Terence Tao

Poincaré's Legacies, Part I

pages from year two of a mathematical blog
Poincaré's Legacies, Part I

pages from year two
of a mathematical blog

Terence Tao
To Garth Gaudry, who set me on the road;
To my family, for their constant support;
And to the readers of my blog, for their feedback and contributions.
Contents

Preface vii
A remark on notation viii
Acknowledgments ix

Chapter 1. Expository Articles 1
§1.1. The blue-eyed islanders puzzle 1
§1.2. Kleiner’s proof of Gromov’s theorem 2
§1.3. The van der Corput lemma, and equidistribution on nilmanifolds 9
§1.4. The strong law of large numbers 15
§1.5. Tate’s proof of the functional equation 22
§1.6. The divisor bound 31
§1.7. The Lucas-Lehmer test for Mersenne primes 36
§1.8. Finite subsets of groups with no finite models 41
§1.9. Small samples, and the margin of error 47
§1.10. Non-measurable sets via non-standard analysis 56
§1.11. A counterexample to a strong polynomial Freiman-Ruzsa conjecture 58
§1.12. Some notes on “non-classical” polynomials in finite characteristic 61
§1.13. Cohomology for dynamical systems 67

Chapter 2. Ergodic Theory 75
§2.1. Overview 75
§2.2. Three categories of dynamical systems 81
§2.3. Minimal dynamical systems, recurrence, and the Stone-Čech compactification 88
§2.4. Multiple recurrence 98
§2.5. Other topological recurrence results 105
§2.6. Isometric systems and isometric extensions 119
§2.7. Structural theory of topological dynamical systems 134
§2.8. The mean ergodic theorem 141
§2.9. Ergodicity 152
§2.10. The Furstenberg correspondence principle 163
§2.11. Compact systems 172
§2.12. Weakly mixing systems 181
§2.13. Compact extensions 195
§2.14. Weakly mixing extensions 205
§2.15. The Furstenberg-Zimmer structure theorem and the Furstenberg recurrence theorem 212
§2.16. A Ratner-type theorem for nilmanifolds 217
§2.17. A Ratner-type theorem for $SL_2(R)$ orbits 227

Chapter 3. Lectures in Additive Prime Number Theory 239
§3.1. Structure and randomness in the prime numbers 239
§3.2. Linear equations in primes 248
§3.3. Small gaps between primes 259
§3.4. Sieving for almost primes and expanders 267

Bibliography 277

Index 291
Preface

In February of 2007, I converted my “What’s new” web page of research updates into a blog at terrytao.wordpress.com. This blog has since grown and evolved to cover a wide variety of mathematical topics, ranging from my own research updates, to lectures and guest posts by other mathematicians, to open problems, to class lecture notes, to expository articles at both basic and advanced levels.

With the encouragement of my blog readers, and also of the AMS, I published many of the mathematical articles from the first year (2007) of the blog as [Ta2008b], which will henceforth be referred to as Structure and Randomness throughout this book. This gave me the opportunity to improve and update these articles to a publishable (and citeable) standard, and also to record some of the substantive feedback I had received on these articles from the readers of the blog. Given the success of the blog experiment so far, I am now doing the same for the second year (2008) of articles from the blog. This year, the amount of material is large enough that the blog will be published in two volumes.

As with Structure and Randomness, each part begins with a collection of expository articles, ranging in level from completely elementary logic puzzles to remarks on recent research, which are only loosely related to each other and to the rest of the book. However, in contrast to the previous book, the bulk of these volumes is dominated by the lecture notes for two graduate courses I gave during the year. The two courses stemmed from two very different but fundamental contributions to mathematics by Henri Poincaré, which explains the title of the book.

