Poncelet’s Theorem

Leopold Flatto
In Loving Memory
To Zehava, whose encouragement and spirit made this book possible
Contents

Preface xi

List of Commonly Used Symbols xv

Chapter 1. Introduction 1

1.1. The Theorems of Poncelet and Cayley 1

1.2. The Poncelet and Steiner Theorems—A Misleading Analogy 6

1.3. The Real Case of Poncelet’s Theorem 9

1.4. Related Topics 10

Part I. Projective Geometry 15

Chapter 2. Basic Notions of Projective Geometry 15

2.1. Projective Plane 15

2.2. Projectivities 19

2.3. Projective Line 22

2.4. Algebraic Curves 24
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Conics</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Conics</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Intersection of Line and Conic</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Reduced Form</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Projective Structure on a Smooth Conic</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Parametric Equations of Smooth Conics</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Intersection of Two Conics</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Intersection Numbers</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Bezout’s Theorem for Conics</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Conic Pencils</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Degenerate Conics in a Conic Pencil</td>
<td>55</td>
</tr>
<tr>
<td>Part II</td>
<td>Complex Analysis</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Riemann Surfaces</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>Definition of Riemann Surface</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>Examples of Riemann Surfaces</td>
<td>65</td>
</tr>
<tr>
<td>5.3</td>
<td>More Examples of Riemann Surfaces. Algebraic Curves</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Examples of Conformal Maps</td>
<td>74</td>
</tr>
<tr>
<td>5.5</td>
<td>Covering Surfaces</td>
<td>76</td>
</tr>
<tr>
<td>5.6</td>
<td>Isomorphisms of Tori</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>Elliptic Functions</td>
<td>83</td>
</tr>
<tr>
<td>6.1</td>
<td>Elliptic Functions</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>The Weierstrass \wp-Function</td>
<td>86</td>
</tr>
<tr>
<td>6.3</td>
<td>The Functions ζ and σ</td>
<td>89</td>
</tr>
<tr>
<td>6.4</td>
<td>Differential Equation for \wp</td>
<td>92</td>
</tr>
<tr>
<td>6.5</td>
<td>The Elliptic Function $w = sn(z)$</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>The Modular Function</td>
<td>97</td>
</tr>
<tr>
<td>7.1</td>
<td>The Functions g_2, g_3</td>
<td>97</td>
</tr>
<tr>
<td>7.2</td>
<td>The Modular Function J</td>
<td>98</td>
</tr>
<tr>
<td>7.3</td>
<td>Fundamental Region for Γ</td>
<td>100</td>
</tr>
</tbody>
</table>
Contents

7.4. Fourier Expansion of \(J \)
7.5. Values of \(J \)
7.6. Solution to the Inversion Problem

Chapter 8. Elliptic Curves
8.1. Elliptic Curves
8.2. Algebraic Models
8.3. Division Points of \(C/\Lambda \)
8.4. Division Points of \(S \)

Part III. Poncelet and Cayley Theorems

Chapter 9. Poncelet’s Theorem
9.1. Poncelet Correspondence
9.2. Algebraic Equation for \(\mathcal{M} \)
9.3. Complex Structure on \(\mathcal{M} \)
9.4. \(\mathcal{M} \) is an Elliptic Curve
9.5. The Automorphisms \(\sigma, \tau, \) and \(\eta \)
9.6. Proof of Poncelet’s Theorem

Chapter 10. Cayley’s Theorem
10.1. Origin of \(\mathcal{M} \)
10.2. Algebraic Equation for \(\mathcal{M} \)
10.3. Proof of Cayley’s Theorem

Chapter 11. Non-generic Cases
11.1. Fixed Points of \(\eta \)
11.2. Equations for \(C, D, \) and \(\mathcal{M} \)
11.3. The Riemann Surface \(\mathcal{M}_0 \)
11.4. Formulas for \(\eta \)
11.5. Poncelet’s Theorem
11.6. Existence of Circumscribed \(n \)-Gons

