The Intrinsic Nature of Things

The Life and Science of Cornelius Lanczos
The Intrinsic Nature of Things

The Life and Science of Cornelius Lanczos

BARBARA GELLAI
To the memory of my parents with love and gratitude
Contents

Preface xi

Chapter 1. **Background** 1

Chapter 2. **Family and Basic Studies** 5

§ 2.1. The Lanczos Family 5

§ 2.2. From Löwy to Lánczos 6

§ 2.3. Basic Studies 7

Chapter 3. **A Change in Our World View:**

The Theory of Relativity 11

§ 3.1. Unsolved Problems 12

§ 3.2. New Problem—Again 13

§ 3.3. The Theory of Relativity 14

§ 3.4. A Fundamentally New Feature of the Theory 15

§ 3.5. The Need for a New Theory 16

Chapter 4. **Higher Studies** 17

§ 4.1. The First Position 18

§ 4.2. Contacting Einstein 19

§ 4.3. Getting His Ph.D. 20
Chapter 5. **Lanczos’s Early Research in the Theory of Relativity**

§5.1. The Beautiful Years

§5.2. Probing the Theory of Relativity in Cosmology

§5.3. The Problem of Motion

§5.4. Einstein’s Invitation

Chapter 6. **Contribution to Quantum Mechanics**

§6.1. The Frankfurt Mathematics Seminars

§6.2. The Quantum Mystery

§6.3. Matrix Mechanics—Quantum Mechanics

§6.4. Field-like Representation of Quantum Mechanics

§6.5. Wave Mechanics

§6.6. Farewell to Europe

Chapter 7. **Purdue Beginnings**

§7.1. Purdue

§7.2. “Workable Mathematics”

§7.3. “Telescoping” Power Series

§7.4. The Tau Method

§7.5. Trigonometric Truncations

§7.6. Having a Hard Time

Chapter 8. **The Educator**

§8.1. Experimental Curriculum for Women

§8.2. The Educational Value of Mathematics

§8.3. Some Improvement in Practical Fourier Analysis

§8.4. Fast Fourier Transform (FFT)

§8.5. Mathematical Tables Project

§8.6. Sad News

Chapter 9. **“Why Mathematics?”**

§9.1. Divine Occupation or Bread and Butter Question?
Chapter 10.	Ripples on the Old Pond’s Surface	73
§10.1.	Early Efforts	74
§10.2.	Lanczos’s Own Way	75
§10.3.	Matter Waves and Electricity	76

Chapter 11.	The Lanczos Method	81
§11.1.	An Applied Mathematician in Industry	83
§11.2.	Walker Aimes, Lecturer	84
§11.3.	Learning How to Use Computers	85
§11.4.	Exceptional History of an Exceptional Method	87
§11.5.	Accused of Disloyalty	89
§11.6.	Back to Europe	90

Chapter 12.	Full-Time Research	93
§12.1.	The Dublin Institute for Advanced Studies	93
§12.2.	Electricity and General Relativity	95
§12.3.	Doing Mathematics	98
§12.4.	Well-Posed Problems	101
§12.5.	Participating in Dublin’s Social Life	102

Chapter 13.	Nature’s Pythagorean Theorem	105
§13.1.	Synge the Pragmatic and Lanczos the Mystic	105
§13.2.	What is Nature’s Pythagorean Theorem?	106
§13.3.	Lanczos’s Philosophy of Science	107
§13.4.	Continuing His Research	109
§13.5.	Undulatory Riemannian Spaces	110

Chapter 14.	Probing Riemannian Space	113
§14.1.	The Lecturer	113
§14.2.	Quadratic Action and Vector Potential	116
§14.3.	Fourier Analysis of Random Sequences	118
§14.4. Gravitation and Riemannian Space 120

Epilogue 125

A Brief Professional Chronology of Cornelius Lanczos 129

Published Papers and Books of Cornelius Lanczos 133

Bibliography 149

Index 163
Preface

Whether in the world of truth [science] or in the world of beauty [art], the human mind, on its way towards the ultimate cognition, endeavors to understand the intrinsic nature of things; not to understand things as they are but as they must be—this is the intrinsic necessity.

Lanczos: “Science as a Kind of Art”, 1973

It is widely thought that science and art have hardly anything in common, that they in fact exclude each other. We mention here several of their different characteristics on the basis of Cornelius Lanczos’s paper “Science as a Kind of Art”.

