rational
approximation of real numbers. Next, beginning with the rational numbers
as an ordered field, the real numbers are constructed via the method of
equivalence classes of Cauchy sequences. After this construction, the stan-
dard convergence theorems in the real numbers are proved. This includes
the one-dimensional versions of the Bolzano-Weierstrass theorem and the
Heine-Borel theorem. The last sections involve the construction of the com-
plex numbers and their arithmetic properties. We also study the topic of
convergence in the complex numbers.

In Chapter 4, the stakes are raised a bit. There is a complete and
thorough treatment of metric spaces and their topology. Such spaces as
bounded real valued functions on a set with the sup norm, the infinite-
dimensional �p spaces, and others are given careful treatment. The equiva-
lence between compactness and sequential compactness is proved, and the
standard method of completing a metric space is presented. Here it is noted
that this process cannot be used to complete the rational numbers to the
real numbers since the completeness of the real numbers is fundamental to
the proof. At the end of the chapter, several topics such as convexity and
connectedness are analyzed.

Chapter 5 is a compendium of results that follow naturally from the
theory of complete metric spaces developed in Chapter 4. These results



Introduction xi

are essential in further developments in advanced mathematics. The Con-
traction Mapping Theorem has a number of very useful applications, for
example, in the proof of the Inverse Function Theorem. We give an applica-
tion to the solution of ordinary differential equations. The Baire Category
theorem is most often used in functional analysis. We give an application
to uniformly bounded families of continuous functions on a complete metric
space. The Stone–Weierstrass theorem concerns dense families of functions
in the algebra of continuous functions on a compact metric space. In par-
ticular, this theorem implies the density of the polynomials in the algebra
of continuous functions on closed bounded intervals in R. The final section
contains the most basic example of completing a metric space, that is, the
p-adic completion of the rational numbers relative to a prime p. Along with
being an example of the completion process, the p-adic completion yields a
family of locally compact fields that currently is prominent in research in
number theory, automorphic forms, mathematical physics, and other areas.

As pointed out above, each chapter ends with a set of special projects
that are intended to broaden and deepen students’ understanding of ad-
vanced mathematics. The first project in Chapter 1 is a series of exercises
in elementary number theory that serves as an introduction to the subject
and provides necessary material for the construction of the p-adic numbers
in Chapter 5. Next, we introduce the idea of completely independent axiom
systems, so that students working through this project might have some idea
of the role of axioms in mathematics. Finally, we discuss ordered integral
domains. We ask the students to show that the integers, as an ordered in-
tegral domain in which the Well Ordering Principle holds, are contained in
every ordered integral domain. This leads naturally to the conclusion that
every ordered field contains the rational numbers.

The projects at the end of Chapter 2 provide a set of exercises for the
student that form a primer on basic group theory, with special emphasis on
the general linear group and its subgroups.

The projects at the end of Chapter 3 present the students with an op-
portunity to investigate the following topics: an alternate construction of
the real numbers using Dedekind cuts; an introduction to the convergence
of infinite series; and a careful analysis of the decimal expansions of real
numbers. The material about the convergence of infinite series is used ex-
tensively throughout the remaining chapters.

The projects in Chapter 4 provide an insight into advanced mathematics.
They begin with an exploration for students of general point set topology,
building on the theory of metric spaces covered in Chapter 4. Next, the
students are asked to study a proof of the Fundamental Theorem of Algebra
which establishes one of the basic facts in advanced mathematics.



xii Introduction

The first three chapters of this book are used in a one quarter transition
course at the University of Chicago. A substantial portion, but not all, of
the material in the first three chapters can be covered in ten weeks. The
remaining material in the book is used in the first quarter of “Analysis in
Rn.” This course is intended as an advanced multivariable calculus course
for sophomores. It covers geometric linear algebra from Chapter 2, some
convergence theorems in R and C in Chapter 3, and the theory of metric
spaces in Chapter 4, with an introduction to Chapter 5 if time allows. The
remaining two quarters of Analysis in Rn cover differentiation theory and
integration theory in Rn along with the usual theorems in vector calculus.
The entire book is more than sufficient for a two quarter or one semester
course, and if the projects are covered completely there is more than enough
for a three quarter or two semester course.
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