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4. Fourier Expansion of (J)</td>
<td>102</td>
</tr>
<tr>
<td>7.5. Values of (J)</td>
<td>104</td>
</tr>
<tr>
<td>7.6. Solution to the Inversion Problem</td>
<td>108</td>
</tr>
<tr>
<td>Chapter 8. Elliptic Curves</td>
<td>111</td>
</tr>
<tr>
<td>8.1. Elliptic Curves</td>
<td>111</td>
</tr>
<tr>
<td>8.2. Algebraic Models</td>
<td>113</td>
</tr>
<tr>
<td>8.3. Division Points of (C/\Lambda)</td>
<td>115</td>
</tr>
<tr>
<td>8.4. Division Points of (S)</td>
<td>117</td>
</tr>
<tr>
<td>Chapter 9. Poncelet’s Theorem</td>
<td>123</td>
</tr>
<tr>
<td>9.1. Poncelet Correspondence</td>
<td>123</td>
</tr>
<tr>
<td>9.2. Algebraic Equation for (\mathcal{M})</td>
<td>125</td>
</tr>
<tr>
<td>9.3. Complex Structure on (\mathcal{M})</td>
<td>128</td>
</tr>
<tr>
<td>9.4. (\mathcal{M}) is an Elliptic Curve</td>
<td>130</td>
</tr>
<tr>
<td>9.5. The Automorphisms (\sigma, \tau,) and (\eta)</td>
<td>131</td>
</tr>
<tr>
<td>9.6. Proof of Poncelet’s Theorem</td>
<td>132</td>
</tr>
<tr>
<td>Chapter 10. Cayley’s Theorem</td>
<td>135</td>
</tr>
<tr>
<td>10.1. Origin of (\mathcal{M})</td>
<td>135</td>
</tr>
<tr>
<td>10.2. Algebraic Equation for (\mathcal{M})</td>
<td>136</td>
</tr>
<tr>
<td>10.3. Proof of Cayley’s Theorem</td>
<td>138</td>
</tr>
<tr>
<td>Chapter 11. Non-generic Cases</td>
<td>141</td>
</tr>
<tr>
<td>11.1. Fixed Points of (\eta)</td>
<td>141</td>
</tr>
<tr>
<td>11.2. Equations for (C, D,) and (\mathcal{M})</td>
<td>142</td>
</tr>
<tr>
<td>11.3. The Riemann Surface (\mathcal{M}_0)</td>
<td>144</td>
</tr>
<tr>
<td>11.4. Formulas for (\eta)</td>
<td>147</td>
</tr>
<tr>
<td>11.5. Poncelet’s Theorem</td>
<td>148</td>
</tr>
<tr>
<td>11.6. Existence of Circumscribed (n)-Gons</td>
<td>150</td>
</tr>
</tbody>
</table>
Contents

Chapter 12. The Real Case of Poncelet’s Theorem 153
 12.1. Poncelet’s Theorem for Two Circles 153
 12.2. Poncelet’s Theorem for Two Ellipses 155
 12.3. Topological Conjugacy 157

Part IV. Related Topics

Chapter 13. Billiards in an Ellipse 165
 13.2. The Map η_R 167
 13.3. Description of M_R 168
 13.4. Invariant Measure. Rotation Number 170
 13.5. Billiard Trajectories with the Same Caustic 172
 13.6. Derivation of Invariant Measure 173
 13.7. Proofs of Theorems 13.3 and 13.4 177

Chapter 14. Double Queues 179
 14.1. The Two-Demands Model 180
 14.2. Formulas 182
 14.3. Riemann Surface 183
 14.4. Automorphy Conditions 184
 14.5. The Regions D_z and D_w 184
 14.6. Analytic Continuation 186

Supplement

Chapter 15. Billiards and the Poncelet Theorem
 S. Tabachnikov 191
 15.1. Mathematical Billiards 191
 15.2. Integrable Case 195
 15.3. Poncelet Grid 198
 15.4. Poncelet Theorem on Quadratic Surfaces 204
 15.5. Outer Billiards in the Hyperbolic Plane 207

References 210
Appendices

Appendix A. Factorization of Homogeneous Polynomials 215
Appendix B. Degenerate Conics of a Conic Pencil. Proof of Theorem 4.9 219
Appendix C. Lifting Theorems 223
 C.1. Homotopy 223
 C.2. Lifting Theorems 224
Appendix D. Proof of Theorem 11.5 229
Appendix E. Billiards in an Ellipse. Proof of Theorem 13.1 233
References 237
Index 239
Preface

One of the most important and beautiful theorems in projective geometry is that of Poncelet, concerning closed polygons which are inscribed in one conic and circumscribed about another (the exact statement is given in §1.1). The theorem is also of great depth in that it relates to a large body of mathematics. The aim of this book is to explore these relations, which provide much insight into several important mathematical topics.

The topics in question are Poncelet’s theorem, billiards in an ellipse, and double queues. At first sight these topics seem unrelated, belonging to three distinct mathematical fields: geometry, dynamical systems, and probability. But there is a hidden thread tying these topics together: the existence of an underlying structure (we name it the Poncelet correspondence \mathcal{M} (see §1.1)) which turns out to be an elliptic curve. As is well known, elliptic curves can be endowed with a group structure, and the exploitation of this structure sheds much light on the aforementioned topics.

The only prerequisites for reading this book are the following standard subjects covered in undergraduate and first year graduate mathematics courses: complex analysis, linear algebra, and some point set topology.

