Remote access

How to Order

For AMS eBook frontlist subscriptions or backfile collection purchases:

   1a. To purchase any ebook backfile or to subscibe to the current year of Contemporary Mathematics, please download this required license agreement,

   1b. To subscribe to the current year of Memoirs of the AMS, please download this required license agreement.

   2. Complete and sign the license agreement.

   3. Email, fax, or send via postal mail to:

Customer Services
American Mathematical Society
201 Charles Street Providence, RI 02904-2294  USA
Phone: 1-800-321-4AMS (4267)
Fax: 1-401-455-4046

Visit the AMS Bookstore for individual volume purchases.

Browse the current eBook Collections price list

Powered by MathJax

Transplantation theorems and multiplier theorems for Jacobi series

About this Title

Benjamin Muckenhoupt

Publication: Memoirs of the American Mathematical Society
Publication Year 1986: Volume 64, Number 356
ISBNs: 978-0-8218-2418-4 (print); 978-1-4704-0772-8 (online)
MathSciNet review: 858466
MSC: Primary 42C05; Secondary 42A45, 42C15

View full volume PDF

View other years and numbers:

Table of Contents


  • 1. Introduction
  • 2. Jacobi polynomials
  • 3. A reduction lemma
  • 4. An estimate for separated arguments
  • 5. Kernel estimates for separated arguments
  • 6. An estimate for noncomparable values near 0
  • 7. Kernel estimates for noncomparable values near 0
  • 8. Kernel estimates for comparable values
  • 9. Facts concerning weighted norm inequalities
  • 10. A transplantation lemma without moment conditions
  • 11. A transplantation lemma with moment conditions
  • 12. Proof of the power weight transplantation theorem
  • 13. Multipliers for power weights: a special case
  • 14. Multipliers for power weights
  • 15. Transplantation lemmas with general weights
  • 16. General weight transplantation for $s < \min (\alpha +\gamma +2, \beta +\delta +2)$
  • 17. General weight transplantation for $s \geq \min (\alpha +\gamma +2, \beta +\delta +2)$
  • 18. Moment conditions are essential if $s \geq \min (\alpha +\gamma +2, \beta +\delta +2)$