Science is concerned with facts established by careful experiments. The artistic fantasy can create a world that is not subject to the unchangeable laws of the physical universe. The method of science is logic. Starting from a few universal statements, the scientist can obtain new results by logical reasoning. Art need not be logical. In art the logic of pure reasoning is replaced by an emotional and intuitive way of understanding.

“Whatever the laws of the universe may be, they will not be changed by personal sympathy or antipathy; the scientist makes a recording of the physical events only, while his personality remains in the background. In the world of art, on the contrary, human emotions
and human reactions to certain situations in life are of interest” [1, p. 4–103].

The sharp distinction, however, that science is factual and art is visionary cannot be maintained in every case. We would hardly make a big mistake by claiming that almost every great discovery in science could be considered as the achievement of an ingenious and inspired mind rather than one of mere factual inference.

We are all, scientists or artists, each one in his own way, seekers of the truth. The one who takes this road, however, should not forget that the result is not guaranteed. The history of science teaches us that each time we proudly think that we have it all figured out, we will be surprised at having even more difficult problems than we had before. This is the time to reflect back and marvel at the journey we have taken so far. While going further, we experience, as Einstein did, that “Lessing’s comforting words stay with us: The aspiration to truth is more precious than its assured possession”\(^1\) [2].

We invite the reader to discover, in learning about the life and science of Cornelius Lanczos, the intrinsic nature of things, to understand things not as they are but as they must be. We believe you will enjoy the journey.

Cornelius Lanczos was a great admirer of Greek philosophy and cultural tradition. For him, dealing with science, probing the secrets of nature, was that “pathos philosophikon” (the passion for knowledge) with which Aristotle so beautifully describes the essence of the scientist. Having a very deep awareness of beauty in science, Lanczos regarded “science as a kind of art”. For him a beautiful theory was in some sense truer than an unbeautiful theory. We will learn how his philosophical disposition motivated his research.

A posthumous appreciation summarized his achievement briefly: He was a great scientist and a great man. These are two great testimonials, and the second one is no less important than the first. In this book we follow this exceptional career from his homeland, Hungary, through Germany and the United States, then back to Europe into

\(^1\)Lessing, Gotthold Ephraim (1729–1781), German dramatist and critic, was a vigorous and prolific writer on literary, philosophical, and theological subjects and the outstanding figure of the German Enlightenment. Academic American Encyclopedia, Grolier Incorporated, Danbury, Connecticut, Volume 12, 1991, pp. 298–299.
Ireland. We will analyze how the social and historical circumstances of these countries affected his career. In addition to his life story, his mathematical methods and the novelty of his ideas in physics will be described. We attempt to use simple terminology as far as possible or to explain scientific notions briefly. The goal is not to give the mathematical details of his theorems or to prove their exactness. We could not do it better than he did. Rather, it is to make them understandable not only for professionals but for educated laymen as well.

Choosing the subjects to discuss was not easy. Lanczos’s publications cover two huge fields: mathematics and physics. In both fields his extremely flexible mind touched important and interesting topics, producing such unique algorithms and ideas that one gets the overwhelming feeling that everything was important. To write a book of moderate size, however, one must make hard choices.

As for mathematics, we received help from the man himself: In the last interview of his career, he named the Tau method, the matrix eigenvalue approximation method (now known as the Lanczos Method), and the linear systems in self-adjoint form as his three most important contributions to mathematics.

In physics, we investigated how his results contributed to other subjects, determined the course of his research, and influenced his career. We came up with the following: The geometric model Lanczos applied in his early paper “Surface Distribution of Matter in Einstein’s Theory of Gravitation” later proved to be very important in the dynamics of bubbles in inflationary cosmology.

His contribution to quantum mechanics was the first continuum representation of quantum mechanics. His publication on the topic preceded Schrödinger’s epoch-making paper by two weeks. This assigned him a special position in the history of science.

The results Lanczos achieved in the field of “Matter Waves and Electricity” motivated Schrödinger to invite him to the Dublin Institute for Advanced Studies and earned him the senior professorship in theoretical physics, the post he filled until the end of his life.
His investigation of undulatory Riemannian spaces determined the course Lanczos followed in his quest for a unified field theory during the Dublin period. His research in the field culminated in his very last paper in physics on the topic of gravitation and Riemannian space.