The book is organized as follows. Chapter 1 gives a description of the main topics of the book (these topics are discussed in Parts III and
IV). Chapters 2–14 are divided into four parts. These are followed by the supplementary Chapter 15, “Billiards and the Poncelet Theorem”, by S. Tabachnikov. There are also five appendices. The purpose of these is to fill in several omissions from Parts I–IV.

Parts III and IV form the core of the book. Part III discusses the theorems of Poncelet and Cayley (the latter is explained in §1.1) and is based on the approach used in the papers of Griffiths and Harris [GH1], [GH2]), which relates these theorems to elliptic curves (over the complex field) and to their parameterization by elliptic functions. Another approach, using notions from dynamical systems, is also presented here. The papers [GH1], [GH2] take for granted various algebro-geometric notions. Part III explains and elaborates on these notions.

Part IV discusses billiards in an ellipse and double queues and is based on papers which I authored and co-authored ([Fl], [FH]). The ideas in these papers are reworked and further developed in Part IV. Furthermore, the presentation in Part IV displays a fundamental connection between these topics and Poncelet’s theorem. Indeed the topic of double queues, which appears last in the book, could very well have been the first, for it is the study of double queues that led me to the surprising connection with Poncelet’s theorem.

Chapter 15, written by S. Tabachnikov, gives an expository account of mathematical billiards and demonstrates how this theory provides an alternative proof of Poncelet’s theorem. In addition, the theory provides another proof of the recent result by R. Schwartz on Poncelet grids (see §15.3).

Chapter 15 also discusses recent developments connecting Poncelet’s theorem to other mathematical topics: geodesics on an ellipsoid and dual billiards.

The topics appearing in Parts I and II are collected from various sources. Most of the material is fairly standard, a notable exception being the discussion in Chapter 8 on division points on elliptic curves, the treatment being a modification of the one given in [GH2]. Part I deals with projective geometry, and Part II deals with complex analysis. The treatment of topics presented in Parts I and II is by no means complete, nor is it intended to be. Rather, the choice of
material presented in these parts is dictated by the desire to make Parts III and IV accessible to as wide an audience as possible. The knowledgeable reader can immediately proceed to Parts III and IV. The same advice is offered to the less knowledgeable reader, who can occasionally turn back to Parts I and II, as the need arises.

It is of course possible to discuss projective geometry with coordinates coming from any preassigned field, but we consider only the complex projective plane and, occasionally, the real projective plane. The reason for this restriction is that the results of Parts III and IV make use of complex analysis.

In conclusion, many topics are treated in the book, all relating to Poncelet’s theorem. In this sense, the approach of this book follows the maxim of the Talmudic sage Abaye “from topic to topic, yet always in the same topic” (Babylonian Talmud, Tractate Kiddushin, p. 6a). The proof of Poncelet’s theorem reveals deep connections between the seemingly disparate subjects treated in this book. It is this aspect of Poncelet’s theorem that has drawn me to a detailed study of it and its ramifications. The book demonstrates that Poncelet’s theorem serves as a prism through which one can learn and appreciate a lot of beautiful mathematics.

Acknowledgments. I express my thanks and gratitude to the following people who contributed to the writing of this book, both on the personal and professional levels.

First and foremost, gratitude goes to my late beloved wife, Ze-hava, the driving force behind the book. Without her constant support and encouragement, the book would not have “seen the light of day”. Then I thank my children, Sharon and David, for their interest and gentle goading, constantly inquiring, “So what is happening with the book?” Likewise, I thank my friends Joel Gribetz and Daniel Lasker, with whom I have renewed a friendship after a lapse of more than fifty years, due to cataclysmic circumstances beyond our control.

Special thanks goes to the following people for their careful reading of various parts of the book and for their valuable criticisms in an effort to improve its quality: Seymour Haber, Henry Landau, Hans
Witsenhauser, and Yuli Baryshnikov. I also thank Joe Harris for several illuminating conversations regarding his joint papers with Phillip A. Griffiths. I express my gratitude to Serge Tabachnikov for his generous contribution of the supplementary chapter “Billiards and the Poncelet Theorem”.

Thanks also goes to Sergei Gelfand and Arlene O’Sean for their invaluable assistance in preparing the book for publication.

