How to Teach Mathematics
Third Edition
How to Teach Mathematics
THIRD EDITION

Steven G. Krantz
To Robert L. Borrelli, teacher and friend.
Contents

Preface to the Third Edition ix
Preface to the Second Edition xi
Preface to the First Edition xvii

Chapter 1. Guiding Principles 1
 1.0. Chapter Overview 1
 1.1. Respect 1
 1.2. Prepare 3
 1.3. Speak Up 5
 1.4. Lectures 6
 1.5. Questions 10
 1.6. Time 14
 1.7. Applications 16
 1.8. The Moore Method 20

Chapter 2. Practical Matters 23
 2.0. Chapter Overview 23
 2.1. Voice 23
 2.2. Eye Contact 25
 2.3. Blackboard Technique 26
 2.4. Homework 30
 2.5. Office Hours 32
 2.6. Designing a Course 35
 2.7. Handouts 36
 2.8. Teaching Evaluations 37
 2.9. Exams 43
 2.10. Grading 49
 2.11. The Syllabus (and the Course Diary) 52
 2.12. Choosing a Textbook 55
 2.13. Large Lectures 58
 2.15. On Being a TA 65
 2.16. Tutors 66

Chapter 3. Spiritual Matters 69
 3.0. Chapter Overview 69
 3.1. Breaking the Ice 69
 3.2. Math Anxiety 70
Preface to the Third Edition

It has been fifteen years since the appearance of the Second Edition of this book. A lot has happened since then. The teaching reform movement has become a fact of life. Many of us have had occasion to rethink how and why we teach. Many of us have taken time to learn about the myriad of new (often OnLine) teaching devices that are available today. Among these are MOOCs (massive open online courses), the Khan Academy, flipped classrooms, clickers, smartboards, and the list goes on at some length.

Our goal with this new edition is to present a streamlined approach to our teaching philosophy. Many found the First Edition of this book to be attractive because it was only 80 pages. The Second Edition was 300 pages. It offered much more, but was correspondingly more cumbersome. One could easily read the First Edition during a long lunch hour. The Second Edition represented more of an investment of time and effort.

This Third Edition will be a slimmed-down version of the key ideas in the first two editions. We still want to emphasize the nuts and bolts of good teaching: prepare, respect your students, be flexible, be knowledgeable, be of good spirit, be a role model, and prepare some more. We have eliminated several sections which, from today’s perspective, appear to be redundant. And we have revised and modified several other sections.

The other goal of this new version is to explore many of the new OnLine learning tools that are now available. Some of these will make little sense to the traditionally trained instructor. Others will be fascinating, and will give us new ideas of things to try.

One of the innovations in the Second Edition was the inclusion of ten Appendices by other mathematicians with strong views about mathematics teaching. Some of these scholars agreed with me, and some of them (very politely) disagreed with me. In this new edition, I omit these Appendices. But they are available at the Web site

www.math.wustl.edu/~sk/teachapps.pdf

These Appendices still have value, and offer many ideas of intrinsic interest. But, in the pursuit of brevity, we have consigned them to an ancillary venue.

It is a pleasure to thank Lynn Apfel and James Walker for a careful reading of various versions of this new edition, and for offering innumerable sage comments and suggestions. Dave Bressoud worked assiduously to bring me up to speed on everything that has been happening in math teaching in the past fifteen years. I have Bressoud to thank for much of what is interesting and modern in this new edition. I also thank my Editors Edward Dunne and Sergei Gelfand for their wisdom and guidance.
It is our hope that this new edition of *How to Teach Mathematics* will speak to a new generation of budding mathematics instructors, and inspire them to new strata of excellence in teaching.

Steven G. Krantz
St. Louis, Missouri
Preface to the Second Edition

“When a mathematician speaks about teaching], colleagues smile tolerantly to one another in the same way family members do when grandpa dribbles his soup down his shirt.” Herb Clemens wrote these words in 1988. They were right on point at the time. The amazing fact is that they are no longer true.

Indeed the greatest single achievement of the so-called “teaching reform” movement is that it has enabled, or compelled, all of us to be concerned about teaching. Never mind the shame that in the past we were not concerned about teaching. Now we are all concerned, and that is good.

Of course there are differing points of view. The “reform” school of thought favors discovery, cooperative and group learning, use of technology, higher-order skills, and it downplays rote learning and drill. The traditionalists, by contrast, want to continue giving lectures, want the students to do traditional exercises, want the students to take the initiative in the learning process, and want to continue to drill their students. Clearly there are merits in both points of view. The good news is that the two sides are beginning to talk to each other. The evidence? (1) A conference held at MSRI in December, 1996 with the sole purpose of helping the two camps to communicate (see the Proceedings in [GKM]); (2) The observation that basic skills play a new role, and are positioned in a new way, in the reform curriculum; (3) The observation that standard lectures—the stock-in-trade of traditionalists—are not the final word on engaging students in the learning process; (4) The fact that studies indicate that neither method is more effective than the other, but that both have strengths; (5) The new wave of calculus books (see [STEW]) that attempt a marriage of the two points of view.

The reader of this book may as well know that I am a traditionalist, but one who sees many merits in the reform movement. For one thing, the reform movement has taught us to reassess our traditional methodologies. It has taught us that there is more than one way to get the job done. And it has also taught us something about the sociological infrastructure of twentieth-century mathematics. We see that our greatest pride is also our Achilles heel. In detail, the greatest achievement of twentieth-century mathematics is that we have (to the extent possible) fulfilled the Hilbert/Bourbaki program of putting everything on a rigorous footing; we have axiomatized our subject; we have precise definitions of everything. The bad news is

1As I will say elsewhere in the book, the reformers constitute a heterogeneous group, just like the traditionalists. There is no official reform dogma, just as there is no official traditionalist dogma. Some reformers tell me that they strongly favor drill, but that drill should be built atop a bedrock of understanding. Many traditionalists seem to prefer to give the drill first—asking the students to take it on faith—and then to develop understanding. George Andrews has asked whether, if instead of calling it “mere rote learning” we called it “essential drill”, would people view it differently?
that these accomplishments have shaped our world view, all the way down into the calculus classroom. Because we have taught ourselves to think strictly according to Occam’s Razor, we also think that that should be the mode of discourse in the calculus classroom. This view is perhaps shortsighted.