To readers interested in the mathematical details, we recommend Lanczos’s papers, a complete list of which can be found at the end of the book.

Acknowledgements

Thanks are due to Jerry L. Whitten, Richard R. Patty, and William R. Davis for making the author’s participation possible in the Lanczos Centenary Project of the College of the Physical and Mathematical Sciences at the University of North Carolina, Raleigh, NC, in the 1990s. The cooperation of Christopher R. Gould and of Wesley O. Doggett for bringing the publication of Lanczos’s Collected Papers to a conclusion is appreciated.

The author thanks the American Mathematical Society for publishing this book. Senior editor Edward G. Dunne’s advice and recommendations were of decisive importance in the publication process. At his suggestion, Cornelius Lanczos’s favorite phrase “the intrinsic nature of things” became the title of the book. The persistent assistance of Cristin Zannella, editorial assistant, in the arduous process of getting permissions helped to speed up the acquisition process. Grateful thanks go to the production department for careful editorial work. It was a pleasure to work with production editor Arlene O’Sean and to see the book approach its conclusion. The artistic cover designed by Peter Sykes heralds the message of the book.

Grateful thanks go to József Illy for reading and commenting on the manuscript.

Werner Israel’s thoughtful interview which covered Lanczos’s life both as a scientist and as a man is gratefully acknowledged.

As a contact person between North Carolina State University and the publisher, Wesley O. Doggett helped the publication process.
For reviewing the quotations from the Einstein-Lanczos correspondence thanks are due to Barbara Wolff at the Albert Einstein Archive of Jerusalem.

The painstaking work of Monika Csuka and Peter Kallai in producing the \LaTeX\ form of the manuscript is acknowledged.

Mrs. Eleanor Boyk’s permission to quote from Lanczos’s letters is appreciated.

[6] [3], p. 28.

[16] Lánzos Kornél, “A tudomány mint a művészet egyik formája” [Science as a Kind of Art], *Fizikai Szemle*, XXIII, No. 8, August 1973, p. 228. For the English translation see [207], Volume VI, pp. 4-103 – 4-115.

[22] Lanczos gave the mathematical details of the most important physical methods and results of his doctoral dissertation in his paper “Die tensoranalytischen Beziehungen der Diracschen Gleichung” [“The Tensor Analytical Aspects of Dirac’s Equation”]. *Zeitschrift für Physik*, 57

[23] Ibid.

[24] Lanczos’s letter to Einstein, December 3, 1919, Einstein Archives (EA),\(^1\) 16-206. Courtesy of the Albert Einstein Archives, the Hebrew University of Jerusalem, Israel.

[27] Ibid.

[30] Ibid. p. 29.

[31] Ibid. pp. 32-33.

[35] The author’s interview with Werner Israel, University of Alberta, Edmonton, Alberta, Canada, April 1991. The interview was audiotaped. Later the author transcribed it into hard copy. Further quotations from Werner Israel in this book are from this interview.

\(^1\) Throughout the Bibliography, references to EA are to the Einstein Archives.
Bibliography

[40] Ibid.

[43] Ibid. p. 10.

[45] Ibid. p. 226.

[52] See the paper in [50].

[53] See [50], pp. 820-821.

[54] Ibid. p. 820.

[55] Ibid. p. 823.

[56] Erwin Schrödinger, “Quantisierung als Eigenwertproblem. (Erste Mitteilung)” [“Quantization as an Eigenvalue Problem (Part I)”], Annalen der Physik, 79, 1926, pp. 361-376 (received January 27, 1926; published in issue No. 4, March 13, 1926); “Quantisierung als Eigenwertproblem. (Zweite Mitteilung)” [“Quantization as an Eigenvalue Problem (Part II)”], Annalen der Physik, 79 (1926) pp. 489-527 (received February 23, 1926; published in issue No. 6, April 6, 1926).

²From 1922, the beginning of Lanczos’s career in Germany, until July 29, 1927, his papers were published under the name Kornel Lanczos.
Bibliography

[59] See [2], p. 463.

[64] Ibid. p. 6.

[65] Ibid. p. 6.

[66] Ibid. pp. 4, 5.

[67] Ibid. p. 5.

