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compactification 88
§2.4. Multiple recurrence 98
§2.5. Other topological recurrence results 105
§2.6. Isometric systems and isometric extensions 119
§2.7. Structural theory of topological dynamical systems 134
§2.8. The mean ergodic theorem 141
§2.9. Ergodicity 152
§2.10. The Furstenberg correspondence principle 163
§2.11. Compact systems 172
§2.12. Weakly mixing systems 181
§2.13. Compact extensions 195
§2.14. Weakly mixing extensions 205
§2.15. The Furstenberg-Zimmer structure theorem and the

Furstenberg recurrence theorem 212
§2.16. A Ratner-type theorem for nilmanifolds 217
§2.17. A Ratner-type theorem for SL2(R) orbits 227

Chapter 3. Lectures in Additive Prime Number Theory 239
§3.1. Structure and randomness in the prime numbers 239
§3.2. Linear equations in primes 248
§3.3. Small gaps between primes 259
§3.4. Sieving for almost primes and expanders 267

Bibliography 277

Index 291



Preface

In February of 2007, I converted my “What’s new” web page of research
updates into a blog at terrytao.wordpress.com. This blog has since grown
and evolved to cover a wide variety of mathematical topics, ranging from my
own research updates, to lectures and guest posts by other mathematicians,
to open problems, to class lecture notes, to expository articles at both basic
and advanced levels.

With the encouragement of my blog readers, and also of the AMS, I
published many of the mathematical articles from the first year (2007) of
the blog as [Ta2008b], which will henceforth be referred to as Structure
and Randomness throughout this book. This gave me the opportunity to
improve and update these articles to a publishable (and citeable) standard,
and also to record some of the substantive feedback I had received on these
articles from the readers of the blog. Given the success of the blog experi-
ment so far, I am now doing the same for the second year (2008) of articles
from the blog. This year, the amount of material is large enough that the
blog will be published in two volumes.

As with Structure and Randomness, each part begins with a collection of
expository articles, ranging in level from completely elementary logic puzzles
to remarks on recent research, which are only loosely related to each other
and to the rest of the book. However, in contrast to the previous book, the
bulk of these volumes is dominated by the lecture notes for two graduate
courses I gave during the year. The two courses stemmed from two very
different but fundamental contributions to mathematics by Henri Poincaré,
which explains the title of the book.

This is the first of the two volumes, and it focuses on ergodic theory, com-
binatorics, and number theory. In particular, Chapter 2 contains the lecture
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viii Preface

notes for my course on topological dynamics and ergodic theory, which origi-
nated in part from Poincaré’s pioneering work in chaotic dynamical systems.
Many situations in mathematics, physics, or other sciences can be modeled
by a discrete or continuous dynamical system, which at its most abstract
level is simply a space X, together with a shift T : X → X (or family of
shifts) acting on that space, and possibly preserving either the topological or
measure-theoretic structure of that space. At this level of generality, there
are a countless variety of dynamical systems available for study, and it may
seem hopeless to say much of interest without specialising to much more
concrete systems. Nevertheless, there is a remarkable phenomenon that dy-
namical systems can largely be classified into “structured” (or “periodic”)
components, and “random” (or “mixing”) components,1 which then can be
used to prove various recurrence theorems that apply to very large classes
of dynamical systems, not the least of which is the Furstenberg multiple re-
currence theorem (Theorem 2.10.3). By means of various correspondence
principles, these recurrence theorems can then be used to prove some deep
theorems in combinatorics and other areas of mathematics, in particular
yielding one of the shortest known proofs of Szemerédi’s theorem (Theorem
2.10.1) that all sets of integers of positive upper density contain arbitrarily
long arithmetic progressions. The road to these recurrence theorems, and
several related topics (e.g. ergodicity, and Ratner’s theorem on the equidis-
tribution of unipotent orbits in homogeneous spaces) will occupy the bulk
of this course. I was able to cover all but the last two sections in a 10-week
course at UCLA, using the exercises provided within the notes to assess the
students (who were generally second or third-year graduate students, having
already taken a course or two in graduate real analysis).

Finally, I close this volume with a third (and largely unrelated) topic
(Chapter 3), namely a series of lectures on recent developments in additive
prime number theory, both by myself and my coauthors, and by others.
These lectures are derived from a lecture I gave at the annual meeting of
the AMS at San Diego in January of 2007, as well as a lecture series I gave
at Penn State University in November 2007.

A remark on notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.

1One also has to consider extensions of systems of one type by another, e.g. mixing extensions
of periodic systems; see Section 2.15 for a precise statement.
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(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

I will however mention a few notational conventions that I will use
throughout. The cardinality of a finite set E will be denoted |E|. We
will use the asymptotic notation X = O(Y ), X � Y , or Y � X to denote
the estimate |X| ≤ CY for some absolute constant C > 0. In some cases
we will need this constant C to depend on a parameter (e.g. d), in which
case we shall indicate this dependence by subscripts, e.g. X = Od(Y ) or
X �d Y . We also sometimes use X ∼ Y as a synonym for X � Y � X.

In many situations there will be a large parameter n that goes off to
infinity. When that occurs, we also use the notation on→∞(X) or simply
o(X) to denote any quantity bounded in magnitude by c(n)X, where c(n)
is a function depending only on n that goes to zero as n goes to infinity. If
we need c(n) to depend on another parameter, e.g. d, we indicate this by
further subscripts, e.g. on→∞;d(X).

We will occasionally use the averaging notation

Ex∈Xf(x) :=
1
|X|

∑
x∈X

f(x)

to denote the average value of a function f : X → C on a non-empty finite
set X.
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[GoPoYi2005] D. Goldston, J. Pintz, C. Yıldırım, The path to recent progress on small
gaps between primes, preprint.

[GoPoYi2005a] D. Goldston, J. Pintz, C. Yıldırım, Primes in tuples I, preprint.

[GoPoYi2007] D. Goldston, J. Pintz, C. Yıldırım, Primes in tuples II, preprint.

[Go1998] W. T. Gowers, A new proof of Szemerédi’s theorem for progressions of length
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[MoTi2007] J. Morgan, G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathemat-
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