First, students (and others, too!) do not generally learn axiomatically (from the top down). In many instances it is more natural for them to learn inductively (from the bottom up). Of course the question of how people learn has occupied educational theorists as far back as Beth and Piaget [BPI], and will continue to do so. But, as I say elsewhere in this book, the mathematics instructor must realize that a student cannot stare at a set of axioms and “see what is going on” in the same way that an experienced mathematician can. Often it is more natural for the student to first latch on to an example.

Second, we must realize that the notion of “proof” is a relative thing. Mathematical facts, or theorems, are freestanding entities. They have a life of their own. But a proof is largely a psychological device for convincing someone that something is true. A trained mathematician is taught a formalism for producing a proof that will be acceptable to his colleagues. But a freshman in college is not. What constitutes a believable proof for a freshman could easily be a good picture, or a plausibility argument. This insight alone can turn an ordinary teacher into a good one. What is the sense in showing a room full of freshmen a perfectly rigorous proof (of the fundamental theorem of calculus, say), secure in the knowledge that you have “done the right thing,” but also knowing unconsciously that the students did not understand a word of it? Surely it is more gentle, as a didactic device, to replace “Proof:” with “Here is an idea about why this is true.” In doing the latter, you have not been dishonest (i.e., you have not claimed that something was a strictly rigorous proof when in fact it was not). You have instead met the students half way. You have spoken to them in their own language. You have appealed to their collective intuition. Perhaps you have taught them something. Always keep in mind that persuasion has many faces.

I have witnessed discussions in which certain individuals were adamant that, if you give an explanation in a calculus class that is not strictly a proof, then you must say, “This is not a proof; it is an informal explanation.” Of course such a position is a consequence of twentieth-century mathematical values, and I respect it. But I do not think that it constitutes good teaching. In the first place, such a mantra is both tiresome and discouraging for the students. The instructor can instead say, “Let’s think about why this is true . . .” or “Here is a picture that shows what is going on . . .” and thereby convey the same message in a much friendlier fashion.

In my own mathematics department we have a “transitions” course, in which students are taught first-order logic, naive set theory, equivalence relations and classes, the constructions of the number systems, and the axiomatic method. They are also taught—at a very rudimentary level—how to construct their own proofs. Typically a student takes this course after calculus, linear algebra, and ordinary differential equations but before abstract algebra and real analysis. I think of the transitions course as a bellwether. Before that course, students are not ready for formal proofs. We should adapt our teaching methodology to their argot. After the transitions course, the students are more sophisticated. Now they are ready to learn our argot.
I have decided to write this new edition of *How to Teach Mathematics* in part because I have learned a lot about teaching in the five-year interval since this book first appeared. The teaching reform movement has matured, and so have the rest of us. I believe that I now know a lot more about what constitutes good teaching. I regularly teach our graduate student seminar to help prepare our Ph.D. candidates for a career in teaching, and I have an ever better understanding of how to conduct such training. I would like to share my new insights in this edition.

One of the best known mathematical errors, particularly in the study of an optimization problem, is to assume that the problem has a solution. Certainly Riemann’s original proof of the Riemann mapping theorem is a dramatic example of this error, but the calculus of variations (for instance) is littered with other examples. Why can we not apply this hard-won knowledge to other aspects of our professional lives? Why do we assume that there is a “best” way to teach calculus? Or a “best” textbook? Teaching is a very personal activity, and different individuals will do it differently. Techniques that work for one person will not work for another. (Also, techniques that work in one class will not necessarily work in another.) I believe that we need, as a group, to acknowledge that there is a pool of worthwhile teaching techniques, and we should each choose those methods that work for us and for our students.

Ever since the first edition of this book appeared, mathematicians have approached me and asked, “OK, what’s the secret? Students these days drive me crazy. I can’t get through to them. They won’t talk to me. How do you do it?” I wish that I had a simple answer. I would like to be able to say, “Take this little green pill.” or “Say this prayer in the morning.” or “Hold your mouth this way.” But in fact there is no simple answer. Even so, I have invested considerable time analyzing the situation as well as talking to other successful teachers about how to make the teaching process work. I have come to the following conclusion.

Students are like dogs: They can smell fear. (I do not mean to say here that we should think of our students as attack dogs. Rather, they are sensitive to body language and to nuances of behavior. See also Section 2.9 on teaching evaluations.) When you walk into your classroom, the students can tell right away whether you really want to be there, whether you have something interesting to tell them, whether you respect them as people. If they sense instead that you are merely slogging through this dreary duty, just writing the theorems and proofs on the blackboard, refusing to answer questions for lack of time, then they will react to you in a correspondingly lackluster manner.

When I walk into my calculus class, I look forward to seeing the students perk up, with a look on their faces that says “Showtime!” In the few minutes before the formal class begins, I chat with them, joke around, find out what is going on in their lives. I relate to them as people. It will never happen that a student will go to the chair or the dean and complain about me. Why? Because they know that they can come and talk to me about their concerns. If a student is not doing well in my class, that student is comfortable coming to me. And he knows that the fault for his poor performance is as likely his as it is mine, because he realizes that I am doing everything that I can. If you believe what I am describing here, then perhaps you can also understand why I enjoy teaching, and why I find the process both stimulating and fulfilling.
I recently taught a fairly rigorous course in multivariable calculus—a subject
in which students usually have a lot of trouble. The main reason that they have so
much trouble is that there are so many ideas—vectors, cross products, elements of
surface area, orientation, conservative vector fields, line integrals, tangent planes,
etc.—and they are all used together. Just understanding how to calculate both
sides of the equation in Stokes’s theorem, or the divergence theorem, requires a
great deal of machinery. The way that I addressed their difficulties is that I worked
the students hard. I gave long, tough homework assignments. A day or two before
any given assignment was due, I would begin a class discussion of the homework.
If necessary, I would work out the bulk of a problem on the board for them. But
I would add that I expected each of them to write up the problem carefully and
completely—with full details. And I would give them a few extra days so that they
could complete the assignment. But I did not stop there. Next class, I would ask
how the homework was going. If necessary, we would discuss it again. If necessary, I
would give them another extension. The point here is that I made it absolutely clear
to the students that the most important thing to me was that they would complete
the assignment. I would give them whatever time, and whatever help, was needed
to complete the work. During the long fifteen-week semester, attendance in the
class was virtually constant, and always exceeded 95%. At the end, I gave them a
long, tough final exam. And the average was 85%. I can only conclude that I set a
standard for these students, and they rose to it. Both they and I came away from
the course with a feeling of success. They had worked hard, and they had learned
something.