[70] Lanczos to Einstein, Oct. 20 (no year, probably from 1931), EA 15-243.

[74] See *Lanczos Collection* [207], Volume V, pp. 3-298 and 3-309.

Bibliography

[78] Lanczos’s letter to Einstein, February 15, 1936, EA 15-256.
[79] Lanczos’s letter to Einstein, March 12, 1936, EA 15-257.
[80] Lanczos’s letter to the Boyks (Sol and Eleanor), July 1, 1939.
[81] Lanczos’s letter to the Boyks (Sol and Eleanor), August 15, 1939.
[82] Ibid.
[83] Personal communication from Alice Lanczos, Lanczos’s daughter-in-law, to the author.
[85] See [43], p. 10.
[87] Ibid. pp. 67-76.
[88] Ibid. p. 73.
[89] Ibid. p. 74.
[90] Ibid. p. 76.
[91] Ibid. p. III.
[97] James Cooley, Electrical Engineer, an oral history, conducted in 1997 by Andrew Goldstein, IEEE History Center, Rutgers University, New Brunswick, NJ.
[99] Ibid. pp. 4-5.
[100] Ibid. p. 3.
[101] Edited from material provided by Israel Rotkin.
[104] Ibid.
[107] See [103].
[108] Ibid. p. 4.
[109] Ibid.
[110] See [103], p. 2.
[113] See [103], p. 5.
[116] Lanczos’s letter to Einstein, October 20, no year (probably from 1931), EA 15-243.
[119] Lanczos’s letter to Einstein, March 17, 1942, EA 15-293.
[121] Lanczos’s letter to Einstein, December 22, 1945, EA 15-309.

Ibid. p. 255, footnote 4.

Lanczos’s letter to Einstein, March 29, 1954, EA 15-326. The letter suggests that an FBI file on Lanczos should exist. In August of 1990 in an interview with John Todd at Caltech in Pasadena, California, the author was told that Lanczos’s disloyalty charge was completely separate from the security investigation of the INA. Todd, however, had no information whatsoever about the nature of Lanczos’s disloyalty accusation. FOIA (Freedom of Information Act) requests to
track down the location of Lanczos’s FBI file were sent to the legal successor of the NBS-INA. They have not succeeded up to this time.

[135] Lanczos’s letter to Einstein, August 18, 1953, EA 15-323.

[143] See [141], p. 345.

[145] See [141], p. 350.

[147] See [151], p. 672.

[148] See [105], p. 132.

[156] See [76].

[158] See [105], pp. 432-435.

[159] Ibid, pp. 508-511.

[160] Interview with Werner Israel. See [35].

[161] Ibid.

[167] Interview with Werner Israel. See [35].

[170] Interview with Werner Israel. See [35].

[171] Ibid.

[172] Ibid.

[173] Ibid.

Ibid., p. 959.

Ibid.

These videotape recordings include the following: Autobiographical Discourse. His Education, Life and Career; Discussion Interview: “Professor Lanczos’s Contribution to Mathematics”; Discussion Interview: “Albert Einstein: the Man and Relativity”; Lectures I and II of “The Life and Work of Albert Einstein: Cosmic World Order”. Copyright holder: Department of Mathematics, University of Manchester Institute of Science and Technology, Manchester, England.

See [168].

Lanczos’s letter to Barbara Gellai, April 18, 1974.
Bibliography

[192] Ibid.

[199] See [198], pp. 2-2069 – 2-2079.

[206] See [146], p. 255. For the English translation see [207], Volume IV, p. 2-1749.

Index

Abbott, J. C., 158
Abramowitz, Milton, 50, 63
absolute motion, 14
absolute time, 14
action principle, 97, 118
action-at-a-distance, 12, 14, 15, 18
Alexander, Bernath, 17

Békésy, Georg von, 3
Beltrami, Eugenio (1835–1899), 100
Berlin University, 19
big-bang model, 25
Blanch, Gertrude, 63, 64
Boeing Aircraft Company, 81, 83, 86, 95, 113, 130, 156
Bohr, Niels (1885–1962), 24, 34, 35
Born, Max (1882–1970), 24, 35, 40
boundary value problem, 31, 101, 102, 141, 143, 144
Boyk, Sol, 120
Boyks (Sol and Eleanor), 53
Broglie, Louis de (1892–1987), 34, 38, 96
Brown, J. D., 160
Budapest Institute of Technology, 18, 21, 129
Budapest University, 18
Butler, Ronald, 113, 116