This is the first of the two volumes, and it focuses on ergodic theory, combinatorics, and number theory. In particular, Chapter 2 contains the lecture
notes for my course on topological dynamics and ergodic theory, which originated in part from Poincaré’s pioneering work in chaotic dynamical systems. Many situations in mathematics, physics, or other sciences can be modeled by a discrete or continuous dynamical system, which at its most abstract level is simply a space X, together with a shift $T: X \to X$ (or family of shifts) acting on that space, and possibly preserving either the topological or measure-theoretic structure of that space. At this level of generality, there are a countless variety of dynamical systems available for study, and it may seem hopeless to say much of interest without specialising to much more concrete systems. Nevertheless, there is a remarkable phenomenon that dynamical systems can largely be classified into “structured” (or “periodic”) components, and “random” (or “mixing”) components,\(^1\) which then can be used to prove various recurrence theorems that apply to very large classes of dynamical systems, not the least of which is the Furstenberg multiple recurrence theorem (Theorem 2.10.3). By means of various correspondence principles, these recurrence theorems can then be used to prove some deep theorems in combinatorics and other areas of mathematics, in particular yielding one of the shortest known proofs of Szemerédi’s theorem (Theorem 2.10.1) that all sets of integers of positive upper density contain arbitrarily long arithmetic progressions. The road to these recurrence theorems, and several related topics (e.g. ergodicity, and Ratner’s theorem on the equidistribution of unipotent orbits in homogeneous spaces) will occupy the bulk of this course. I was able to cover all but the last two sections in a 10-week course at UCLA, using the exercises provided within the notes to assess the students (who were generally second or third-year graduate students, having already taken a course or two in graduate real analysis).

Finally, I close this volume with a third (and largely unrelated) topic (Chapter 3), namely a series of lectures on recent developments in additive prime number theory, both by myself and my coauthors, and by others. These lectures are derived from a lecture I gave at the annual meeting of the AMS at San Diego in January of 2007, as well as a lecture series I gave at Penn State University in November 2007.

A remark on notation

For reasons of space, we will not be able to define every single mathematical term that we use in this book. If a term is italicised for reasons other than emphasis or definition, then it denotes a standard mathematical object, result, or concept, which can be easily looked up in any number of references.

\(^1\)One also has to consider extensions of systems of one type by another, e.g. mixing extensions of periodic systems; see Section 2.15 for a precise statement.
(In the blog version of the book, many of these terms were linked to their Wikipedia pages, or other on-line reference pages.)

I will however mention a few notational conventions that I will use throughout. The cardinality of a finite set E will be denoted $|E|$. We will use the asymptotic notation $X = O(Y)$, $X \ll Y$, or $Y \gg X$ to denote the estimate $|X| \leq CY$ for some absolute constant $C > 0$. In some cases we will need this constant C to depend on a parameter (e.g. d), in which case we shall indicate this dependence by subscripts, e.g. $X = O_d(Y)$ or $X \ll_d Y$. We also sometimes use $X \sim Y$ as a synonym for $X \ll Y \ll X$.

In many situations there will be a large parameter n that goes off to infinity. When that occurs, we also use the notation $o_{n \to \infty}(X)$ or simply $o(X)$ to denote any quantity bounded in magnitude by $c(n)X$, where $c(n)$ is a function depending only on n that goes to zero as n goes to infinity. If we need $c(n)$ to depend on another parameter, e.g. d, we indicate this by further subscripts, e.g. $o_{n \to \infty,d}(X)$.

We will occasionally use the averaging notation

$$E_{x \in X} f(x) := \frac{1}{|X|} \sum_{x \in X} f(x)$$

to denote the average value of a function $f : X \to \mathbb{C}$ on a non-empty finite set X.

Acknowledgments

The author is supported by a grant from the MacArthur Foundation, by NSF grant DMS-0649473, and by the NSF Waterman award.
Bibliography

[Ch1966] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao 17 (1966), 385–386.
280 Bibliography

[FuWe1996] H. Furstenberg, B. Weiss, A mean ergodic theorem for \(\lim \frac{1}{N} \sum_{n=1}^{N} f(T^n x) g(T^{n^2} x) \), Convergence in ergodic theory and probability (Columbus, OH, 1993), pp. 193–227, Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996.