You may be thinking, “Well, Krantz teaches at a fancy private school with
fancy private students. I could never get away with this at Big State University.”
That is a defeatist attitude. If you expect your students to try, then you must try.
I have taught at big state universities. I understand the limitations that teaching
a large class of not particularly select students imposes. But you can adjust the
techniques described in the last paragraph to most any situation. If you wonder
how I can afford to spend valuable class time going over homework, my answer is
this: I am an experienced teacher, and fourteen weeks is a long time. I can always
adjust future classes, leave out a few examples, give short shrift to some ancillary
topics. I never worry about running out of time.

I have gone on at some length in this Preface to give the uninitiated reader
a glimpse of where I am coming from. I hope that on this basis you can decide
whether you want to read the remainder of the book. This is a self-help book in
the strongest sense of the word. It is a kit that will allow you to build your own
teaching methodology and philosophy. I certainly cannot do it for you. What I can
do is provide you with some tips, and advice, and the benefit of my own experience.
Nothing that I say here is “correct” in any absolute sense. It is just what I know.

One of my disappointments pursuant to the first edition of this book is that
nobody has taken it as an impetus to write his own book espousing his own teaching
philosophy. There have been some reviews of this book—several of them rather
strong and critical both of the book and of its author (see [MOO], [BRE1]).
I welcome such discussions, and would only like to see further discourse. I am
delighted to be able to say that several distinguished scholars, who have been
active in exploring and discussing teaching issues, have agreed to write Appendices
to this new edition of How to Teach Mathematics. Let me stress that these are
not all people who agree with me. In fact, some of us have had spirited public
disagreements. But we all share some common values. We want to discover how
best to teach our students. The new Appendices help to balance out the book, and
to demonstrate that any teaching question has many valid answers.

When I teach the teaching seminar for our graduate students, the first thing I
tell them is this: “In this course, I am not going to tell you how to teach. You have
to decide that for yourselves. What I intend to do is to sensitize you to certain
issues attendant to teaching. Then you will have the equipment so that you can
build your own teaching philosophy and style.” I would like to suggest that you
read this book in the same spirit. You certainly need not agree with everything I
say. But I hope you will agree that the issues I discuss are ones that we all must
consider as we learn how to teach.

When I was a graduate student—in one of the best math graduate programs
in the country—I never heard a single word about teaching. Actually, that’s not
true. Every once in a while we would be talking about mathematics and someone
would look at his watch and say, “Damn! I have to go teach.” But that was the
extent of it. Six years after I received my PhD, I returned to that same Ivy League
school as a visiting faculty member. Times had changed, and one of the senior
faculty members gave a twenty-minute pep talk to all new instructors. He said,
“These days, you can either prove the Riemann hypothesis or you can learn how
to teach.” He went on to tell us to speak up during lectures, and to write neatly
on the blackboard. This was not the most profound advice on teaching that I have
ever heard, but it certainly represented progress.

The truth is that, as a graduate student, I was so hellbent on learning to be
a mathematician that I probably gave little thought to teaching. I would have felt
quite foolish knocking on my thesis advisor’s door and asking his advice on how to
teach the chain rule. I shudder to think what he might have replied. But we have
all evolved. It makes me happy that my own graduate students frequently consult
me on (i) mathematics, (ii) teaching, and (iii) the profession. Though I secretly
may relish (i) a bit more than (ii) or (iii), I do enjoy all three.

Teaching is an important part of what we do. Because of economic stringencies,
and new societal values, university administrations are monitoring every depart-
ment on campus to ensure that the teaching is (better than) adequate and is work-
ing. My university is known nationwide for its good teaching. Yet an experienced
administrator here said recently that 80% of the tenured faculty (campus-wide)
could not get tenure today on the basis of their teaching.

We simply cannot get away with the carelessness that was our hallmark in
the past. Thanks in part to the teaching reform movement, we have all come to
understand this change in values, and we are beginning to embrace it. A book like
[CAS], which offers advice to a fledgling instructor, could not have existed twenty
years ago. Now it is a valuable part of our literature.

Teaching is a regimen that we spend our entire lives learning and revising and
honoring to a sharp skill. This book is designed to help you in that pursuit.

I am happy to acknowledge the advice and help that I have received from
many friends and colleagues in the preparation of this new edition. I would like
particularly to mention Joel Brawley, David Bressoud, Robert Burckel, John B.
Conway, Ed Dubinsky, Len Gillman, David Hoffman, Gary Jensen, Meyer Jerison,
Kristen Lampe, Vladimir Mašek, Chris Mahan, Deborah K. Nelson, Hrvoje Sikic,
Nik Weaver, Stephen Zemyan, and Steven Zucker. Lynn Apfel was good enough
to read several drafts of this manuscript with painstaking care, and to share with
me her cogent insights about teaching; I am most grateful for her contributions.
Jennifer Sharp of the American Mathematical Society gave me the benefit both of
her editing skills and of her knowledge of language and meaning. Her help has been
invaluable.

Last, but not least, Josephine S. Krantz is a constant wellspring of inspiration;
her Mom, Randi Ruden, is a source of solace.

Of course the responsibility for all remaining errors or foolishness resides en-
tirely with me.

Steven G. Krantz
St. Louis, Missouri
Preface to the First Edition

While most mathematics instructors prepare their lectures with care, and endeavor to do a creditable job at teaching, their ultimate effectiveness is shaped by their attitudes. As an instructor ages (and I speak here of myself as much as anyone), he finds that he is less in touch with his students, that a certain ennui has set in, and (alas) perhaps that teaching does not hold the allure and sparkle that it once had. Depending on the sort of department in which he works, he may also feel that hotshot researchers and book writers get all the perks and that “mere teachers” are viewed as drones.

As a result of this fatigue of enthusiasm, a professor will sometimes prepare for a lecture not by writing some notes or by browsing through the book but by lounging in the coffee room with his colleagues and bemoaning (a) the shortcomings of the students, (b) the shortcomings of the text, and (c) that professors are overqualified to teach calculus. Fortified by this yoga, the professor will then proceed to his class and give a lecture ranging from dreary to arrogant to boring to calamitous. The self-fulfilling prophecy having been fulfilled, the professor will finally join his cronies for lunch and be debriefed as to (a) the shortcomings of the students, (b) the shortcomings of the text, and (c) that professors are overqualified to teach calculus.

