# The $R{\rm O}(G)$-graded equivariant ordinary homology of $G$-cell complexes with even-dimensional cells for $G={\Bbb Z}/p$

### About this Title

**Kevin K. Ferland** and **L. Gaunce Lewis, Jr.**

Publication: Memoirs of the American Mathematical Society

Publication Year
2004: Volume 167, Number 794

ISBNs: 978-0-8218-3461-9 (print); 978-1-4704-0392-8 (online)

DOI: http://dx.doi.org/10.1090/memo/0794

MathSciNet review: 2025457

MSC (2000): Primary 55N91; Secondary 55M35, 55R40, 57S17

### Table of Contents

**Chapters**

- Introduction
- Part 1. The homology of $\mathbb {Z}/p$-cell complexes with even-dimensional cells
- Chapter 1. Preliminaries
- Chapter 2. The main freeness theorem (Theorem 2.6)
- Chapter 3. An outline of the proof of the main freeness result (Theorem 2.6)
- Chapter 4. Proving the single-cell freeness results
- Chapter 5. Computing $H^G_*(B \cup DV; A)$ in the key dimensions
- Chapter 6. Dimension-shifting long exact sequences
- Chapter 7. Complex Grassmannian manifolds
- Part 2. Observations about $RO(G)$-graded equivariant ordinary homology
- Chapter 8. The computation of $H^S_*$ for arbitrary $S$
- Chapter 9. Examples of $H^S_*$
- Chapter 10. $RO(G)$-graded box products
- Chapter 11. A weak universal coefficient theorem
- Chapter 12. Observations about Mackey functors