Index

abstract measure-preserving system, 177
adèles, 29
almost periodic, 90
almost periodic function, 172
almost prime, 245, 269
amalgamated free product, 43
amenable group, 3
Archimedean, 23

baby Furstenberg structure theorem, 135
baker’s map, 77
Baker-Campbell-Hausdorff formula, 221
Bernoulli system, 76
Birkhoff ergodic theorem, 154
Birkhoff recurrence theorem, 79, 91
Bombieri-Vinogradov theorem, 264
Borel probability measure, 140
Borel-Cantelli lemma, 17
bracket polynomial, 257

Cantor space, 27
Cayley graph, 3, 271
Cesàro convergence, 182
chain, 69
chain complex, 69
Chebyshev’s inequality, 16
Chen’s theorem, 246
coboundary, 68
cochain, 70
cocycle, 68, 126
color focusing, 101
commutator, 217
compact extension, 200
compact system, 174
conditional expectation, 149
conditional weak mixing, 206

confidence level, 47
Cramér conjecture, 260
Cramér’s random model, 241
curse of dimensionality, 143
cycle, 69
density Hales-Jewett theorem, 171
density Ramsey theorems, 80
dichotomy between structure and randomness, 138, 190, 209, 227
discrete logarithm, 38
disintegration, 161
distal measure-preserving system, 213
distal system, 134
divisor bound, 32
dual function, 150, 210
Dunford-Schwartz maximal inequality, 152
dyadic interval, 57
dyadic pigeonhole principle, 19
dynamical system, 75
elementary subgroup, 269
Elliott-Halberstam conjecture, 264
Ellis-Nakamura lemma, 113
equicontinuous system, 119
equidistribution, 9
ergodic, 156
decomposition, 162
theory, 78
Euler product formula, 240
Euler totient function, 37
expander graph, 271

Fermat prime, 38
Fermat’s little theorem, 37
first moment method, 16
Folkman’s theorem, 114
Fourier transform, 27
free product, 43
Freiman isomorphism, 42
Freiman’s theorem, 42
Frobenius endomorphism, 39
Frobenius lemma, 272
Furstenberg correspondence principle, 168
Furstenberg multiple recurrence theorem, 80, 164, 166, 173
Furstenberg structure theorem for distal systems, 137
Furstenberg tower, 213
Furstenberg-Zimmer structure theorem, 213
Følner sequence, 3
Gallai’s theorem, 103
Gamma function, 23
Gaussian function, 23
geometric Ramsey theorem, 117
GIMPS, 36
Goldbach conjecture, 239
Green-Tao theorem, 239
Gromov’s theorem, 3
Hales-Jewett theorem, 116
Hall-Petresco sequence, 219
Hardy-Littlewood circle method, 252
Hardy-Littlewood prime tuples conjecture, 243, 250, 268
harmonic function, 5
Heisenberg nilmanifold, 222
Higman example, 42
Hilbert module, 199
Hilbert’s fifth problem, 3
Hilbert’s seventh problem, 268
Hilbert-Schmidt operator, 191
Hindman’s theorem, 114
hypergraph Ramsey theorem, 110
idempotent, 113
inverse conjecture for the Gowers norm, 59, 259
inverse theorem, 254
IP Szemerédi theorem, 170
IP van der Waerden theorem, 117
isometric extension, 125
isometric system, 119
Koopman-von Neumann theorem, 146, 194
Kronecker approximation theorem, 91
Kronecker factor, 124
Kronecker system, 120, 174
Krylov-Bogolubov theorem, 141
lacunary, 19
Lagrange’s theorem, 37, 42
Landau problem, 268
law of large numbers, 15
law of small numbers, 243
Lebesgue differentiation theorem, 56, 155
Legendre sieve, 270
linearity of expectation, 16
local factor, 250
Möbius function, 255
Maier matrix method, 262
Malthus, 33
Markov’s inequality, 16, 54
Matiyasevich’s theorem, 268
Mautner phenomenon, 231
maximal ergodic theorem, 153
Maxwell’s demon, 143
mean ergodic theorem, 145, 150
measure-preserving system, 78
Mellin transform, 23
Mersenne prime, 36
minimal dynamical system, 84
minimal point, 91
minimal ultrafilter, 97
moment method, 16
Moore ergodic theorem, 232
morphism, 82
Morse sequence, 87
multidimensional Szemerédi theorem, 168
multiple Birkhoff recurrence theorem, 122
multiple recurrence, 98
nilmanifold, 13, 221
nilpotent group, 3, 218
nilsystem, 222
non-classical polynomial, 62
non-standard analysis, 56
orbit closure, 85
Ostrowski’s theorem, 26
PET induction, 109
ping-pong lemma, 46
Poincaré inequality, 7
Poincaré recurrence theorem, 142
pointwise ergodic theorem, 154
Poisson process, 261
Poisson summation formula, 23
polynomial, 61
Freiman-Ruzsa conjecture, 58
growth, 3
Szemerédi theorem, 168
van der Waerden theorem, 106
probability kernel, 160
proximal, 134
Index