There is nothing new in this. The aging process seems to include a growing feeling that the world is going to hell on a Harley. A college teacher is in continual contact with young people; if he feels ineffectual or alienated as a teacher, then the unhappiness can snowball.

Unfortunately, the sort of tired, disillusioned instructors that I have just described exist in virtually every mathematics department. A college teacher who just doesn’t care anymore is a poor role model for the novice instructor. Yet that novice must turn somewhere to learn how to teach. You cannot learn to play the piano or to ski by watching someone else do it. And the fact of having sat in a classroom for most of your life does not mean that you know how to teach.

The purpose of this book is to set down the traditional principles of good teaching in mathematics—as viewed by this author. While perhaps most experienced mathematics instructors would agree with much of what is in this book, in the final analysis this tract must be viewed as a personal polemic on how to teach.

Teaching is important. University administrations, from the top down, are today holding professors accountable for their teaching. Both in tenure and promotion decisions and in the hiring of new faculty, mathematics (and other) departments must make a case that the candidate is a capable and talented teacher. In some departments at Harvard, a job candidate must now present a “teaching dossier” as well as an academic dossier. It actually happens that good mathematicians who
are really rotten teachers do not get that promotion or do not get tenure or do not get the job that they seek.

The good news is that it requires no more effort, no more preparation, and no more time to be a good teacher than to be a bad teacher. The proof is in this book. Put in other words, this book is not written by a true believer who is going to exhort you to dedicate every waking hour to learning your students’ names and designing seating charts. On the contrary, this book is written by a pragmatist who values his time and his professional reputation, but is also considered to be rather a good teacher.

I intend this book primarily for the graduate student or novice instructor preparing to sally forth into the teaching world; but it also may be of some interest to those who have been teaching for a few or even for several years. As with any endeavor that is worth doing well, teaching is one that will improve if it is subjected to periodic re-examination.

Let me begin by drawing a simple analogy: By the time you are a functioning adult in society, the basic rules of etiquette are second nature to you. You know instinctively that to slam a door in someone’s face is (i) rude, (ii) liable to invoke reprisals, and (iii) not likely to lead to the making of friends and the influencing of people. The keys to good teaching are at approximately the same level of obviousness and simplicity. But here is where the parallel stops. We are all taught (by our parents) the rules of behavior when we are children. Traditionally, we (as mathematicians) are not taught anything, when we are undergraduate or graduate students, about what constitutes sound teaching.

In the past we have assumed that either

(i) Teaching is unimportant.

or

(ii) The components of good teaching are obvious.

or

(iii) The budding professor has spent a lifetime sitting in front of professors and observing teaching, both good and bad; surely, therefore, this person has made inferences about what traits define an effective teacher.

I have already made a case that (i) is false. I agree wholeheartedly with (ii). The rub is (iii). If proof is required that at least some mathematicians have given little thought to exposition and to teaching, then think of the last several colloquia that you have heard. How many were good? How many were inspiring? This is supposed to be the stuff that matters—getting up in front of our peers and touting our theorems. Why is it that people who have been doing it for twenty or thirty years still cannot get it right? Again, the crux is item (iii) above. There are some things that we do not learn by osmosis. How to lecture and how to teach are among these.

Of course the issue that I am describing is not black and white. If there were tremendous peer support in graduate school and in the professorial ranks for great teaching, then we would force ourselves to figure out how to teach well. But often there is not. The way to make points in graduate school is to ace the qualifying exams and then to write an excellent thesis. It is unlikely that your thesis advisor
wants to spend a lot of time with you chatting about how to teach the chain rule. After all, he has tenure and is probably more worried about where his next theorem or next grant or next raise is coming from than about such prosaic matters as calculus.

The purpose of this book is to prove that good teaching requires relatively little effort (when compared with the alternative), will make the teaching process a positive part of your life, and can earn you the respect of your colleagues. In large part I will be stating the obvious to people who, in theory, already know what I am about to say.

It is possible to argue that we are all wonderful teachers, simply by fiat, but that the students are too dumb to appreciate us. Saying this, or thinking it, is analogous to proposing to reduce crime in the streets by widening the sidewalks. It is doubletalk. If you are not transmitting knowledge, then you are not teaching. We are not hired to train the ideal platonic student. We are hired to train the particular students who attend our particular universities. It is our duty to learn how to do so.

This is a rather personal document. After all, teaching is a rather personal activity. But I am not going to advise you to tell jokes in your classes, or to tell anecdotes about mathematicians, or to dress like Gottfried Wilhelm von Leibniz when you teach the product rule. Many of these techniques only work for certain individuals, and only in a form suited to those individuals. Instead I wish to distill out, in this book, some universal truths about the teaching of mathematics. I also want to go beyond the platitudes that you will find in books about teaching all subjects (such as “type all your exams”, “grade on a bell-shaped curve”) and talk about issues that arise specifically in the teaching of mathematics. I want to talk about principles of teaching that will be valid for all of us.

My examples are drawn from the teaching of courses ranging from calculus to real analysis and beyond. Lower-division courses seem to be an ideal crucible in which to forge teaching skills, and I will spend most of my time commenting on those. Upper-division courses offer problems of their own, and I will say a few words about those. Graduate courses are dessert. You figure out how you want to teach your graduate courses.

There are certainly differences, and different issues, involved in teaching every different course; the points to be made in this book will tend to transcend the seams and variations among different courses. If you do not agree in every detail with what I say, then I hope that at least my remarks will give you pause for thought. In the end, you must decide for yourself what will take place in your classroom.

There is a great deal of discussion these days about developing new ways to teach mathematics. I’m all for it. So is our government, which is generously funding many “teaching reform” projects. However, the jury is still out regarding which of these new methods will prove to be of lasting value. It is not clear yet exactly how Mathematica notebooks or computer algebra systems or interactive computer simulations should be used in the lower-division mathematics classroom. Given that a large number of students need to master a substantial amount of calculus during the freshman year, and given the limitations on our resources, I wonder whether alternatives to the traditional lecture system—such as, for instance, Socratic dialogue—are the correct method for getting the material across. Every good
new teaching idea should be tried. Perhaps in twenty years some really valuable new techniques will have evolved. They do not seem to have evolved yet.