Cardelli, Francesco, 143
Cauchy problem, 154
characteristic polynomial, 83, 84, 87
charged particles, 77
Chauvenet Prize, 100
Chauvenet, William (1820–1870), 100
Chebyshev polynomials, 48
Chu, Moody T., 161
Clark, R. C., 144
Clenshaw, Charles William (1926–2004), 114
Cohen, R. S., 143
conservation law, 76
continuum formalism, 39
correspondence principle, 35
Cosmic Background Explorer (COBE), 26
cosmological constant, 97
Coulomb, Charles (1736–1806), 12
Coveney, Peter, 150
Curtiss, J. H., 86
curvature tensor, 75, 109

Danielson, Gordon Charles (1912–1983), 59, 61, 62, 138, 139, 155
dark stars, 120

163
Index

Davis, William R., 114, 117, 150, 160, 161
de Hevesy, George (1885–1966), 3
de Sitter, Willem, 25
de Valera, Eamon, 90, 93, 94
Dehn, Max, 32
density of probability, 40
Derrick, G. H., 144
digital computers, 65, 88
Dirac delta function, 40
Dirac, Paul Adrien Maurice (1902–1984), 39
displacement current, 13
distant parallelism, 28, 29, 75
Doggett, Wesley O., 161
Dongarra, Jack, 157
doubling algorithm, 61
Dublin Institute for Advanced Studies (DIAS), 89, 94, 103, 113
dynamic world picture, 77
Eddington, Sir Arthur, 15
eigenvalue problem, 83
Einstein, Albert (1879–1955), 21, 40, 55, 140–142
electromagnetic waves, 13, 34, 38
Ellison, D. C., 160
E¨otv¨os Lorand University, 121
E¨otv¨os, Baron Lorand, 2, 17, 18
equivalence hypothesis, 14
ether, 13, 14, 134, 147
Faddeev, D. K., 157
Faddeeva, V. N., 157
Faraday, Michael (1791–1867), 12
Fast Fourier Transform (FFT), 61
Federal Bureau of Investigation (FBI), 89
field, 12, 14, 16, 19, 27, 36, 39, 96–98, 118, 120
field equations, 25, 27, 76, 95, 98, 110, 117, 118, 120
field-theoretical representations, 37, 135, 136, 153
Flexner, Abraham, 158
Florides, Petros S., 159
force of gravity, 14, 15
Ford Motor Company, 130
Fourier amplitudes, 119
Fourier analysis, 59–61, 118, 119, 122
Fourier coefficients, 51, 59, 60, 118, 119
Fourier functions, 48
Fourier phase angles, 119
Frank, Tibor, 151
Frankfurt Mathematics Seminars, 32
Fredricksson, Einar, 145
Gábor, Dennis, 3
Gamma function, 142
Gauss, Karl Friedrich (1777–1855), 69
general relativity, 2, 25, 27, 71, 74, 75, 95–97, 109, 135, 136, 138, 140, 141, 145, 151, 152, 158
generalized inverse, 100, 158
dynamical line, 27
global smoothing, 51
Glockner, P. G., 146
Goldstein, Andrew, 62
Golub, Gene H., 157, 159
gravitation effect, 12
gravitation theory, 12
gravitational equations, 118, 133, 137, 152
gravitational mass, 14
Green’s function, 37, 38
Greene, Brian, 150
Gsponer, André A., 161
Guendelman, E. I., 152
Guth, Alan H., 151
Haar, Alfred (1885–1933), 2
Hajime, Hayashi, 145
Hamilton, William Rowan (1805–1865), 19, 39, 76, 95, 103, 105, 138, 143, 158
Hamiltonization, 95
Hanak, Peter, 151
Hardy, Godfrey Harold (1877–1947), 47
Haruichi, Yabuki, 146
Havas, Peter, 152
Index