quadratic reciprocity, 38
RAGE theorem, 194
Ratner’s theorem, 10
Ratner’s theorem for nilmanifolds, 227
recurrent, 90
regular space, 160
relativisation, 197
Riemann Xi function, 23
Riemann zeta function, 22, 240
rising sun inequality, 153
Roth’s theorem, 195
Ruzsa projection trick, 42
Schur’s theorem, 115
Schwartz function, 23
Schwartz-Bruhat function, 24
second moment method, 16, 53
Selberg sieve, 266
semincontinuous functions, 104
sieve of Eratosthenes, 40, 240, 245, 270
skew shift, 83, 157, 159, 258
sparsification, 19
spectral gap, 271
standard Borel space, 161
stationary process, 184
Stein-Stromberg maximal inequality, 154
Stone-Cech compactification, 92
strongly mixing, 183, 186
substitution minimal set, 87
sum-product theorem, 274
syndetic, 87
syndetic van der Waerden theorem, 116
Szemerédi’s theorem, 80, 163, 246

Tate’s thesis, 29
Theta function, 24
Tits alternative, 4
topological dynamical system, 78
topological dynamics, 78
topologically mixing, 138
topologically transitive, 138
topologically weakly mixing, 138
torus shift, 87
totally ergodic, 156
transference principle, 154
truncation, 18
twin prime conjecture, 240, 260
Tychonoff’s theorem, 93
ultrafilter, 56, 92
ultrapower, 56
uniform multiple recurrence, 201
unipotent, 230
uniquely ergodic, 158
Urysohn’s metrisation theorem, 78
vague sequential compactness, 140
van der Corput lemma, 9, 184
van der Waerden theorem, 80, 98
Varnavides argument, 166
vdW property, 107
virtually nilpotent, 3
virtually solvable, 3
von Mangoldt function, 255
von Neumann ergodic theorem, 144, 148
W-trick, 245
weakly mixing, 183, 186
extension, 207
Weyl recurrence theorem, 79
Weyl’s differencing trick, 10
Weyl’s equidistribution theorem, 9, 99, 130
Weyl’s unitary trick, 228
winding number, 132
Zariski dense, 268
There are many bits and pieces of folklore in mathematics that are passed down from advisor to student, or from collaborator to collaborator, but which are too fuzzy and non-rigorous to be discussed in the formal literature. Traditionally, it was a matter of luck and location as to who learned such folklore mathematics. But today, such bits and pieces can be communicated effectively and efficiently via the semiformal medium of research blogging. This book grew from such a blog.

In 2007, Terry Tao began a mathematical blog to cover a variety of topics, ranging from his own research and other recent developments in mathematics, to lecture notes for his classes, to non-technical puzzles and expository articles. The articles from the first year of that blog have already been published by the AMS. The posts from 2008 are being published in two volumes.

This book is Part I of the second-year posts, focusing on ergodic theory, combinatorics, and number theory. Chapter 2 consists of lecture notes from Tao’s course on topological dynamics and ergodic theory. By means of various correspondence principles, recurrence theorems about dynamical systems are used to prove some deep theorems in combinatorics and other areas of mathematics. The lectures are as self-contained as possible, focusing more on the “big picture” than on technical details.

In addition to these lectures, a variety of other topics are discussed, ranging from recent developments in additive prime number theory to expository articles on individual mathematical topics such as the law of large numbers and the Lucas-Lehmer test for Mersenne primes. Some selected comments and feedback from blog readers have also been incorporated into the articles.

The book is suitable for graduate students and research mathematicians interested in broad exposure to mathematical topics.