In 1993 I must write about methods that I know and that I have found to be effective. Bear this in mind: Experimental classes are experimental. They usually lie outside the regular curriculum. It will be years before we know for sure whether students taught with the new techniques are understanding and retaining the material satisfactorily and are going on to successfully complete their training. Were I to write about some of the experimentation currently being performed then this book would of necessity be tentative and inconclusive.

There are those who will criticize this book for being reactionary. I welcome their remarks. I have taught successfully, using these methods, for twenty years. Using critical self examination, I find that my teaching gets better and better, my students appreciate it more, and (most importantly) it is more and more effective. I cannot in good conscience write of unproven methods that are still being developed and that have not stood the test of time. I leave that task for the advocates of those methods.

In fact I intend this book to be rather prescriptive. The techniques that I discuss here are ones that have been used for a long time. They work. Picasso's revolutionary techniques in painting were based on a solid classical foundation. By analogy, I think that before you consider new teaching techniques you should acquaint yourself with the traditional ones. Spending an hour or two with this book will enable you to do so.

I am grateful to the Fund for the Improvement of Post-Secondary Education for support during a part of the writing of this book. Randi D. Ruden read much of the manuscript critically and made decisive contributions to the clarity and precision of many passages. Josephine S. Krantz served as a valuable assistant in this process. Bruce Reznick generously allowed me to borrow some of the ideas from his book Chalking It Up. I also thank Dick Askey, Brian Blank, Bettye Anne Case, Joe Cima, John Ewing, Mark Feldman, Jerry Folland, Ron Freiwald, Paul Halmos, Gary Jensen, John McCarthy, Alec Norton, Mark Pinsky, Bruce Reznick, Richard Rochberg, Bill Thurston, and the students in our teaching seminar at Washington University for many incisive remarks on different versions of the manuscript. The publications committees of the Mathematics Association of America and of the American Mathematical Society have provided me with detailed reviews and valuable advice for the preparation of the final version of this book.
Bibliography

[MAR] J. Martino, Dr. Jekyll or Professor Hyde?, preprint.

Index

accents, foreign, 111
actors to advise teachers, 24
advice, 120
advice and consent, 120
Aegean stables, shoveling, 91
alarms on wrist watches, 15
American students vs. foreign students, 112
American vs. European classroom style, 112
Amherst project, 17
anecdote, telling of an, 26
anxiety and mathematics, 70
applications, 16
as an appendage, 19
as an integral part of the mathematics, 18
brief, 18
disingenuous, 18
in a calculus class, 17
keeping a file of, 17
not credible, 18
perspective on, 17
short, 18
telling students about, 16
time management of, 18
too complex, 17
trivial, 18
up-to-date, 17
argument, teaching to students, 79
Aristotelian rhetoric, 8
arranging material on blackboard, 27
art as sexual harassment, 122
Asian students, success of, 112
attitude problem, 118
attrition vs. content vs. content vs. self-esteem, 51
audience, 13
feedback, 47
respect for, 2
sense of, 55
sensitivity to, 170
authority, being an, 117
availability of professor after class, 61
avoid delicate topics, 120

avoidance, 128
bag of tricks, 28
Banchoff, T., 38, 125
befriending students, 120
begging, 124
behavioral problems, nipping in bud, 117
being clear, 20
being too clear, 20
biology students, needs of, 76
blackboard
common errors in technique, 29
dividing, 24
erasing, 28
sending students to the, 86
students at the, 10
technique, 26
writing on, 28
blackboards
placing material on, 27
sliding, 27
Boas, R., 72
body language, 39
body, using your, 23
boring people vs. interesting people, 26
Bosch, H., 117
Bosch, Heironymous, 117
Bourbaki, N., 72
boxes, dividing blackboard into, 27
breaking the ice, 69
breaking the ice, techniques for, 70
bribes, 124
bribes, receptivity to, 124
British educational system, discourse in, 79
business school, dealing with, 75
business students, needs of, 76
business students, teaching, 76
buzzers and bells in the classroom, 15
cajoling, 20
calculations, skipping, 18
calculus
as a “filter”, 7
as a service course, 76
attrition rate, 78
cooperative teaching with business school, 75
dropout rate, 78
failure rate, 78
forestry school version, 76
reform, 78
teaching of, 81
Cambridge University, 79
Cargal, J., 72
Carlyle, Thomas, 4
CD-ROM texts, 57
CD-ROM texts, liabilities of, 68
Chair’s admonition, 124
cheaters
and the Director of Undergraduate Studies, 124
catching, 125, 126
defense against, 114
dishonesty of, 113
handling, 114
pitfalls in handling, 115
policy against, 113
rights of, 114
cheating, 119
 best defense is offense, 114
 other students’ reactions to, 118
 planning against, 113
Chicago, University of, 127
Chippendale’s, 122
Churchill, W., 111
class
 as dialogue with students, 8
 beyond control, 117
 breaking the ice with, 69
 early departures from, 118
 late arrivals to, 118
 regimen in, 70
 turning into a working group, 69
classes
 powerful effects of, 95
 significance of, 94
 spiritual importance of, 94
classroom
 as the venue for all learning, 8
 as the venue where all learning takes place, 8
 pandemonium, 117
 working against you, 23
collaboration, importance of in student success, 33
commanding respect vs. demanding respect, 118
comments on exams, 106
communicating, 1
communication, 5
complaints of sexual harassment, 128
complex, from the simple to the, 75
compromising situations, 121
computer labs, 10
concerts, rock, 117
conditionally convergent series, 73
confidence, use of in keeping discipline, 117
certainty and eye contact, 26
consequences of not preparing, 4
consultations outside of office hour, 52
content hours in reform, 9
content vs. motivation, 51
content vs. self-esteem vs. empowerment vs. attrition, 51
continuity of a function, 55
conversation vs. teaching, 20
counselors, gifted, 25
correcting mistakes, students comfortable with, 119
course
 advanced topics, 35
 as a prerequisite, 55
 challenging a, 51
 design of, 35
 designing a, 55
 diary, 51
 evaluation techniques, 41
 key ideas in, 55
 killing a, 35
 lousing up, 35
 outline, 55
 outline for, 55
 planning a, 56
 service, 55
 structure of, 35
cowardice, 128
critical thinking skills, 90
critical thinking, teaching to students, 79
critical thought, modes of, 90
criticizing colleagues, 120
curiosity, kindling student, 25
Dalai Lama, 12
death in the family, 128
debriefing after class, 118
debriefing yourself, 5
deductive learning, 71
method of learning, 71
vs. inductive method, 71
demanding respect vs. commanding respect, 118
departmental reputation hinging on key courses, 91
derivatives, commutation of, 72
desk, crawling under, 81
desperate students, 124
Diaconis, P., 78
INDEX 139