Hawking, Stephen, 161
heat radiation, 34
Heisenberg, Werner Karl
(1901–1976), 23, 35, 38, 39, 152, 153
Hellinger, Ernst, 32
Hersh, Reuben, 149
Hertz, Heinrich (1857–1894), 13
Hestenes, Magnus R., 139, 157
Highfield, Roger, 150
Hildebrand, Ilse, 90
Hoffman, Paul, 154
Hopkins, H. G., 125, 157
Householder, Alston S., 87
Howard, D., 152
Humming, R. W., 157
ill-posed problems, 51
indefinite signature, 112
inertial mass, 14
inflationary signature, 26
inflationary cosmology, 26
inflationary model of the universe, 25
inner necessity, 57
Institute for Advanced Study of Princeton, 93
Institute for Numerical Analysis, 85, 89, 157
integral equations, 32, 36, 37, 101, 134
Ipser, J., 152
Isaacson, Eugene, 63
Israel, Werner, 25, 107, 151, 159, 161
Janick, Jules, 154
John-Steiner, Vera, 149
Jordan, Camille (1838–1921), 100
Jordan, Pascual (1902–1980), 39
Jungk, Robert, 151
Kahan, W., 159
Kardos, István, 157
Karman, Theodore von
(1881–1963), 3
Karush, W., 139
kernel function, 37, 39, 40
Koenig, G., 60
Koenig, H., 155
Krylov subspace, 87, 88, 157
Laderman, Jack, 63
Lagrange multiplier, 95, 158
Lagrange, Joseph Louis
(1736–1813), 95
Lagraghian, 75, 97, 117, 139
Laguna-Castillo, P., 152
Lakatos, Dénes, 149
Lanczos Method, 49, 79, 81, 87, 88, 100, 127
Lanczos tensor, 110
Lanczos, (born Rupp) Mária, 41, 46, 53
Lanczos, Alice, 155
Lanczos, Anna (1896–1944), 6, 43, 65
Lanczos, Elmar (1933–1982), 52, 90, 122
Lark-Horovitz, Karl (1892–1958), 41, 45, 46, 55, 59, 81, 154
lattice structure, 118, 120
Laue, Max von (1879–1960), 23, 118
light deflection, 120
line element, 106, 107, 109, 110, 112, 120, 121
Lorentz condition, 118
Lorentzian line element, 107
Löwy, (born Hahn) Adél, 6
Löwy, Károly, 5
Lukacs, John, 149
Madelung, Erwin, 31
Magnus, Wilhelm, 31, 32, 152
Marchand, René, 145
Marx, George, 150
Marx, György, 125
material particle, 76–78, 98
Mathematical Association of America, 100, 157
Mathematical Tables Project, 50, 63–65, 130
matrix inversion, 83
matrix representation, 37
matter waves, 38, 76, 77, 89, 95, 97, 110, 139, 156, 158
Matzner, R. A., 152
Maxwell equations, 34, 96
Maxwell, James Clerk (1831–1879), 13
McCarthy, Joseph (1908–1958), 89
McCarthyism, 89
McCartney, Mark, 158, 159
McConnell, James R. (1915–1999), 103, 159, 161
Mehra, Jagdish, 154
Merza, József, 146
metric, 28, 77, 107
metrical plateau, 76, 77, 110
metrical tensor, 77, 117
Michelson-Morley experiment, 13, 14
Miller, J. J. H., 145
minimized iterations, 84, 87, 140
Minkowski, Hermann (1864–1909), 15, 106
Minkowskian world, 121
Misner, C. W., 151
Moore, E. H., 99, 158
Moore, Walter, 158

NASA (National Aeronautics and Space Administration), 26
National Bureau of Standards, 63, 65, 85, 86, 89, 130, 140, 157
National Defense Research Council, 63
National Institute of Standards and Technology, 157
National University of Ireland, 94, 131
natural radiation, 118
Nature’s Pythagorean theorem, 105–107
Neumann, John von (1903–1957), 3
Newton’s equations, 12
Newton’s second law, 27
Newton, Isaac (1642–1727), 150
Norris, Larry K., 161
North American Aviation, 89, 130
North Carolina State University, 114, 118, 130, 150, 160, 161
O’Connor, John J., 158