The book is an outgrowth of a series of lectures given at the NSA, where I spent a sabbatical year during 1998–1999. I thank Mel Currie for organizing a seminar on the subject matter. Special thanks goes to Harvey Cohn and Donald Newman for participating in the entire lecture series and for offering insightful comments.
List of Commonly Used Symbols

:= symbol used to indicate that the left-hand side is defined by the right-hand side

\{p: \text{p has property A}\} set of elements p having property A

iff if and only if

\[\blacksquare\] q.e.d.

\[\mathbb{Z}\] set of integers

\[\mathbb{R}\] set of real numbers

\[\mathbb{C}\] set of complex numbers

\[\mathbb{C}\hat{\ }\] complex sphere

\[\text{Re } z, \text{Im } z\] real and imaginary parts of complex number \(z\)

\(|z|\) absolute value of complex number \(z\)

\(\text{arg } z\) argument of complex number \(z \neq 0\)

\(\det A \text{ or } |A|\) determinant of square matrix \(A\)

\(f|_A\) restriction of function \(f\) to set \(A\)

\(f \circ g\) composition of the two mappings \(f\) and \(g\)

\(f^{-1}\) transformation inverse to \(f\)

\(a \in A\) \(a\) is a member of set \(A\)

\(a \notin A\) \(a\) is not a member of set \(A\)

\(f(A)\) image of set \(A\) under the mapping \(f\)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A</td>
</tr>
<tr>
<td>$A \subseteq B$</td>
<td>A is a subset of B</td>
</tr>
<tr>
<td>$A \cup B$</td>
<td>union of A and $B = \text{set of elements either in } A \text{ or in } B$</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>intersection of A and $B = \text{set of elements in both } A \text{ and } B$</td>
</tr>
<tr>
<td>$A \setminus B$</td>
<td>set of elements in A and not in B</td>
</tr>
<tr>
<td>$A \times B$</td>
<td>product of A and $B = {(a, b) : a \in A, b \in B}$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>the empty set</td>
</tr>
</tbody>
</table>
References

Books

References

(Second Edition, two volumes, 1865–1866)

Papers

Index

affine coordinates, 16
affine plane, 16
algebraic curve, 25
algebraic model, 113
analytic atlas, 62
automorphism, 63

Bezout’s theorem, 43
billiard ball map, 191
branch point, 76

caustic, 166
Cayley’s theorem, 4
chart, 61
complete sets of zeros and poles, 84
complex structure, 62
conic pencil, 53
covering map, 77
covering surface, 76

degenerate conic, 32
division point, 115
double queues, 11

elliptic curve, 111
elliptic function, 83
elliptic function $sn(z)$, 94
fiber, 77
fundamental parallelogram, 84
fundamental region, 100

genus, 73

good measure, 157

homogeneous coordinate ratio, 23
homogeneous coordinates, 16
homotopy, 223

intersection number, 45
invariant measure, 154
inversion problem, 97
isomorphism, 63

lattice, 66
lift of a curve, 79
line at infinity, 17
local coordinate, 61
locally conformal, 64

Möbius transformation, 23
modular function, 98
modular group, 99
multiplicity type, 52

natural projection, 67

order of a polynomial, 25
outer billiard transformation, 207
parametric disk, 62
pencil of lines, 18
1/2-periods, 94
point at infinity, 16
Poncelet correspondence, 5
Poncelet grid, 198
Poncelet map, 5
Poncelet’s theorem, 2
projection map, 76
projective line, 22
projective plane, 16
projectivity, 19

quadratic parametrization, 42

regular point, 76
Riemann surface, 62
Riemann-Hurwitz theorem, 77
rotation number, 158

smooth conic, 32
smooth cover, 76
Steiner theorem, 6
string construction, 193

tangent line, 26
topological conjugacy, 158
torus, 67
translation, 82
two-dimensional manifold, 61

P_2-version of Poncelet’s theorem, 3

Weierstrass \wp-function, 87
Poncelet’s theorem is a famous result in algebraic geometry, dating to the early part of the nineteenth century. It concerns closed polygons inscribed in one conic and circumscribed about another. The theorem is of great depth in that it relates to a large and diverse body of mathematics. There are several proofs of the theorem, none of which is elementary. A particularly attractive feature of the theorem, which is easily understood but difficult to prove, is that it serves as a prism through which one can learn and appreciate a lot of beautiful mathematics.

This book stresses the modern approach to the subject and contains much material not previously available in book form. It also discusses the relation between Poncelet’s theorem and some aspects of queueing theory and mathematical billiards.

The proof of Poncelet’s theorem presented in this book relates it to the theory of elliptic curves and exploits the fact that such curves are endowed with a group structure. The book also treats the real and degenerate cases of Poncelet’s theorem. These cases are interesting in themselves, and their proofs require some other considerations. The real case is handled by employing notions from dynamical systems.

The material in this book should be understandable to anyone who has taken the standard courses in undergraduate mathematics. To achieve this, the author has included in the book preliminary chapters dealing with projective geometry, Riemann surfaces, elliptic functions, and elliptic curves. The book also contains numerous figures illustrating various geometric concepts.