diary for the course, 54
Digital Library of Mathematical Functions, 104
dignity, losing your, 23
disciplinary measures, stern, 117
discipline, 116
discipline problems, handling in advance, 117
discipline, maintaining, 118
discourse, 113
 art of, 90
 teaching students, 79
discussions, group, 8
disruptions, 116
disruptions, handling, 116
DLMF, 104
Douglas, R., 78
dress appropriately, 1
dropping grades, 116
Dubinsky, E., 9, 82
early departures from class, 116
easy, making things look, 25
easy, students concluding that material is, 25
eating in class, 116
educational theory, 128
eigenvalue asymptotics, 16
empowerment vs. attrition vs. content vs. self-esteem, 81
engagement, responsibility for, 91
engaging the attention of the audience, 26
engaging the students in the material, 81
English as a second language, 111
enthusiasm, experiment with, 39
equations, labeling, 27
erasing and keeping material during lecture, 28
erasing thoroughly, 28
erf, 103
errors in homework, 39
evaluation of grade by student, 124
“Evaluation of Course Overall”, 42
“Evaluation of Instructor Overall”, 42
exam
 as a repository for ancillary theorems, 44
 as a tool for engaging students in the learning process, 45
 cramming for an, 51
 giving a hairy, 44
 length of, 116
 misjudging, 17
 poor performance on, 123
 questions broken into steps, 44
 questions, point values of, 47
 questions, students getting to the answer on, 43
 time for, 110
with too much difficult algebra, 47
example
 bailing out of, 119
 getting out of control, 119
 setting of for students, 120
examples, 5
 finding good ones, 5
 teaching with, 72
exams, 43
 as a tool for communication, 44
 as a tool for monitoring the course, 46
 as a tool to train students, 46
 as an aid to focusing student attention, 40
 avoiding algebraic complications on, 45
 bad, 15
 composing, 40
 consistency in grading, 47, 48
 consultation with students over, 49
 designing, 43
 effective, 43
 expeditious returning of, 45
 gamesmanship on, 45
 good, 44, 45
 grading, 47
 grading and returning on time, 48
 handwritten vs. word processed, 48
 homework questions on, 44
 horizontal grading of, 45, 62
 in a small class, 46
 in class and out, 47
 in small classes, 46
 indexed against homework, 31
 interconnected questions on, 47
 liabilities of multiple choice, 46
 minimalist, 43
 misjudging, 47
 multiple choice, 45
 multiple choice vs. written out, 45
 partial credit on, 45
 point values of questions on, 47
 posting solutions for, 49
 practice, 46, 47
 returning at end of hour, 48
 returning to students, 48
 revealing questions on, 44
 review sessions for, 46
 short answer questions on, 46
 solutions for practice, 47
 solving problems in class, 49
 statistics on, 48
 straightforward, 44
 straightforward questions on, 44
 student questions on, 48
 surprises on, 44
 take-home, 47
 too complex, 47
 too hard, 45
INDEX