Oppenheimer, Robert (1904–1967), 24
O’Raifeartaigh, L., 145
Oregon State College, 130
Ortiz, Eduardo L., 50, 159, 161
Ortvay, Rudolf (1885–1945), 20, 154
Ostrowski, Alexander M., 85, 86
Pais, Abraham, 40, 149
Pauli, Wolfgang (1900–1958), 23, 39, 40
Peace Treaty of Trianon, 21
Penrose, Roger, 100, 158
photoelectric effect, 34
Planck’s constant, 34
Planck, Max (1858–1947), 21, 34
Plemmons, R. J., 160
Pólya, György (George) (1887–1985), 2, 142
positive definite signature, 107, 111
power series, 48, 49, 126
principal axes, 83, 84
principle of motion, 135, 152
Prioli, Carmine A., 161
problem of motion, 26, 28, 152
pseudo inverse, 159
Purdue University, 41, 45, 46, 64, 68, 130, 154
quadratic action principle, 75–77, 96, 116, 117, 144, 160
quantum condition, 34, 37, 135
quantum mechanics, 20, 31, 35, 38, 40, 97, 122, 135, 153
quantum phenomena, 35, 74, 96, 110, 127
quaternion calculus, 19
random noise, 120
random sequences, 118, 119, 122, 125, 126, 146, 161
Ravid, Benjamin, 149
Rechenberg, Helmuth, 153
rectangular matrix, 98
reference system, 14, 110
resonance effect, 77
Rhodes, Ida (1900–1986), 63–65, 155
Index

B

Baird, John D., 41
Baird, G. F. D., 41
Baker, Michael, 161
Balint, Istvan, 161
Ball, T. A., 41
Barkana, Rafael, 129
Barletta, John J., 41
Barlow, Julian, 161
Barlow, Philip N., 41
Baroody, Andrew, 161
Barnes, David, 161
Bartell, T. S., 41
Baskin, Richard, 161
Basu, Somenath, 161
Beck, Scott, 161
Begg, T. L., 41
Beggs, James, 161
Berg, J. P. St. John, 161
Berg, Harold, 161
Bergman, Sergei, 161
Bergman, Shoshana G., 161
Bergman’s kernel, 41
Bergmueller, Robert, 161
Bergstrom, Anders, 161
Bergstrasse, H. E., 41
Bertozzi, Andrea L., 161
Bhatta, Arunava, 161
Bhattacharya, A. K., 41
Bhatcha...
van Loan, C. F., 157
variational principles, 108, 139, 143, 144
vector potential, 76, 96, 116, 118, 137, 145, 146, 160

Wartofsky, M. R., 143
wave equation, 38, 118
wave function, 38–40
wave mechanics, 38–41, 47, 138, 154
well-posed problems, 101
Wentzel, Gregor (1898–1978), 23
Weyl, Herman (1885–1955), 75
Wheeler, John, 151
Whitaker, Andrew, 158, 159
white noise, 119
Whitehead, Alfred North (1861–1947), 105, 106
Wigner, Eugene (1902–1995), 3
World War, 20, 53, 63
wrinkled plateau, 76, 78, 98

Yale University, 130, 154
York, James W., 161
Yourgrau, Wolfgang, 126, 161
This book recounts the extraordinary personal journey and scientific story of Hungarian-born mathematician and physicist Cornelius Lanczos. His life and his mathematical accomplishments are inextricably linked, reflecting the social upheavals and historical events that shaped his odyssey in 20th-century Hungary, Germany, the United States, and Ireland.

In his life Lanczos demonstrated a remarkable ability to be at the right place, or work with the right person, at the right time. At the start of his scientific career in Germany he worked as Einstein’s assistant for one year and stayed in touch with him for years thereafter. Reacting to anti-Semitism in Germany in the 1930s, he moved to the United States, where he would work on some of the earliest digital computers at the National Bureau of Standards. After facing suspicion of Communist sympathies during the McCarthy era in the 1950s, Lanczos would relocate once again, joining Schrödinger at the Dublin Institute for Advanced Studies. Gellai’s biography analyzes a rich life and a body of work that reaches across many scientific disciplines.

Lanczos made important contributions to several areas of mathematics and mathematical physics. His first major contribution was an exact solution of the Einstein field equations for gravity (in general relativity). He worked out the Fast Fourier Transform, but since there were no machines on which to run it, this accomplishment would be forgotten for 25 years. Once he had access to computers, Lanczos independently rediscovered what is now known as the singular value decomposition, a fundamental tool in numerical methods. Other significant contributions included an important discovery about the Weyl tensor, which is now known as the Lanczos potential, and an important contribution on algorithms for finding eigenvalues of large matrices.