141

doing by modifying examples in text, 125

drilling students on essential material, 30

grading of, 30, 31

indexed against exams, 31

problem, giving help on, 31

scores vs. exam scores, 125

student collaboration on, 31

honesty, penalizing students for, 50

Honor Code, 114

horizontal grading, 62

how to study for an exam, 126

humiliating students, 118

hyperboloid of one sheet, 27

ideas, layering of, 17

impatience with American students, 112

important topics in class, 126

impossible student questions, 11

impossible student questions, answering, 11

incomplete

completing an, 116

completing by retaking course, 116

formalization of, 115

incompletes, 115

making up of, 115

never completed, 115

to whom to give, 115

inductions to change grades, 124

inductive learning, 71

inductive learning, examples of, 72

inductive method of learning, 71

inductive vs. deductive method, 71

informal conversation with students, 6

instruction

filming of, 39

instructor

as scapegoat, 122

in charge of class, 118

leaving room during exam, 118

model for, 65

insulting students, 3

intellectual life and teaching life, 128

interesting people vs. boring people, 26

Internet

as nerve center of class, 94

mathematics curriculum, 94

use for posting course information, 93

involved with students, becoming, 50

“I really understand the ideas but”, 126

James, W., 116

jokes, telling of, 26

joking, 85

Kevorkian, Jack, 71

knitting in class, 110

know, things you don’t, 13

knowing how to study, 125

knowing material cold, 27

Koblitz calculus project, 17

lab activities, 125

language in sexual harassment, 122

large classes vs. small classes, 61

large lecture

and teaching assistants, 62

discipline for, 62

organization for, 62

preparation for, 62

large lectures

alienation of students in, 61

being heard in, 58

coordinating, 62

courtesy toward students in, 61

getting to know students in, 63

intuition about, 61

not belittling students in, 61

ombudsmen in, 63

pandemonium during, 77

people management in, 59

questions in, 58–60

student participation in, 60

student questions in, 60

students comfortable in, 60

teaching in, 58

too many questions in, 61

large lectures vs. small lectures, 61

late arrivals to class, 116, 118

late papers, 113

late work, 113

late work, handling, 113

laying down the law, 117

learning

as a giving and a sharing activity, 65

as a passive process, 125

as a sharing activity, 65

lecture

as a controlled conversation, 24

bungling a, 2

components of, 24

ersors in, 8

how to replace, 2

is dead, 6

notes, 40

notes, institutionalized system of, 37

notes, professionally prepared, 36

preparing a cogent, 8

use of time in, 9

lecturer

effective, 28

lectures, 9

alternatives to, 2

as inspiration, 7

large, 38

large—questions in, 58

nonverbal aspects of, 39

vs. reform, 9
length of printed line, 27
Leno, Jay, 59
Letterman, David, 59
Letterman, David as role model, 8
linear algebra, teaching of, 91
Macarthur Prize, 78
Maple, 103
Markov processes, 16
master your material, 1
mastering the material, 125
math anxiety, 70
and education, 71
and the mathematician, 71
math avoidance, 71
math class as a discussion course, 87
math is unforgiving, 70
Mathematica, 103
Mathematical
POST-IT notes, 88
mathematical
discourse, 81
modeling, 17
mathematics
a dry and forbidding subject, 80
and other departments, 75
as a dry, forbidding subject, 80
as a tall subject, 19
as a wide subject, 19
MatLab, 103
Maurer, S., 78
Maxima, 103
mentors, role of, 77
mentors, senior faculty as, 77
mentors, teaching, 76
Meyer/Briggs dialectic, 80
Meyer/Briggs Type Indicator, 80
microphone
getting used to, 58
use of a, 58
use of in large lectures, 58
minimalism, 43
Minute Notes, 87
Minute Notes and empowerment, 87
misogyny, 121
misspelling, deliberate, 88
mistakes
handling with aplomb, 24
in class, 119
in isolation, 119
in lecture, 4
preventing, 119
snowballing, 119
that snowball, 119
Mittag-Leffler Prize, 78
Mittag-Leffler Prize, as compared to Nobel
Prize, 70
modes of mathematical analysis, 90
monitoring language, 122
Moore method
and reading, 20
bad features, 20
example of, 21
good features, 20
of teaching, 20
Moore, R. L., 119, 20, 119
multi-variable calculus, 19
Munro, H. H., 73
native English speakers, speaking with, 111
NetTutor, 64
new topic, starting a, 14
non-mathematical questions by students,
112
non-native English speakers, 111
nonverbal communication, 39
“No pain, no gain.”, 67
not preparing, consequences of, 4
NSF education programs, 78
office hours, 92
as a device for getting to know students,
35
as a device for working the audience, 33
as time set aside for students, 35
before an exam, 32
meeting, 32
seeing students outside of, 32
special space for, 32
staggering of, 32
therapeutic value, 33
older faculty, 123
ombudsmen, 63
optimal hypothesis, not using, 72
oral reports, 86
ordinary differential equations, teaching of,
91
organizational problems in large classes,
117
organizing steps, 28
overtime, running, 14
Oxford University, 79
paradigm for student work, 28
parentheses, 120
parents who can control their children, 118
parents who cannot control their children,
118
Parlett, B., 72
Parlett, Beresford, 72
participation, student, 85
passive mode, 7
passive observers, living lives as, 90
patience, 12, 34
pauses during lecture, 27
peers, fear of being embarrassed in front of,
persistence, 34
persistence in teaching students to graph, 28
personality type, teaching to, 80
piano, playing the, 4
places to stop, comfortable, 14
plagiarism, 114
planimeter, 19
Playboy magazine, 122
pleading, 124
policies, setting, 113
political correctness, 120, 122
political items as harassment, 122
politically correct language, 122
poor questions, ideal answers to, 13
POST-IT notes, 88
practicing the material, students, 125
pre-med students, teaching, 75
precepts for creating a homework assignment, 30
predator-prey problems, 17
preferential treatment, 121
prejudice, 121
preparation
and losing your edge, 4
importance of, 3
psychology of, 2
right amount of, 4
striking a balance with, 5
time, reducing, 5
prepare, 12
so that you can respond to students, 2
preparedness, 62, 128
preparedness, over-, 4
preparing, 2
for class, 3
presence, using your, 23
prevention of mistakes, techniques for, 119
priming, 55
printing, neat, 26
problem sessions, 63
graduate student in charge of, 63
harder to conduct than lecture, 64
preparation for, 63
preparing for, 65
vs. lectures, 64
problems
that students can do, 57
that students cannot do, 57
product rule, form of, 122
professionals, evaluation of, 77
professors teaching elementary courses, 2
prove the Riemann hypothesis or learn to teach, 55, 122
psychological barriers to blackboard technique, 29
psychological barriers to voice control, 29
psychological counselors, 71
psychology students, teaching, 75
question
making it more than it is, 13
questions, 5, 10, 64
answering, 61, 64
anticipating, 9
as a good thing, 34
as a teaching device, 11
asking, 54
bad, 11
belligerent, 10
cleaned up by the instructor, 11
difficult, 18
directed, 84
fielding on the fly, 9
getting students to pose, 86
posing, 54
requiring brief answers, 15
requiring long answers, 15
specific, 54
steering the class, 5
student, 83
suiting answer to, 14
the art of asking, 85
too general, 84
too vague, 84
turning bad into good, 134, 122
turning weak ones into strong ones, 86
questions, posing, 54
quitting when the time is up, 15
quiz
sections and the TA, 66
quizzes
as a device for prompting questions, 85
weekly, 31
written and graded by students, 87
racing through material, 20
racing to next topic, 24
racism, 121
reading newspaper in class, 116
real estate huckster, 8
rebuilding concepts in the mind, 25
reform
and cognitive psychology, 82
and issues of content, 81
by doing vs. reform by philosophizing, 82
methods, typical, 78
money and, 80
second generation, 82
texts, new, 82
use of to engage students, 10
Web site for, 79
reformers
as individuals, 9
communicating with traditionalists, 81
remarks in boxes, 27
remembrances of things past, 15
repartee vs. teaching, 26
repeat an exam, allowing student to, 124
repeating an exam, 124
rescinding of job offer because of sexual harassment, 123
respect, I 118
commanding, 118
demanding, 118
respecting audience’s viewpoint, 1
review session, handling questions during, 63
review sessions, 63
rewards, internal, 7
Riesz, F., 112
role model, 65
romance, 116
romance in class, 116
room, fill the, 29
Roosevelt, F. D., 83
Rubinstein, A., 125
Rudin, Walter, 73
running overtime, 15
running undertime, 15
rush, lecturing in a, 24
rushing, not giving the impression of, 24
Sage, 103
Saki, 74
Saxon text series, 57
say the words as you write them, 29
Schober, Glenn, 8
Second Law of Thermodynamics, 73
self-esteem, 9
self-esteem vs. empowerment vs. attrition vs. content, 81
self-evaluation and peer evaluation, 10
service courses, 73
service courses, tailored to customers, 76
sexism, 121
sexism, accusations of, 128
defense against, 120
sexual harassment, 120, 122, 124
shoulder, arm around, 122
sexual items as harassment, 122
showing off, 6
shushing, other students ’re offenders, 116
silly, not being, 23
sliding blackboards, use of, 27
small classes vs. large classes, 61
small lectures vs. large lectures, 91
speaking up, 5
speaking up, 6
standard, students rising to a, 67
standing
in front of what you are writing, 29
in front of what you’ve written, 27
Stewart’s calculus book, 82
Stewart, J., 82
stimulating students, 25
straightforward material looking difficult, 25
student absenteeism, 118
discovery of ideas, 11
excuses, 113
inattention, 116
projects, 85
questions guiding lecture, 11
questions, rephrasing, 61
reaction to human input, 40
reaction to intellectual input, 40
reaction to intellectual input, 40
students as children, 116
as scholars, 40
as scholars, 40
going to the blackboard, 10
hanging around faculty office, 121
how to handle in large lectures, 59
not talking to you, 70
setting aside time for, 32
setting aside time for, 32
taking possession of ideas, 25
want to be told what to do, 126
studying vs. sitting in front of the book, 126
subjective definitions of math terms, 112
surface design, 16
surviving as an academic, 121
Sutton, W., 80
syllabus, 30, 49, 62
as contract with students, 54
as magnum opus, 54
as organizational tool, 53
as paper trail, 53
as paper trail for course, 54
availability of, 53
brevity in, 54
contents of, 52
for a course, 52
impossible, 30
on the Web, 54
TA and quiz sections, 65
autonomy of, 66
being a, 66
experience as a, 66
experience of, 66
liabilities of being a, 66
professor nurturing, 66
tailoring activities to the needs of the institution, 121
talking
INDEX

145
down to students, 15, 121
too fast, 24
too much, writing too little, 29
too rapidly and writing too rapidly, 29
teacher as cheerleader, 24
teachers with accents, 112
teaching and pop psychology, 33
and psychotherapy, 33
as a team effort, 91
assistant as teacher, 66
assistants, 62, 65
assistants attending lectures, 64
evaluation by exit interviews, 41, 12
evaluation by faculty experts, 41, 12
evaluation by peer review, 41, 12
evaluation by self-evaluation, 41, 12
evaluation by videotaping, 41
evaluation by videotaping of lectures, 41
evaluation in a nutshell, 41
evaluation, Dean’s view of, 41
evaluation, methods of, 41
evaluation, midterm, 41
evaluation, quick and dirty, 41
evaluations, putting in context, 40
evaluations, consistency of, 40
evaluations, dialectic comparison of, 56
evaluations, empirical value of, 40
evaluations, experiment with, 38
evaluations, faculty reaction to, 57
evaluations, genesis of, 37
evaluations, outliers, 38
evaluations, reasons for, 57
evaluations, valuable information in, 37
evaluations, value of, 38
French style, 76
hero, 91
in America, 112
life and intellectual life, 128
personal aspects of, 70
psychological aspects of, 24
reform, NSF sponsorship of, 46
skill as a cultivated art, 3
styles, different methods for different people, 80
technologies for, 10
teasing, 25
television, 4
television evangelist, 8
television-like environment, 4
telling a joke vs. teaching, 26
terminology, over-use of, 13
test
alteration, prevention of, 115
time for, 16
tests, 18
Texas, University of, 20
text
selecting, 56
suitability of, 36
textbook
gestalt of, 57
choosing a, 57, 59, 60
choosing a single, 56
consulting other faculty when choosing, 56
from students’ point of view, 56
liabilities of a, 55
liabilities of a poor choice, 55
living with a, 56
notational conventions in, 56
price of, 36
problems in, 55
selection of, 56
student getting to know, 56
textbook, first edition of, 55
textbooks
by John Saxon, 57
costs of, 55
on CD-ROM, 57
texture, adding to lecture, 64
The Lecherous Professor, 129
“the lecture is dead”, 10
therapeutic aspects of teaching, 33
things that you don’t know, 13
think ahead during lecture, 27
Thurston, W., 19
Thurston, W. P., 19
time
allotment of, 16
management, 16
running out of, 14
unmanaged use of, 9
use of, 9, 14
Time magazine, 12
timidity, student, 54
tone, setting the, 117
Total Quality Management, 63
tradition contrasted with reform, 10
traditional
methods, rethinking, 58
techniques, use of to engage students, 10
traditionalists
as individuals, 9
communicating with reformers, 51
triviality, perceived, 29
trust, 12
Tulane University, 78
turf
in the reform vs. tradition debate, 51
protecting our, 76
tutoring
your students, 67
tutors, 66
as crutches, 67
dangers of, 66
departmental list of, 68
down side of, 67
faculty recommending, 67
faculty serving as, 67
need for, 67
proper use of, 67
two-hour exam in a one-hour time slot, 16
undertime, running, 14
uniform convergence, 17
uninflected monotone, avoiding, 23
using the same phrase twice, 29
vectors, division of, 12
velocity as a number, 13
velocity as a vector, 13
vertical grading, 62
voice
as a tool, 23
inflection of, 23
modulation, 6
modulation and projection, practice with, 6
use of, 23
using your, 23
wall hangings as sexual harassment, 122
warnings, stern, 116
watching a mathematician think on his feet, 8
wavelets, 17
Web page, as nerve center of class, 94
what will the test cover?, 126
“What is all this stuff good for?”, 16
“Will this be on the test?”, 13, 18
wheedling, 25, 85
Wiener, N., 72
working the audience, 34
world round or flat, 19
writing
how much should you put in, 29
neatly and clearly, 29
neatly and slowly, 39
on the blackboard, how much to do, 29
too rapidly and talking too rapidly, 29
x-simple domain, 73
Yardbirds, 77
young faculty, 124
y-simple domain, 73
This third edition is a lively and provocative tract on how to teach mathematics in today's new world of online learning tools and innovative teaching devices. The author guides the reader through the joys and pitfalls of interacting with modern undergraduates—telling you very explicitly what to do and what not to do. This third edition has been streamlined from the second edition, but still includes the nuts and bolts of good teaching, discussing material related to new developments in teaching methodology and technique, as well as adding an entire new chapter on online teaching methods.